Characterizing the soil microbiome to predict mercury risks

Wenli Tang, Chengjun Li, Huan Zhong

PDF(379 KB)
PDF(379 KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (4) : 240229. DOI: 10.1007/s42832-024-0229-3
SEL DIGEST

Characterizing the soil microbiome to predict mercury risks

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Wenli Tang, Chengjun Li, Huan Zhong. Characterizing the soil microbiome to predict mercury risks. Soil Ecology Letters, 2024, 6(4): 240229 https://doi.org/10.1007/s42832-024-0229-3

References

[1]
Gilmour, C.C., Podar, M., Bullock, A.L., Graham, A.M., Brown, S.D., Somenahally, A.C., Johs, A., Hurt, R.A.Jr., Bailey, K.L., Elias, D.A., 2013. Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology47, 11810–11820.
CrossRef Google scholar
[2]
Li, Y.Y., Zhao, J.T., Zhong, H., Wang, Y.J., Li, H., Li, Y.F., Liem-Nguyen, V., Jiang, T., Zhang, Z.Y., Gao, Y.X., Chai, Z.F., 2019. Understanding enhanced microbial mehg production in mining-contaminated paddy soils under sulfate amendment: changes in Hg mobility or microbial methylators?. Environmental Science & Technology53, 1844–1852.
CrossRef Google scholar
[3]
Liang, L.C., Xu, X.H., Han, J.L., Xu, Z.D., Wu, P., Guo, J.Y., Qiu, G.L., 2019. Characteristics, speciation, and bioavailability of mercury and methylmercury impacted by an abandoned coal gangue in southwestern China. Environmental Science and Pollution Research26, 37001–37011.
CrossRef Google scholar
[4]
Liu, Y.R., Yang, Z.M., Zhou, X.Q., Qu, X.M., Li, Z.Z., Zhong, H., 2019. Overlooked role of putative non-Hg methylators in predicting methylmercury production in paddy soils. Environmental Science & Technology53, 12330–12338.
CrossRef Google scholar
[5]
Ma, L., Zhong, H., Wu, Y.G., 2015. Effects of metal-soil contact time on the extraction of mercury from soils. Bulletin of Environmental Contamination and Toxicology94, 399–406.
CrossRef Google scholar
[6]
Poulain, A.J., Barkay, T., 2013. Cracking the mercury methylation code. Science339, 1280–1281.
CrossRef Google scholar
[7]
Schartup, A.T., Thackray, C.P., Qureshi, A., Dassuncao, C., Gillespie, K., Hanke, A., Sunderland, E.M., 2019. Climate change and overfishing increase neurotoxicant in marine predators. Nature572, 648–650.
CrossRef Google scholar
[8]
Tang, Y., Wu, Q.R., Gao, W., Wang, S.X., Li, Z.J., Liu, K.Y., Han, D.M., 2020. Impacts of anthropogenic emissions and meteorological variation on hg wet deposition in Chongming, China. Atmosphere (Basel)11, 1301.
CrossRef Google scholar
[9]
Tian, L., Guan, W.Y., Ji, Y.Y., He, X., Chen, W., Alvarez, P.J.J., Zhang, T., 2021. Microbial methylation potential of mercury sulfide particles dictated by surface structure. Nature Geoscience14, 409–416.
CrossRef Google scholar
[10]
UNEP, 2019. Global Mercury assessment 2018. Available at the website of The United Nation Environment Programme (UNEP).
[11]
Zhang, Y.X., Song, Z.C., Huang, S.J., Zhang, P., Peng, Y.M., Wu, P.P., Gu, J., Dutkiewicz, S., Zhang, H.X., Wu, S.L., Wang, F.Y., Chen, L., Wang, S.X., Li, P., 2021. Global health effects of future atmospheric mercury emissions. Nature Communications12, 3035.
CrossRef Google scholar
[12]
Zhong, H., Su, Y., Wu, X.D., Nunes, L., Li, C.J., Hao, Y.Y., Liu, Y.R., Tang, W.L., 2024a. Mercury supply limits methylmercury production in paddy soils. Science of the Total Environment927, 172335.
CrossRef Google scholar
[13]
Zhong, H., Tang, W.L., Li, Z.Z., Sonne, C., Lam, S.S., Zhang, X., Kwon, S.Y., Rinklebe, J., Nunes, L.M., Yu, R.Q., Gu, B.H., Hintelmann, H., Tsui, M.T.K., Zhao, J.T., Zhou, X.Q., Wu, M.J., Liu, B.B., Hao, Y., Chen, L., Zhang, B.G., Tan, W.F., Zhang, X.X., Ren, H.Q., Liu, Y.R., 2024b. Soil Geobacteraceae are the key predictors of neurotoxic methylmercury bioaccumulation in rice. Nature Food5, 301–311.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(379 KB)

Accesses

Citations

Detail

Sections
Recommended

/