Soil bacterial and protist communities from loquat orchards drive nutrient cycling and fruit yield

Li Wang, Jianhong Ji, Fei Zhou, Bibo Wu, Yingying Zhong, Lin Qi, Miao Wang, Yuping Wu, Xintao Cui, Tida Ge, Zhenke Zhu

PDF(5267 KB)
PDF(5267 KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (4) : 240232. DOI: 10.1007/s42832-024-0232-8
RESEARCH ARTICLE

Soil bacterial and protist communities from loquat orchards drive nutrient cycling and fruit yield

Author information +
History +

Highlights

● Loquat orchard location was the main driver of microbial communities and loquat fruit quality.

● The average fruit weight was correlated with the ɑ- and β-diversity of bacteria and protists.

● Soil bacterial and protistan communities drove the multiple nutrient cycling.

Abstract

The role of the soil microbiome in fruit quality within loquat orchards remains largely unknown. In this study, we collected soil samples from various loquat orchards in Ningbo, Zhejiang Province, China and investigated bacterial, fungal, and protist communities. The results showed that soil physicochemical conditions, the microbial community, and loquat fruit quality were significantly related to orchard location but unrelated to cultivation time and fertilization. The heterogeneity of the bacterial community was driven by soil pH, available phosphorus, and available potassium (AK). The fungal community was driven by soil electrical conductivity and AK. The protist community was driven by soil dissolved organic nitrogen and AK. The average fruit weight was significantly correlated with the ɑ- and β-diversity of bacteria and protists as well as the soil multiple nutrient cycling index. Several microbial phyla were related to average fruit weight, while other fruit quality indicators could not be explained by the soil microbiome. Our results reveal that bacterial and protist communities in loquat orchards drive the cycling of multiple nutrients that are related to fruit weight. These insights shed light on the relationship among the soil microbiome, nutrient cycling, and fruit quality, offering valuable scientific guidance for orchard management practices.

Graphical abstract

Keywords

bacteria / fungi / protists / multiple nutrient cycling / loquat / fruit quality

Cite this article

Download citation ▾
Li Wang, Jianhong Ji, Fei Zhou, Bibo Wu, Yingying Zhong, Lin Qi, Miao Wang, Yuping Wu, Xintao Cui, Tida Ge, Zhenke Zhu. Soil bacterial and protist communities from loquat orchards drive nutrient cycling and fruit yield. Soil Ecology Letters, 2024, 6(4): 240232 https://doi.org/10.1007/s42832-024-0232-8

References

[1]
Abdelfattah, A., Freilich, S., Bartuv, R., Zhimo, V.Y., Kumar, A., Biasi, A., Salim, S., Feygenberg, O., Burchard, E., Dardick, C., Liu, J., Khan, A., Ellouze, W., Ali, S., Spadaro, D., Torres, R., Teixido, N., Ozkaya, O., Buehlmann, A., Vero, S., Mondino, P., Berg, G., Wisniewski, M., Droby, S., 2021. Global analysis of the apple fruit microbiome: are all apples the same?. Environmental Microbiology23, 6038–6055.
CrossRef Google scholar
[2]
Amir, A., McDonald, D., Navas-Molina, J.A., Kopylova, E., Morton, J.T., Zech Xu, Z., Kightley, E.P., Thompson, L.R., Hyde, E.R., Gonzalez, A., Knight, R., 2017. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems2, 00191–00116.
CrossRef Google scholar
[3]
Bao, Y., Feng, Y., Stegen, J.C., Wu, M., Chen, R., Liu, W., Zhang, J., Li, Z., Lin, X., 2020. Straw chemistry links the assembly of bacterial communities to decomposition in paddy soils. Soil Biology & Biochemistry148, 107866.
CrossRef Google scholar
[4]
Bardgett, R.D., Van Der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature515, 505–511.
CrossRef Google scholar
[5]
Basu, S., Kumar, G., Chhabra, S., Prasad, R., 2021. Role of Soil Microbes in Biogeochemical Cycle for Enhancing Soil Fertility. In: Verma, J.P., Gupta, V.K., Macdonald, C.A., Podile, A.R., eds. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, pp. 149–157
[6]
Cao, S., Yang, Z., Zheng, Y., 2013. Sugar metabolism in relation to chilling tolerance of loquat fruit. Food Chemistry136, 139–143.
CrossRef Google scholar
[7]
Carrión, V.J., Perez-Jaramillo, J., Cordovez, V., Tracanna, V., De Hollander, M., Ruiz-Buck, D., Mendes, L.W., van Ijcken, W.F., Gomez-Exposito, R., Elsayed, S.S., Mohanraju, P., Arifah, A., van der Oost, J., Paulson, J.N., Mendes, R., van Wezel, G.P., Medema, M.H., Raaijmakers, J.M., 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science366, 606–612.
CrossRef Google scholar
[8]
Catarino, D., Alves-Silva, J., Pereira, O., Cardoso, S., 2015. Antioxidant capacities of flavones and benefits in oxidative-stress related diseases. Current Topics in Medicinal Chemistry15, 105–119.
CrossRef Google scholar
[9]
Dhiman, A., Suhag, R., Thakur, D., Gupta, V., Prabhakar, P.K., 2022. Current status of loquat (Eriobotrya japonica Lindl. ): Bioactive functions, preservation approaches, and processed products. Food Reviews International38, 286–316.
CrossRef Google scholar
[10]
Du, S., Li, X.Q., Hao, X., Hu, H.W., Feng, J., Huang, Q., Liu, Y.R., 2022. Stronger responses of soil protistan communities to legacy mercury pollution than bacterial and fungal communities in agricultural systems. ISME Communications2, 69.
CrossRef Google scholar
[11]
Feyissa, A., Gurmesa, G.A., Yang, F., Long, C., Zhang, Q., Cheng, X., 2022. Soil enzyme activity and stoichiometry in secondary grasslands along a climatic gradient of subtropical China. Science of the Total Environment825, 154019.
CrossRef Google scholar
[12]
Gao, M., Xiong, C., Gao, C., Tsui, C.K., Wang, M.M., Zhou, X., Zhang, A.M., Cai, L., 2021. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome9, 1–18.
CrossRef Google scholar
[13]
Gauri, S.S., Mandal, S.M., Pati, B.R., 2012. Impact of Azotobacter exopolysaccharides on sustainable agriculture. Applied Microbiology and Biotechnology95, 331–338.
CrossRef Google scholar
[14]
Govil, T., Paste, M., Samanta, D., David, A., Goh, K.M., Li, X., Salem, D.R., Sani, R.K., 2021. Metagenomics and culture dependent insights into the distribution of Firmicutes across two different sample types located in the black hills region of South Dakota, USA. Microorganisms9, 113.
CrossRef Google scholar
[15]
Granger, M., Eck, P., 2018. Dietary vitamin C in human health. Advances in Food and Nutrition Research83, 281–310.
CrossRef Google scholar
[16]
Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., del Campo, J., Dolan, J.R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W.H.C.F., Lara, E., Le Bescot, N., Logares, R., Mahé, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A.L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P., Christen, R., 2012. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Research41, D597–D604.
CrossRef Google scholar
[17]
Jackson, M., 1958. Soil chemical analysis prentice Hall. Inc., Englewood Cliffs, NJ498, 183–204.
[18]
Jaiswal, S., Aneja, B., Jagannadham, J., Pandey, B., Chhokar, R.S., Gill, S.C., Ahlawat, O.P., Kumar, A., Angadi, U., Rai, A., Tiwari, R., Iquebal, M.A., Kumar, D., 2022. Unveiling the wheat microbiome under varied agricultural field conditions. Microbiology Spectrum10, e02633–e02622.
CrossRef Google scholar
[19]
Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., Wei, G., 2018. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome6, 1–13.
CrossRef Google scholar
[20]
Jiao, S., Lu, Y., Wei, G., 2022. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biology28, 140–153.
CrossRef Google scholar
[21]
Kováčik, J., Klejdus, B., 2014. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition. Food Chemistry142, 334–341.
CrossRef Google scholar
[22]
Kumar, V., Selwal, N., 2023. A comprehensive examination of underutilized fruits and their potential health benefits. The Pharma Innovation Journal12, 2640–2643.
[23]
Larsbrink, J., McKee, L.S., 2020. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility. Advances in Applied Microbiology110, 63–98.
CrossRef Google scholar
[24]
Li, W., Yang, H., Zhao, Q., Wang, X., Zhang, J., Zhao, X., 2019. Polyphenol-rich loquat fruit extract prevents fructose-induced nonalcoholic fatty liver disease by modulating glycometabolism, lipometabolism, oxidative stress, inflammation, intestinal barrier, and gut microbiota in mice. Journal of Agricultural and Food Chemistry67, 7726–7737.
CrossRef Google scholar
[25]
Li, X., Xu, C., Chen, K., 2016. Nutritional and composition of fruit cultivars: Loquat (Eriobotrya japonica Lindl.). Nutritional composition of fruit cultivars. Elsevier, pp. 371–394
[26]
Li, Y., Kong, D., Fu, Y., Sussman, M.R., Wu, H., 2020. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry148, 80–89.
CrossRef Google scholar
[27]
Li, Y., Kuramae, E.E., Nasir, F., Wang, E., Zhang, Z., Li, J., Yao, Z., Tian, L., Sun, Y., Luo, S., Guo, L., Ren, G., Tian, C., 2023. Addition of cellulose degrading bacterial agents promoting keystone fungal-mediated cellulose degradation during aerobic composting: Construction the complex co-degradation system. Bioresource Technology381, 129132.
CrossRef Google scholar
[28]
Liang, J.L., Liu, J., Jia, P., Yang, T., Zeng, Q., Zhang, S., Liao, B., Shu, W., Li, J., 2020. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal14, 1600–1613.
CrossRef Google scholar
[29]
Lin, S., Sharpe, R.H., Janick, J., 1999. Loquat: botany and horticulture. Horticlutral Reviews23, 233–276.
[30]
Luvizotto, D.M., Araujo, J.E., Silva, M.D.C.P., Dias, A.C., Kraft, B., Tegetmeye, H., Strous, M., Andreote, F.D., 2018. The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils. Anais da Academia Brasileira de Ciências 91(suppl 1): e20180373
[31]
Lyu, Y., Porat, R., Yermiyahu, U., Heler, Y., Holland, D., Dag, A., 2020. Effects of nitrogen fertilization on pomegranate fruit, aril and juice quality. Journal of the Science of Food and Agriculture100, 1678–1686.
CrossRef Google scholar
[32]
Martínez, G., Mijares, M.R., De Sanctis, J.B., 2019. Effects of flavonoids and its derivatives on immune cell responses. Recent Patents on Inflammation & Allergy Drug Discovery13, 84–104.
CrossRef Google scholar
[33]
Mathur, P., Roy, S., 2021. Insights into the plant responses to drought and decoding the potential of root associated microbiome for inducing drought tolerance. Physiologia Plantarum172, 1016–1029.
CrossRef Google scholar
[34]
Medriano, C.A., Chan, A., De Sotto, R., Bae, S., 2023. Different types of land use influence soil physiochemical properties, the abundance of nitrifying bacteria, and microbial interactions in tropical urban soil. Science of the Total Environment869, 161722.
CrossRef Google scholar
[35]
Mishra, J., Singh, R., Arora, N.K., 2017. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology8, 1706.
CrossRef Google scholar
[36]
Nagano, Y., Tashiro, H., Nishi, S., Hiehata, N., Nagano, A.J., Fukuda, S., 2022. Genetic diversity of loquat (Eriobotrya japonica) revealed using RAD-Seq SNP markers. Scientific Reports12, 10200.
CrossRef Google scholar
[37]
Nelson, D.a., Sommers, L.E., 1983. Total Carbon, Organic Carbon, and Organic Matter. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., eds. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, the Soil Science Society of America, Inc. pp. 539–579
[38]
Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F.O., Tedersoo, L., Saar, I., Kõljalg, U., Abarenkov, K., 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research47, D259–D264.
CrossRef Google scholar
[39]
Okalebo, J.R., Gathua, K.W., Woomer, P.L., 2002. Laboratory methods of soil and plant analysis: a working manual second edition. Sacred Africa, Nairobi21, 25–26.
[40]
Olsen, S.R., 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Washington, D.C.: US Department of Agriculture
[41]
Penyalver, R., Roesch, L.F., Piquer-Salcedo, J.E., Forner-Giner, M.A., Alguacil, M.M., 2022. From the bacterial citrus microbiome to the selection of potentially host-beneficial microbes. New Biotechnology70, 116–128.
CrossRef Google scholar
[42]
Powell Gaines, T., 1973. Automated determination of reducing sugars, total sugars, and starch in plant tissue from one weighed sample. Journal of Association of Official Analytical Chemists56, 1419–1424.
CrossRef Google scholar
[43]
Pu, Q., Zhang, K., Poulain, A.J., Liu, J., Zhang, R., Abdelhafiz, M.A., Meng, B., Feng, X., 2022. Mercury drives microbial community assembly and ecosystem multifunctionality across a Hg contamination gradient in rice paddies. Journal of Hazardous Materials435, 129055.
CrossRef Google scholar
[44]
Qin, Y., Druzhinina, I.S., Pan, X., Yuan, Z., 2016. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnology Advances34, 1245–1259.
CrossRef Google scholar
[45]
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.
CrossRef Google scholar
[46]
Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ4, e2584.
CrossRef Google scholar
[47]
Saini, M.K., Capalash, N., Varghese, E., Kaur, C., Singh, S.P., 2020. Quantitative metabolomics approach reveals dynamics of primary metabolites in ‘Kinnow’mandarin (C. nobilis× C. deliciosa) during advanced stages of fruit maturation under contrasting growing climates. Journal of Horticultural Science & Biotechnology95, 106–112.
CrossRef Google scholar
[48]
Sakkas, H., Bozidis, P., Touzios, C., Kolios, D., Athanasiou, G., Athanasopoulou, E., Gerou, I., Gartzonika, C., 2020. Nutritional status and the influence of the vegan diet on the gut microbiota and human health. Medicina (Kaunas, Lithuania)56, 88.
CrossRef Google scholar
[49]
Shraim, A.M., Ahmed, T.A., Rahman, M.M., Hijji, Y.M., 2021. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. Lebensmittel-Wissenschaft + Technologie150, 111932.
CrossRef Google scholar
[50]
Soares, F.L. Jr, Melo, I.S., Dias, A.C.F., Andreote, F.D., 2012. Cellulolytic bacteria from soils in harsh environments. World Journal of Microbiology & Biotechnology28, 2195–2203.
CrossRef Google scholar
[51]
Sokol, N.W., Slessarev, E., Marschmann, G.L., Nicolas, A., Blazewicz, S.J., Brodie, E.L., Firestone, M.K., Foley, M.M., Hestrin, R., Hungate, B.A., Koch, B.J., Stone, B.W., Sullivan, M.B., Zablocki, O., Trubl, G., McFarlane, K., Stuart, R., Nuccio, E., Weber, P., Jiao, Y., Zavarin, M., Kimbrel, J., Morrison, K., Adhikari, D., Bhattacharaya, A., Nico, P., Tang, J., Didonato, N., Paša-Tolić, L., Greenlon, A., Sieradzki, E.T., Dijkstra, P., Schwartz, E., Sachdeva, R., Banfield, J., Pett-Ridge, J., 2022. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nature Reviews Microbiology20, 415–430.
CrossRef Google scholar
[52]
Song, A., Zhang, J., Xu, D., Wang, E., Bi, J., Asante-Badu, B., Njyenawe, M.C., Sun, M., Xue, P., Wang, S., Fan, F., 2022. Keystone microbial taxa drive the accelerated decompositions of cellulose and lignin by long-term resource enrichments. Science of the Total Environment842, 156814.
CrossRef Google scholar
[53]
Stewart, A., Chapman, W., Jenkins, G., Graham, I., Martin, T., Crozier, A., 2001. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant, Cell & Environment24, 1189–1197.
CrossRef Google scholar
[54]
Su, J., Wang, Y., Bai, M., Peng, T., Li, H., Xu, H.J., Guo, G., Bai, H., Rong, N., Sahu, S.K., He, H., Liang, X., Jin, C., Liu, W., Strube, M.L., Gram, L., Li, Y., Wang, E., Liu, H., Wu, H., 2023. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata ‘Chachi’. Microbiome11, 61.
CrossRef Google scholar
[55]
Sunil, K., Pallavi, G., 2014. A critical review on loquat (Eriobotrya japonica Thunb/Lindl). International Journal of Pharmaceutical and Biological Archives5, 1–7.
[56]
Tian, S., Li, B., Ding, Z., 2007. Physiological properties and storage technologies of loquat fruit. Fresh Produce1, 76–81.
[57]
Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hu, H., Anderson, I.C., Jeffries, T.C., Zhou, J., Singh, B.K., 2016. Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME Journal10, 2593–2604.
CrossRef Google scholar
[58]
Wang, L., Lian, C., Wan, W., Qiu, Z., Luo, X., Huang, Q., Deng, Y., Zhang, T., Yu, K., 2023. Salinity-triggered homogeneous selection constrains the microbial function and stability in lakes. Applied Microbiology and Biotechnology107, 1–15.
CrossRef Google scholar
[59]
Wang, L., Luo, X., Liao, H., Chen, W., Wei, D., Cai, P., Huang, Q., 2018. Ureolytic microbial community is modulated by fertilization regimes and particle-size fractions in a black soil of Northeastern China. Soil Biology & Biochemistry116, 171–178.
CrossRef Google scholar
[60]
Wang, L., Xiong, X., Luo, X., Chen, W., Wen, S., Wang, B., Chen, C., Huang, Q., 2020. Aggregational differentiation of ureolytic microbes in an Ultisol under long-term organic and chemical fertilizations. Science of the Total Environment716, 137103.
CrossRef Google scholar
[61]
Wei, L., Li, Y., Zhu, Z., Wang, F., Liu, X., Zhang, W., Xiao, M., Li, G., Ding, J., Chen, J., Kuzyakov, Y., Ge, T., 2022. Soil health evaluation approaches along a reclamation consequence in Hangzhou Bay, China. Agriculture, Ecosystems & Environment337, 108045.
[62]
Xiong, W., Jousset, A., Li, R., Delgado-Baquerizo, M., Bahram, M., Logares, R., Wilden, B., de Groot, G.A., Amacker, N., Kowalchuk, G.A., Shen, Q., Geisen, S., 2021. A global overview of the trophic structure within microbiomes across ecosystems. Environment International151, 106438.
CrossRef Google scholar
[63]
Xiong, W., Song, Y., Yang, K., Gu, Y., Wei, Z., Kowalchuk, G.A., Xu, Y., Jousset, A., Shen, Q., Geisen, S., 2020. Rhizosphere protists are key determinants of plant health. Microbiome8, 1–9.
CrossRef Google scholar
[64]
Xu, H., Chen, J., Xie, M., 2010. Effect of different light transmittance paper bags on fruit quality and antioxidant capacity in loquat. Journal of the Science of Food and Agriculture90, 1783–1788.
CrossRef Google scholar
[65]
Yan, Q.J., Chen, Y.Y., Wu, M.X., Yang, H., Cao, J.P., Sun, C.D., Wang, Y., 2023. Phenolics and terpenoids profiling in diverse loquat fruit varieties and systematic assessment of their mitigation of alcohol-induced oxidative stress. Antioxidants12, 1795.
CrossRef Google scholar
[66]
Yu, P., He, X., Baer, M., Beirinckx, S., Tian, T., Moya, Y.A., Zhang, X., Deichmann, M., Frey, F.P., Bresgen, V., Li, C., Razavi, B.S., Schaaf, G., von Wirén, N., Su, Z., Bucher, M., Tsuda, K., Goormachtig, S., Chen, X., Hochholdinger, F., 2021. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants7, 481–499.
CrossRef Google scholar
[67]
Zhang, Q., Ma, J., Gonzalez-Ollauri, A., Yang, Y., Chen, F., 2023. Soil microbes-mediated enzymes promoted the secondary succession in post-mining plantations on the Loess Plateau, China. Soil Ecology Letters5, 79–93.
CrossRef Google scholar
[68]
Zhou, X., Chen, X., Qi, X., Zeng, Y., Guo, X., Zhuang, G., Ma, A., 2023. Soil bacterial communities associated with multi-nutrient cycling under long-term warming in the alpine meadow. Frontiers in Microbiology14, 1136187.
CrossRef Google scholar
[69]
Zhou, Y., Pope, P., Li, S., Wen, B., Tan, F., Cheng, S., Chen, J., Yang, J., Liu, F., Lei, X., Su, Q., Zhou, C., Zhao, J., Dong, X., Jin, T., Zhou, X., Yang, S., Zhang, G., Yang, H., Wang, J., Yang, R., Eijsink, V.G.H., Wang, J., 2014. Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community. Scientific Reports4, 5288.
CrossRef Google scholar

Acknowledgments

This work was supported by the Ningbo Science and Technology Bureau (Grant No. 2021S013) and Agricultural Science and Technology Project of the Xiangshan Science and Technology Bureau (Grant No. 2022C1018).

Conflicts of interest

There are no conflicts to declare.

Electronic supplementary material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s42832-024-0232-8 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5267 KB)

Accesses

Citations

Detail

Sections
Recommended

/