
Advancements in assessing soil health through functional traits and energy flow analysis of soil nematodes
Jingnan Zhang, Shiyu Li, Elly Morriën, Neil B. McLaughlin, Shixiu Zhang
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (2) : 240228.
Advancements in assessing soil health through functional traits and energy flow analysis of soil nematodes
● We examined the development of soil nematodes ecological indices from the perspective of functional traits.
● We found that soil nematode energy flow analyses based on multiple functional traits quantify the dynamics of energy flow across multiple-trophic levels to provide a more comprehensive perspective.
● We conducted comparative analyses of the sensitivities of NMF and energy flow to verify that the energy flow analyses are more sensitive and have greater potential to reveal soil health and ecosystem function.
● Future in-depth studies of functional traits and energy flow analysis can help us achieve informed soil management practices, sustainable agriculture, and healthier soil ecosystems.
This paper examines the development of ecological indices for soil nematodes from the perspective of functional traits. It emphasizes the increasing significance of integrating multiple functional traits to achieve a more accurate assessment of soil health. Ecological indices based on life history strategies, feeding habits, and body size provide useful tools for assessing soil health. However, these indices do not fully capture the dynamics of energy flow across multiple-trophic levels in the soil food web, which is critical for a deeper understanding of the intrinsic properties of soil health. By combining functional traits such as functional group, body size, feeding preference and metabolic rate, nematode energy flow analyses provide a more comprehensive perspective. This approach establishes a direct correlation between changes in the morphology, physiology, and metabolism of soil organisms and alterations in their habitat environment. We conducted comparative analyses of the sensitivity of nematode metabolic footprints and energy flow to latitudinal variation using a nematode dataset from the northeastern black soil region in China. The findings suggest that energy flow analyses are more sensitive to latitude and have greater potential to reveal soil health and ecosystem function. Therefore, future research should prioritize the development of automated and efficient methods for analyzing nematode traits. This will enhance the application of energy flow analyses in nematode food webs and support the development of sustainable soil management and agricultural practices.
soil nematodes / soil health / nematode food web / functional traits / energy flux
[1] |
Andrássy, I., 1956. Die Rauminhalts und Gewichtsbestimmung der Fadenwürmer (Nematoden). Acta Zoologica Academi Sciences 2, 1–15
|
[2] |
Andriuzzi, W.S., Franco, A.L.C., Ankrom, K.E., Cui, S.Y., de Tomasel, C.M., Guan, P.T., Gherardi, L.A., Sala, O.E., Wall, D.H., 2020. Body size structure of soil fauna along geographic and temporal gradients of precipitation in grasslands. Soil Biology and Biochemistry140, 107638.
CrossRef
Google scholar
|
[3] |
Barnes, A.D., Jochum, M., Lefcheck, J.S., Eisenhauer, N., Scherber, C., O’Connor, M.I., de Ruiter, P., Brose, U., 2018. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends in Ecology & Evolution33, 186–197.
|
[4] |
Barnes, A.D., Jochum, M., Mumme, S., Haneda, N.F., Farajallah, A., Widarto, T.H., Brose, U., 2014. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nature Communications5, 5351.
CrossRef
Google scholar
|
[5] |
Biswal, D., 2022. Nematodes as ghosts of land use past: elucidating the roles of soil nematode community studies as indicators of soil health and land management practices. Applied Biochemistry and Biotechnology194, 2357–2417.
CrossRef
Google scholar
|
[6] |
Bongers, T., 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia83, 14–19.
CrossRef
Google scholar
|
[7] |
Bongers, T., 1999. The maturity index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant and Soil212, 13–22.
CrossRef
Google scholar
|
[8] |
Bongers, T., Ferris, H., 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution14, 224–228.
|
[9] |
Bongers, T., van der Meulen, H., Korthals, G., 1997. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Applied Soil Ecology6, 195–199.
CrossRef
Google scholar
|
[10] |
Cesarz, S., Reich, P.B., Scheu, S., Ruess, L., Schaefer, M., Eisenhauer, N., 2015. Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors. Pedobiologia58, 23–32.
CrossRef
Google scholar
|
[11] |
De Ruiter, P.C., van Veen, J.A., Moore, J.C., Brussaard, L., Hunt, H.W., 1993. Calculation of nitrogen mineralization in soil food webs. Plant and Soil157, 263–273.
CrossRef
Google scholar
|
[12] |
Dose, H.L., Fortuna, A.M., Cihacek, L.J., Norland, J., DeSutter, T.M., Clay, D.E., Bell, J., 2015. Biological indicators provide short term soil health assessment during sodic soil reclamation. Ecological Indicators58, 244–253.
CrossRef
Google scholar
|
[13] |
Du Preez, G., Daneel, M., De Goede, R., Du Toit, M.J., Ferris, H., Fourie, H., Geisen, S., Kakouli-Duarte, T., Korthals, G., Sánchez-Moreno, S., Schmidt, J.H., 2022. Nematode-based indices in soil ecology: application, utility, and future directions. Soil Biology and Biochemistry169, 108640.
CrossRef
Google scholar
|
[14] |
DuPont, S.T., Ferris, H., van Horn, M., 2009. Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Applied Soil Ecology41, 157–167.
CrossRef
Google scholar
|
[15] |
Eitzinger, B., Abrego, N., Gravel, D., Huotari, T., Vesterinen, E.J., Roslin, T., 2019. Assessing changes in arthropod predator–prey interactions through DNA-based gut content analysis—variable environment, stable diet. Molecular Ecology28, 266–280.
CrossRef
Google scholar
|
[16] |
Ewald, M., Glavatska, O., Ruess, L., 2020. Effects of resource manipulation on nematode community structure and metabolic footprints in an arable soil across time and depth. Nematology22, 1025–1043.
CrossRef
Google scholar
|
[17] |
Ferris, H., 2010. Form and function: metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology46, 97–104.
CrossRef
Google scholar
|
[18] |
Ferris, H., Bongers, T., de Goede, R.G.M., 2001. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology18, 13–29.
CrossRef
Google scholar
|
[19] |
Ferris, H., Sánchez-Moreno, S., Brennan, E.B., 2012. Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production. Applied Soil Ecology61, 16–25.
CrossRef
Google scholar
|
[20] |
Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M., Charnov, E.L., 2001. Effects of size and temperature on metabolic rate. Science293, 2248–2251.
CrossRef
Google scholar
|
[21] |
Griffiths, B.S., Römbke, J., Schmelz, R.M., Scheffczyk, A., Faber, J.H., Bloem, J., Pérès, G., Cluzeau, D., Chabbi, A., Suhadolc, M., Sousa, J.P., Martins da Silva, P., Carvalho, F., Mendes, S., Morais, P., Francisco, R., Pereira, C., Bonkowski, M., Geisen, S., Bardgett, R.D., de Vries, F.T., Bolger, T., Dirilgen, T., Schmidt, O., Winding, A., Hendriksen, N.B., Johansen, A., Philippot, L., Plassart, P., Bru, D., Thomson, B., Griffiths, R.I., Bailey, M.J., Keith, A., Rutgers, M., Mulder, C., Hannula, S.E., Creamer, R., Stone, D., 2016. Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecological Indicators69, 213–223.
CrossRef
Google scholar
|
[22] |
Heidemann, K., Hennies, A., Schakowske, J., Blumenberg, L., Ruess, L., Scheu, S., Maraun, M., 2014. Free-living nematodes as prey for higher trophic levels of forest soil food webs. Oikos123, 1199–1211.
CrossRef
Google scholar
|
[23] |
Hou, W.C., Kuzyakov, Y., Qi, Y.W., Liu, X., Zhang, H., Zhou, S.R., 2023. Functional traits of soil nematodes define their response to nitrogen fertilization. Functional Ecology37, 1197–1210.
CrossRef
Google scholar
|
[24] |
Hunt, H.W., Coleman, D.C., Ingham, E.R., Ingham, R.E., Elliott, E.T., Moore, J.C., Rose, S.L., Reid, C.P.P., Morley, C.R., 1987. The detrital food web in a shortgrass prairie. Biology and Fertility of Soils3, 57–68.
|
[25] |
Jochum, M., Barnes, A.D., Brose, U., Gauzens, B., Sünnemann, M., Amyntas, A., Eisenhauer, N., 2021. For flux's sake: general considerations for energy-flux calculations in ecological communities. Ecology and Evolution11, 12948–12969.
CrossRef
Google scholar
|
[26] |
Jochum, M., Eisenhauer, N., 2022. Out of the dark: using energy flux to connect above- and below-ground communities and ecosystem functioning. European Journal of Soil Science73, e13154.
CrossRef
Google scholar
|
[27] |
Kerfahi, D., Tripathi, B.M., Porazinska, D.L., Park, J., Go, R., Adams, J.M., 2016. Do tropical rain forest soils have greater nematode diversity than High Arctic tundra? A metagenetic comparison of Malaysia and Svalbard.. Global Ecology and Biogeography25, 716–728.
CrossRef
Google scholar
|
[28] |
Lang, B., Ehnes, R.B., Brose, U., Rall, B.C., 2017. Temperature and consumer type dependencies of energy flows in natural communities. Oikos126, 1717–1725.
CrossRef
Google scholar
|
[29] |
Li, J.N., Peng, P.Q., Zhao, J., 2020. Assessment of soil nematode diversity based on different taxonomic levels and functional groups. Soil Ecology Letters2, 33–39.
CrossRef
Google scholar
|
[30] |
Liao, X.H., Fu, S.L., Zhao, J., 2023. Altered energy dynamics of multitrophic groups modify the patterns of soil CO2 emissions in planted forest. Soil Biology and Biochemistry178, 108953.
CrossRef
Google scholar
|
[31] |
Liu, H.W., Wang, J.J., Sun, X., McLaughlin, N.B., Jia, S.X., Liang, A.Z., Zhang, S.X., 2023. The driving mechanism of soil organic carbon biodegradability in the black soil region of Northeast China. Science of the Total Environment884, 163835.
CrossRef
Google scholar
|
[32] |
Liu, T., Rui, G., Wei, R., Whalen, J.K., Li, H.X., 2015. Body size is a sensitive trait-based indicator of soil nematode community response to fertilization in rice and wheat agroecosystems. Soil Biology and Biochemistry88, 275–281.
CrossRef
Google scholar
|
[33] |
Lu, Q.F., Liu, T.T., Wang, N.Q., Dou, Z.C., Wang, K.G., Zuo, Y.M., 2020. A review of soil nematodes as biological indicators for the assessment of soil health. Frontiers of Agricultural Science and Engineering7, 275–281.
CrossRef
Google scholar
|
[34] |
Ma, Q.H., Zhu, Y., Wang, Y., Liu, T., Qing, X., Liu, J.S., Xiao, Y.L., Song, Y.Q., Yue, Y.H., Yu, H.R., Wang, J.Y., Zhong, Z.W., Wang, D.L., Wang, L., 2024. Livestock grazing modifies soil nematode body size structure in mosaic grassland habitats. Journal of Environmental Management351, 119600.
CrossRef
Google scholar
|
[35] |
Martin, T., Sprunger, C.D., 2022. Soil food web structure and function in annual row-crop systems: how can nematode communities infer soil health? Applied Soil Ecology 178, 104553
|
[36] |
Martin, T., Wade, J., Singh, P., Sprunger, C.D., 2022. The integration of nematode communities into the soil biological health framework by factor analysis. Ecological Indicators136, 108676.
CrossRef
Google scholar
|
[37] |
Mulder, C., Maas, R., 2017. Unifying the functional diversity in natural and cultivated soils using the overall body-mass distribution of nematodes. BMC Ecology17, 36.
CrossRef
Google scholar
|
[38] |
Mulder, C., Schouten, A.J., Hund-Rinke, K., Breure, A.M., 2005. The use of nematodes in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety62, 278–289.
CrossRef
Google scholar
|
[39] |
Neher, D.A., Wu, J., Barbercheck, M.E., Anas, O., 2005. Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology30, 47–64.
CrossRef
Google scholar
|
[40] |
Porazinska, D.L., Giblin-Davis, R.M., Powers, T.O., Thomas, W.K., 2012. Nematode spatial and ecological patterns from tropical and temperate rainforests. PLoS One7, e44641.
CrossRef
Google scholar
|
[41] |
Potapov, A.M., Klarner, B., Sandmann, D., Widyastuti, R., Scheu, S., 2019. Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. Journal of Animal Ecology88, 1845–1859.
CrossRef
Google scholar
|
[42] |
Potapov, A.M., Rozanova, O.L., Semenina, E.E., Leonov, V.D., Belyakova, O.I., Bogatyreva, V.Y., Degtyarev, M.I., Esaulov, A.S., Korotkevich, A.Y., Kudrin, A.A., Malysheva, E.A., Mazei, Y.A., Tsurikov, S.M., Zuev, A.G., Tiunov, A.V., 2021. Size compartmentalization of energy channeling in terrestrial belowground food webs. Ecology102, e03421.
CrossRef
Google scholar
|
[43] |
Powers, L.E., Freckman, D.W., Virginia, R.A., 1995. Spatial distribution of nematodes in polar desert soils of Antarctica. Polar Biology15, 325–333.
|
[44] |
Schwarz, B., Barnes, A.D., Thakur, M.P., Brose, U., Ciobanu, M., Reich, P.B., Rich, R.L., Rosenbaum, B., Stefanski, A., Eisenhauer, N., 2017. Warming alters energetic structure and function but not resilience of soil food webs. Nature Climate Change7, 895–900.
CrossRef
Google scholar
|
[45] |
Sechi, V., De Goede, R.G.M., Rutgers, M., Brussaard, L., Mulder, C., 2018. Functional diversity in nematode communities across terrestrial ecosystems. Basic and Applied Ecology30, 76–86.
CrossRef
Google scholar
|
[46] |
Seesao, Y., Gay, M., Merlin, S., Viscogliosi, E., Aliouat-Denis, C.M., Audebert, C., 2017. A review of methods for nematode identification. Journal of Microbiological Methods138, 37–49.
CrossRef
Google scholar
|
[47] |
Trap, J., Bonkowski, M., Plassard, C., Villenave, C., Blanchart, E., 2016. Ecological importance of soil bacterivores for ecosystem functions. Plant and Soil398, 1–24.
CrossRef
Google scholar
|
[48] |
van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A., de Goede, R.G.M., Adams, B.J., Ahmad, W., Andriuzzi, W.S., Bardgett, R.D., Bonkowski, M., Campos-Herrera, R., Cares, J.E., Caruso, T., de Brito Caixeta, L., Chen, X.Y., Costa, S.R., Creamer, R., Mauro da Cunha Castro, J., Dam, M., Djigal, D., Escuer, M., Griffiths, B.S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A., Korthals, G., Krashevska, V., Kudrin, A.A., Li, Q., Liang, W.J., Magilton, M., Marais, M., Martín, J.A.R., Matveeva, E., Mayad, E.H., Mulder, C., Mullin, P., Neilson, R., Nguyen, T.A.D., Nielsen, U.N., Okada, H., Rius, J.E.P., Pan, K.W., Peneva, V., Pellissier, L., Carlos Pereira da Silva, J., Pitteloud, C., Powers, T.O., Powers, K., Quist, C.W., Rasmann, S., Moreno, S.S., Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A.V., Trap, J., van der Putten, W., Vestergård, M., Villenave, C., Waeyenberge, L., Wall, D.H., Wilschut, R., Wright, D.G., Yang, J.I., Crowther, T.W., 2019. Soil nematode abundance and functional group composition at a global scale. Nature572, 194–198.
CrossRef
Google scholar
|
[49] |
Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let the concept of trait be functional. Oikos116, 882–892.
CrossRef
Google scholar
|
[50] |
Vonk, J.A., Breure, A.M., Mulder, C., 2013. Environmentally-driven dissimilarity of trait-based indices of nematodes under different agricultural management and soil types. Agriculture, Ecosystems & Environment179, 133–138.
|
[51] |
Wan, B.B., Hu, Z.K., Liu, T., Yang, Q., Li, D.M., Zhang, C.Z., Chen, X.Y., Hu, F., Kardol, P., Griffiths, B.S., Liu, M.Q., 2022b. Organic amendments increase the flow uniformity of energy across nematode food webs. Soil Biology and Biochemistry170, 108695.
CrossRef
Google scholar
|
[52] |
Wan, B.B., Liu, T., Gong, X., Zhang, Y., Li, C.J., Chen, X.Y., Hu, F., Griffiths, B.S., Liu, M.Q., 2022a. Energy flux across multitrophic levels drives ecosystem multifunctionality: evidence from nematode food webs. Soil Biology and Biochemistry169, 108656.
CrossRef
Google scholar
|
[53] |
Wang, J.C., Zhang, X.Y., Wang, H.L., Liu, T., Fayyaz, A., Gonzalez, N.C.T., Wang, J., Chen, X.Y., Zhao, J., Yan, W.D., 2024. Leguminous crop restores the carbon flow attenuation from nitrogen loading within soil nematode food web in a Camellia oleifera plantation. Journal of Environmental Management349, 119580.
CrossRef
Google scholar
|
[54] |
Wilschut, R.A., Geisen, S., Martens, H., Kostenko, O., de Hollander, M., ten Hooven, F.C., Weser, C., Snoek, L.B., Bloem, J., Caković, D., Čelik, T., Koorem, K., Krigas, N., Manrubia, M., Ramirez, K.S., Tsiafouli, M.A., Vreš, B., van der Putten, W.H., 2019. Latitudinal variation in soil nematode communities under climate warming-related range-expanding and native plants. Global Change Biology25, 2714–2726.
CrossRef
Google scholar
|
[55] |
Xue, X., Adhikari, B.N., Ball, B.A., Barrett, J.E., Miao, J.X., Perkes, A., Martin, M., Simmons, B.L., Wall, D.H., Adams, B.J., 2023. Ecological stoichiometry drives the evolution of soil nematode life history traits. Soil Biology and Biochemistry177, 108891.
CrossRef
Google scholar
|
[56] |
Yeates, G.W., Bongers, T., 1999. Nematode diversity in agroecosystems. Agriculture, Ecosystems & Environment74, 113–135.
|
[57] |
Zhang, C.Z., Wright, I.J., Nielsen, U.N., Geisen, S., Liu, M.Q., 2024. Linking nematodes and ecosystem function: a trait-based framework. Trends in Ecology & Evolution, DOI: 10.1016/j.tree.2024.02.002
|
[58] |
Zhang, S.X., Chang, L., McLaughlin, N.B., Cui, S.Y., Wu, H.T., Wu, D.H., Liang, W.J., Liang, A.Z., 2021. Complex soil food web enhances the association between N mineralization and soybean yield-a model study from long-term application of a conservation tillage system in a black soil of Northeast China. Soil7, 71–82.
CrossRef
Google scholar
|
[59] |
Zhang, S.X., McLaughlin, N.B., Cui, S.Y., Yang, X.M., Liu, P., Wu, D.H., Liang, A.Z., 2019. Effects of long-term tillage on carbon partitioning of nematode metabolism in a black soil of northeast China. Applied Soil Ecology138, 207–212.
CrossRef
Google scholar
|
[60] |
Zhang, X.K., Guan, P.T., Wang, Y.L., Li, Q., Zhang, S.X., Zhang, Z.Y., Bezemer, T.M., Liang, W.J., 2015. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biology and Biochemistry80, 118–126.
CrossRef
Google scholar
|
[61] |
Zhao, L., Yu, B.B., Wang, M.M., Zhao, J., Shen, Z.F., Cui, Y., Li, J.Y., Ye, J., Zu, W.Z., Liu, X.J., Fan, Z.J., Fu, S.L., Shao, Y.H., 2021. The effects of plant resource inputs on the energy flux of soil nematodes are affected by climate and plant resource type. Soil Ecology Letters3, 134–144.
CrossRef
Google scholar
|
[62] |
Zheng, H., Gao, D.D., Zhou, Y.Q., Zhao, J., 2023. Energy flow across soil food webs of different ecosystems: food webs with complex structures support higher energy flux. Geoderma439, 116666.
CrossRef
Google scholar
|
/
〈 |
|
〉 |