Experimental warming increases respiration and affects microbial communities of soil wetlands at different elevations of the Argentinean Puna
M. Fernanda Chiappero, María V. Vaieretti, Norma Gallardo, Andrea E. Izquierdo
Experimental warming increases respiration and affects microbial communities of soil wetlands at different elevations of the Argentinean Puna
● Under warming soil respiration was higher, but soil microbial biomass was lower.
● Warming effect on soil respiration was higher in soil from the highest elevation.
● Soil respiration was higher in soil with higher soil carbon content.
● Warming increased biomass-specific respiration and enzyme activity.
● The Q 10 did not differ among soils from different elevations.
Global warming is expected to increase the rate of soil carbon (C) efflux through enhanced soil microbial processes, mainly in systems, such as high elevation wetlands, storing large quantities of soil organic C. Here, we assessed the impact of experimental warming on respiration and microbial communities of high Andean wetland soils of the Puna region located at three different elevations (3793, 3862, 4206 m a.s.l.). We incubated soils at 10°C and 25°C for 68 days and measured the soil respiration rate and its temperature sensitivity (Q10). Furthermore, we measured biomass and composition and enzymatic activity of soil microbial communities, and initial and final soil C content. Although warming increased soil respiration rates, with more pronounced effect in soils sampled from 4206 m a.s.l., Q10 did not differ between elevations. Soil C content was higher at the highest elevation. Soil microbial biomass, but not enzymatic activity, was lower for warmed soil samples. However, the biomass-specific respiration and biomass-specific enzymatic activity were higher under warming, and in soil from the highest elevation wetland. These results suggest that, in the short-term, warming could stimulate resource allocation to respiration rather than microbial growth, probably related to a reduction in the microbial carbon use efficiency. Simultaneously, soils with higher soil C concentrations could release more CO2, despite the similar Q10 in the different wetlands. Overall, the soil of these high Andean wetlands could become C sources instead of C sinks, in view of forecasted increasing temperatures, with C-losses at regional scale.
high-altitude ecosystems / peatlands / temperature / microorganisms / soil CO2 flux / vegas
[1] |
Adam, G., Duncan, H., 2001. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry33, 943–951.
CrossRef
Google scholar
|
[2] |
Allison, S.D., Wallenstein, M.D., Bradford, M.A., 2010. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience3, 336–340.
CrossRef
Google scholar
|
[3] |
Bardgett, R.D., Caruso, T., 2020. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philosophical Transactions of the Royal Society B: Biological Sciences375, 20190112.
CrossRef
Google scholar
|
[4] |
Benavides, J.C., Vitt, D.H., Cooper, D.J., 2023. The high-elevation peatlands of the northern Andes, Colombia. Plants12, 955.
CrossRef
Google scholar
|
[5] |
Blagodatskaya, Е., Blagodatsky, S., Khomyakov, N., Myachina, O., Kuzyakov, Y., 2016. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro. Scientific Reports6, 22240.
CrossRef
Google scholar
|
[6] |
Bossio, D.A., Scow, K.M., 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology35, 265–278.
CrossRef
Google scholar
|
[7] |
Cabrera, A.L., 1971. Fitogeografía de la república argentina. Boletín de la Sociedad Argentina de Botánica14, 1–42.
|
[8] |
Carey, J.C., Tang, J.W., Templer, P.H., Kroeger, K.D., Crowther, T.W., Burton, A.J., Dukes, J.S., Emmett, B., Frey, S.D., Heskel, M.A., Jiang, L.F., Machmuller, M.B., Mohan, J., Panetta, A.M., Reich, P.B., Reinsch, S., Wang, X., Allison, S.D., Bamminger, C., Bridgham, S., Collins, S.L., de Dato, G., Eddy, W.C., Enquist, B.J., Estiarte, M., Harte, J., Henderson, A., Johnson, B.R., Larsen, K.S., Luo, Y.Q., Marhan, S., Melillo, J.M., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Rastetter, E., Reinmann, A.B., Reynolds, L.L., Schmidt, I.K., Shaver, G.R., Strong, A.L., Suseela, V., Tietema, A., 2016. Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences of the United States of America113, 13797–13802.
CrossRef
Google scholar
|
[9] |
Carilla, J., Grau, H.R., Paolini, L., Mariano, M., 2013. Lake fluctuations, plant productivity, and long-term variability in high-elevation tropical Andean ecosystems. Arctic, Antarctic, and Alpine Research45, 179–189.
CrossRef
Google scholar
|
[10] |
Chiappero, M.F., Vaieretti, M.V., Izquierdo, A.E., 2021. A baseline soil survey of two peatlands associated with a lithium-rich salt flat in the Argentine Puna: physico-chemical characteristics, carbon storage and biota. Mires and Peat27, 16.
CrossRef
Google scholar
|
[11] |
Chimner, R.A., Resh, S.C., Hribljan, J.A., Battaglia, M., Bourgeau-Chavez, L., Bowser, G., Lilleskov, E.A., 2023. Mountain wetland soil carbon stocks of Huascarán National Park, Peru. Frontiers in Plant Science14, 1048609.
CrossRef
Google scholar
|
[12] |
Cooper, D.J., Sueltenfuss, J., Oyague, E., Yager, K., Slayback, D., Caballero, E.M.C., Argollo, J., Mark, B.G., 2019. Drivers of peatland water table dynamics in the central Andes, Bolivia and Peru. Hydrological Processes33, 1913–1925.
CrossRef
Google scholar
|
[13] |
Crowther, T.W., Todd-Brown, K.E.O., Rowe, C.W., Wieder, W.R., Carey, J.C., Machmuller, M.B., Snoek, B.L., Fang, S., Zhou, G., Allison, S.D., Blair, J.M., Bridgham, S.D., Burton, A.J., Carrillo, Y., Reich, P.B., Clark, J.S., Classen, A.T., Dijkstra, F.A., Elberling, B., Emmett, B.A., Estiarte, M., Frey, S.D., Guo, J., Harte, J., Jiang, L., Johnson, B.R., Kröel-Dulay, G., Larsen, K.S., Laudon, H., Lavallee, J.M., Luo, Y., Lupascu, M., Ma, L.N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L.L., Schmidt, I.K., Sistla, S., Sokol, N.W., Templer, P.H., Treseder, K.K., Welker, J.M., Bradford, M.A., 2016. Quantifying global soil carbon losses in response to warming. Nature540, 104–108.
CrossRef
Google scholar
|
[14] |
Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature440, 165–173.
CrossRef
Google scholar
|
[15] |
de Vries, F.T., Shade, A., 2013. Controls on soil microbial community stability under climate change. Frontiers in Microbiology4, 265.
CrossRef
Google scholar
|
[16] |
Eliasson, P.E., McMurtrie, R.E., Pepper, D.A., Strömgren, M., Linder, S., Ågren, G.I., 2005. The response of heterotrophic CO2 flux to soil warming. Global Change Biology11, 167–181.
CrossRef
Google scholar
|
[17] |
García-Palacios, P., Crowther, T.W., Dacal, M., Hartley, I.P., Reinsch, S., Rinnan, R., Rousk, J., van den Hoogen, J., Ye, J.S., Bradford, M.A., 2021. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nature Reviews Earth & Environment2, 507–517.
CrossRef
Google scholar
|
[18] |
Hagedorn, F., Gavazov, K., Alexander, J.M., 2019. Above- and below-ground linkages shape responses of mountain vegetation to climate change. Science365, 1119–1123.
CrossRef
Google scholar
|
[19] |
Haney, R.L., Brinton, W.F., Evans, E., 2008. Soil CO2 respiration: comparison of chemical titration, CO2 IRGA analysis and the Solvita gel system. Renewable Agriculture and Food Systems23, 171–176.
CrossRef
Google scholar
|
[20] |
Hartley, I.P., Hopkins, D.W., Garnett, M.H., Sommerkorn, M., Wookey, P.A., 2008. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecology Letters11, 1092–1100.
CrossRef
Google scholar
|
[21] |
Hribljan, J.A., Cooper, D.J., Sueltenfuss, J., Wolf, E.C., Heckman, K.A., Lilleskov, E.A., Chimner, R.A., 2015. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia. Mires and Peat15, 12.
|
[22] |
IPCC,
|
[23] |
Izquierdo, A.E., Blundo, C., Carilla, J., Foguet, J., Navarro, C.J., Casagranda, E., Chiappero, M.F., Vaieretti, M.V., 2022. Floristic types of high-Andean wetlands from northwest Argentina and their remote-sensed characterization at a regional scale. Applied Vegetation Science25, e12658.
CrossRef
Google scholar
|
[24] |
Izquierdo, A.E., Carilla, J., Nieto, C., Osinaga Acosta, O., Martin, E., Grau, H.R., Reynaga, M.C., 2020. Multi-taxon patterns from high Andean peatlands: assessing climatic and landscape variables. Community Ecology21, 317–332.
CrossRef
Google scholar
|
[25] |
Izquierdo, A.E., Grau, H.R., Navarro, C.J., Casagranda, E., Castilla, M.C., Grau, A., 2018a. Highlands in transition: urbanization, pastoralism, mining, tourism, and wildlife in the Argentinian Puna. Mountain Research and Development38, 390–400.
CrossRef
Google scholar
|
[26] |
Izquierdo, A.E., Navarro, C.J., Aragón, R., Casagranda, E., 2018b
|
[27] |
Jarrell, W.M., Armstrong, D.E., Grigal, D.F., Kelly, D.F., Monger, H.C., Wedin, D.A., 1999. Soil water and temperature status. In: Robertson, G.P., Coleman, D.C., Bledsoe, C.S., Sollins, P., eds. Standard Soil Methods for Long-Term Ecological Research. Oxford, UK: Oxford University Press, 55–73
|
[28] |
Jing, X., Wang, Y.H., Chung, H., Mi, Z.R., Wang, S.P., Zeng, H., He, J.S., 2014. No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau. Biogeochemistry117, 39–54.
CrossRef
Google scholar
|
[29] |
Joergensen, R.G., 2022. Phospholipid fatty acids in soil—drawbacks and future prospects. Biology and Fertility of Soils58, 1–6.
CrossRef
Google scholar
|
[30] |
Lehmeier, C.A., Min, K., Niehues, N.D., Ballantyne, F., Billings, S.A., 2013. Temperature-mediated changes of exoenzyme-substrate reaction rates and their consequences for the carbon to nitrogen flow ratio of liberated resources. Soil Biology and Biochemistry57, 374–382.
CrossRef
Google scholar
|
[31] |
Li, J.Q., Yan, D., Pendall, E., Pei, J.M., Noh, N.J., He, J.S., Li, B., Nie, M., Fang, C.M., 2018. Depth dependence of soil carbon temperature sensitivity across Tibetan permafrost regions. Soil Biology and Biochemistry126, 82–90.
CrossRef
Google scholar
|
[32] |
Li, X.J., Xie, J.S., Zhang, Q.F., Lyu, M., Xiong, X.L., Liu, X.F., Lin, T., Yang, Y.S., 2020. Substrate availability and soil microbes drive temperature sensitivity of soil organic carbon mineralization to warming along an elevation gradient in subtropical Asia. Geoderma364, 114198.
CrossRef
Google scholar
|
[33] |
Maldonado-Fonkén, M.S., 2014. An introduction to the bofedales of the Peruvian High Andes. Mires and Peat15, 05.
|
[34] |
Meng, C., Tian, D.S., Zeng, H., Li, Z.L., Chen, H.Y.H., Niu, S.L., 2020. Global meta-analysis on the responses of soil extracellular enzyme activities to warming. Science of the Total Environment705, 135992.
CrossRef
Google scholar
|
[35] |
Min, K., Buckeridge, K., Ziegler, S.E., Edwards, K.A., Bagchi, S., Billings, S.A., 2019. Temperature sensitivity of biomass-specific microbial exo-enzyme activities and CO2 efflux is resistant to change across short- and long-term timescales. Global Change Biology25, 1793–1807.
CrossRef
Google scholar
|
[36] |
Morales, M.S., Crispín-DelaCruz, D.B., Álvarez, C., Christie, D.A., Ferrero, M.E., Andreu-Hayles, L., Villalba, R., Guerra, A., Ticse-Otarola, G., Rodríguez-Ramírez, E.C., LLocclla-Martínez, R., Sanchez-Ferrer, J., Requena-Rojas, E.J., 2023. Drought increase since the mid-20th century in the northern South American Altiplano revealed by a 389-year precipitation record. Climate of the Past19, 457–476.
CrossRef
Google scholar
|
[37] |
Navarro, C.J., 2020. Respuesta funcional de las vegas de la Puna argentina a la interacción entre cambios climáticos y cambios de uso del suelo. Ph.D. Dissertation. Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
|
[38] |
Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., eds. Methods of Soil Analysis: Part 3 Chemical Methods. Madison: Soil Science Society of America, Inc., 961–1010
|
[39] |
Nottingham, A.T., Whitaker, J., Turner, B.L., Salinas, N., Zimmermann, M., Malhi, Y., Meir, P., 2015. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. BioScience65, 906–921.
CrossRef
Google scholar
|
[40] |
Orwin, K.H., Dickie, I.A., Holdaway, R., Wood, J.R., 2018. A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions. Soil Biology and Biochemistry117, 27–35.
CrossRef
Google scholar
|
[41] |
Pabón-Caicedo, J.D., Arias, P.A., Carril, A.F., Espinoza, J.C., Borrel, L.F., Goubanova, K., Lavado-Casimiro, W., Masiokas, M., Solman, S., Villalba, R., 2020. Observed and projected hydroclimate changes in the Andes. Frontiers in Earth Science8, 61.
CrossRef
Google scholar
|
[42] |
R Core Team, 2019. The R Project for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
|
[43] |
Rhoades, J.D., 1996. Salinity: electrical conductivity and total dissolved solids. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., eds. Methods of Soil Analysis: Part 3 Chemical Methods. Madison, USA: Soil Science Society of America, 417–435
|
[44] |
Rice, C.W., Moorman, T.B., Beare, M., 1996. Role of microbial biomass carbon and nitrogen in soil quality. In: Doran, J.W., Jones, A.J., eds. Methods for Assessing Soil Quality. Madison, WI, USA: Soil Science Society of America, Inc., 203–215
|
[45] |
Romero-Olivares, A.L., Allison, S.D., Treseder, K.K., 2017. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biology and Biochemistry107, 32–40.
CrossRef
Google scholar
|
[46] |
Salazar, A., Rousk, K., Jónsdóttir, I.S., Bellenger, J.P., Andrésson, Ó.S., 2020. Faster nitrogen cycling and more fungal and root biomass in cold ecosystems under experimental warming: a meta-analysis. Ecology101, e02938.
CrossRef
Google scholar
|
[47] |
Soil Survey Staff, 2010. Keys to Soil Taxonomy. 11th ed. Washington: USDA-Natural Resources Conservation Service
|
[48] |
Song, Y.Y., Liu, C., Song, C.C., Wang, X.W., Ma, X.Y., Gao, J.L., Gao, S.Q., Wang, L.L., 2021. Linking soil organic carbon mineralization with soil microbial and substrate properties under warming in permafrost peatlands of Northeastern China. CATENA203, 105348.
CrossRef
Google scholar
|
[49] |
Thomas, G.W., 1996. Soil pH and soil acidity. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., eds. Methods of Soil Analysis: Part 3 Chemical Methods. Madison, WI, USA: Soil Science Society of America, Inc., 475–490.
|
[50] |
Tian, Y., Schindlbacher, A., Malo, C.U., Shi, C.P., Heinzle, J., Kwatcho Kengdo, S., Inselsbacher, E., Borken, W., Wanek, W., 2023. Long-term warming of a forest soil reduces microbial biomass and its carbon and nitrogen use efficiencies. Soil Biology and Biochemistry184, 109109.
CrossRef
Google scholar
|
[51] |
Urrutia, R., Vuille, M., 2009. Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research: Atmospheres114, D02108.
CrossRef
Google scholar
|
[52] |
Vargas Gil, J., 1990. Provincia de Catamarca. In: Instituto Nacional de Tecnología Agropecuaria, ed. Atlas de Suelos de la República Argentina. Buenos Aires: Centro de Investigaciones de Recursos Naturales, 207–247
|
[53] |
Walker, T.W.N., Kaiser, C., Strasser, F., Herbold, C.W., Leblans, N.I.W., Woebken, D., Janssens, I.A., Sigurdsson, B.D., Richter, A., 2018. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nature Climate Change8, 885–889.
CrossRef
Google scholar
|
[54] |
Wang, C., Morrissey, E.M., Mau, R.L., Hayer, M., Piñeiro, J., Mack, M.C., Marks, J.C., Bell, S.L., Miller, S.N., Schwartz, E., Dijkstra, P., Koch, B.J., Stone, B.W., Purcell, A.M., Blazewicz, S.J., Hofmockel, K.S., Pett-Ridge, J., Hungate, B.A., 2021. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. The ISME Journal15, 2738–2747.
CrossRef
Google scholar
|
[55] |
Wang, G.B., Zhou, Y., Xu, X., Ruan, H.H., Wang, J.S., 2013. Temperature sensitivity of soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains, China. PLoS One8, e53914.
CrossRef
Google scholar
|
[56] |
Willers, C., Jansen van Rensburg, P.J., Claassens, S., 2015. Phospholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications. Journal of Applied Microbiology119, 1207–1218.
CrossRef
Google scholar
|
[57] |
Yu, H.Y., Ma, Q.H., Liu, X.D., Xu, Z.Z., Zhou, G.S., Shi, Y.H., 2018. Short- and long-term warming alters soil microbial community and relates to soil traits. Applied Soil Ecology131, 22–28.
CrossRef
Google scholar
|
[58] |
Zelles, L., 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils29, 111–129.
CrossRef
Google scholar
|
/
〈 | 〉 |