Advancements in assessing soil health through functional traits and energy flow analysis of soil nematodes

Jingnan Zhang , Shiyu Li , Elly Morriën , Neil B. McLaughlin , Shixiu Zhang

Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (2) : 240228

PDF (783KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (2) : 240228 DOI: 10.1007/s42832-024-0228-4
REVIEW

Advancements in assessing soil health through functional traits and energy flow analysis of soil nematodes

Author information +
History +
PDF (783KB)

Abstract

● We examined the development of soil nematodes ecological indices from the perspective of functional traits.

● We found that soil nematode energy flow analyses based on multiple functional traits quantify the dynamics of energy flow across multiple-trophic levels to provide a more comprehensive perspective.

● We conducted comparative analyses of the sensitivities of NMF and energy flow to verify that the energy flow analyses are more sensitive and have greater potential to reveal soil health and ecosystem function.

● Future in-depth studies of functional traits and energy flow analysis can help us achieve informed soil management practices, sustainable agriculture, and healthier soil ecosystems.

This paper examines the development of ecological indices for soil nematodes from the perspective of functional traits. It emphasizes the increasing significance of integrating multiple functional traits to achieve a more accurate assessment of soil health. Ecological indices based on life history strategies, feeding habits, and body size provide useful tools for assessing soil health. However, these indices do not fully capture the dynamics of energy flow across multiple-trophic levels in the soil food web, which is critical for a deeper understanding of the intrinsic properties of soil health. By combining functional traits such as functional group, body size, feeding preference and metabolic rate, nematode energy flow analyses provide a more comprehensive perspective. This approach establishes a direct correlation between changes in the morphology, physiology, and metabolism of soil organisms and alterations in their habitat environment. We conducted comparative analyses of the sensitivity of nematode metabolic footprints and energy flow to latitudinal variation using a nematode dataset from the northeastern black soil region in China. The findings suggest that energy flow analyses are more sensitive to latitude and have greater potential to reveal soil health and ecosystem function. Therefore, future research should prioritize the development of automated and efficient methods for analyzing nematode traits. This will enhance the application of energy flow analyses in nematode food webs and support the development of sustainable soil management and agricultural practices.

Graphical abstract

Keywords

soil nematodes / soil health / nematode food web / functional traits / energy flux

Cite this article

Download citation ▾
Jingnan Zhang, Shiyu Li, Elly Morriën, Neil B. McLaughlin, Shixiu Zhang. Advancements in assessing soil health through functional traits and energy flow analysis of soil nematodes. Soil Ecology Letters, 2024, 6(2): 240228 DOI:10.1007/s42832-024-0228-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrássy, I., 1956. Die Rauminhalts und Gewichtsbestimmung der Fadenwürmer (Nematoden). Acta Zoologica Academi Sciences 2, 1–15

[2]

Andriuzzi, W.S., Franco, A.L.C., Ankrom, K.E., Cui, S.Y., de Tomasel, C.M., Guan, P.T., Gherardi, L.A., Sala, O.E., Wall, D.H., 2020. Body size structure of soil fauna along geographic and temporal gradients of precipitation in grasslands. Soil Biology and Biochemistry140, 107638.

[3]

Barnes, A.D., Jochum, M., Lefcheck, J.S., Eisenhauer, N., Scherber, C., O’Connor, M.I., de Ruiter, P., Brose, U., 2018. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends in Ecology & Evolution33, 186–197.

[4]

Barnes, A.D., Jochum, M., Mumme, S., Haneda, N.F., Farajallah, A., Widarto, T.H., Brose, U., 2014. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nature Communications5, 5351.

[5]

Biswal, D., 2022. Nematodes as ghosts of land use past: elucidating the roles of soil nematode community studies as indicators of soil health and land management practices. Applied Biochemistry and Biotechnology194, 2357–2417.

[6]

Bongers, T., 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia83, 14–19.

[7]

Bongers, T., 1999. The maturity index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant and Soil212, 13–22.

[8]

Bongers, T., Ferris, H., 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution14, 224–228.

[9]

Bongers, T., van der Meulen, H., Korthals, G., 1997. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Applied Soil Ecology6, 195–199.

[10]

Cesarz, S., Reich, P.B., Scheu, S., Ruess, L., Schaefer, M., Eisenhauer, N., 2015. Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors. Pedobiologia58, 23–32.

[11]

De Ruiter, P.C., van Veen, J.A., Moore, J.C., Brussaard, L., Hunt, H.W., 1993. Calculation of nitrogen mineralization in soil food webs. Plant and Soil157, 263–273.

[12]

Dose, H.L., Fortuna, A.M., Cihacek, L.J., Norland, J., DeSutter, T.M., Clay, D.E., Bell, J., 2015. Biological indicators provide short term soil health assessment during sodic soil reclamation. Ecological Indicators58, 244–253.

[13]

Du Preez, G., Daneel, M., De Goede, R., Du Toit, M.J., Ferris, H., Fourie, H., Geisen, S., Kakouli-Duarte, T., Korthals, G., Sánchez-Moreno, S., Schmidt, J.H., 2022. Nematode-based indices in soil ecology: application, utility, and future directions. Soil Biology and Biochemistry169, 108640.

[14]

DuPont, S.T., Ferris, H., van Horn, M., 2009. Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Applied Soil Ecology41, 157–167.

[15]

Eitzinger, B., Abrego, N., Gravel, D., Huotari, T., Vesterinen, E.J., Roslin, T., 2019. Assessing changes in arthropod predator–prey interactions through DNA-based gut content analysis—variable environment, stable diet. Molecular Ecology28, 266–280.

[16]

Ewald, M., Glavatska, O., Ruess, L., 2020. Effects of resource manipulation on nematode community structure and metabolic footprints in an arable soil across time and depth. Nematology22, 1025–1043.

[17]

Ferris, H., 2010. Form and function: metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology46, 97–104.

[18]

Ferris, H., Bongers, T., de Goede, R.G.M., 2001. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology18, 13–29.

[19]

Ferris, H., Sánchez-Moreno, S., Brennan, E.B., 2012. Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production. Applied Soil Ecology61, 16–25.

[20]

Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M., Charnov, E.L., 2001. Effects of size and temperature on metabolic rate. Science293, 2248–2251.

[21]

Griffiths, B.S., Römbke, J., Schmelz, R.M., Scheffczyk, A., Faber, J.H., Bloem, J., Pérès, G., Cluzeau, D., Chabbi, A., Suhadolc, M., Sousa, J.P., Martins da Silva, P., Carvalho, F., Mendes, S., Morais, P., Francisco, R., Pereira, C., Bonkowski, M., Geisen, S., Bardgett, R.D., de Vries, F.T., Bolger, T., Dirilgen, T., Schmidt, O., Winding, A., Hendriksen, N.B., Johansen, A., Philippot, L., Plassart, P., Bru, D., Thomson, B., Griffiths, R.I., Bailey, M.J., Keith, A., Rutgers, M., Mulder, C., Hannula, S.E., Creamer, R., Stone, D., 2016. Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecological Indicators69, 213–223.

[22]

Heidemann, K., Hennies, A., Schakowske, J., Blumenberg, L., Ruess, L., Scheu, S., Maraun, M., 2014. Free-living nematodes as prey for higher trophic levels of forest soil food webs. Oikos123, 1199–1211.

[23]

Hou, W.C., Kuzyakov, Y., Qi, Y.W., Liu, X., Zhang, H., Zhou, S.R., 2023. Functional traits of soil nematodes define their response to nitrogen fertilization. Functional Ecology37, 1197–1210.

[24]

Hunt, H.W., Coleman, D.C., Ingham, E.R., Ingham, R.E., Elliott, E.T., Moore, J.C., Rose, S.L., Reid, C.P.P., Morley, C.R., 1987. The detrital food web in a shortgrass prairie. Biology and Fertility of Soils3, 57–68.

[25]

Jochum, M., Barnes, A.D., Brose, U., Gauzens, B., Sünnemann, M., Amyntas, A., Eisenhauer, N., 2021. For flux's sake: general considerations for energy-flux calculations in ecological communities. Ecology and Evolution11, 12948–12969.

[26]

Jochum, M., Eisenhauer, N., 2022. Out of the dark: using energy flux to connect above- and below-ground communities and ecosystem functioning. European Journal of Soil Science73, e13154.

[27]

Kerfahi, D., Tripathi, B.M., Porazinska, D.L., Park, J., Go, R., Adams, J.M., 2016. Do tropical rain forest soils have greater nematode diversity than High Arctic tundra? A metagenetic comparison of Malaysia and Svalbard.. Global Ecology and Biogeography25, 716–728.

[28]

Lang, B., Ehnes, R.B., Brose, U., Rall, B.C., 2017. Temperature and consumer type dependencies of energy flows in natural communities. Oikos126, 1717–1725.

[29]

Li, J.N., Peng, P.Q., Zhao, J., 2020. Assessment of soil nematode diversity based on different taxonomic levels and functional groups. Soil Ecology Letters2, 33–39.

[30]

Liao, X.H., Fu, S.L., Zhao, J., 2023. Altered energy dynamics of multitrophic groups modify the patterns of soil CO2 emissions in planted forest. Soil Biology and Biochemistry178, 108953.

[31]

Liu, H.W., Wang, J.J., Sun, X., McLaughlin, N.B., Jia, S.X., Liang, A.Z., Zhang, S.X., 2023. The driving mechanism of soil organic carbon biodegradability in the black soil region of Northeast China. Science of the Total Environment884, 163835.

[32]

Liu, T., Rui, G., Wei, R., Whalen, J.K., Li, H.X., 2015. Body size is a sensitive trait-based indicator of soil nematode community response to fertilization in rice and wheat agroecosystems. Soil Biology and Biochemistry88, 275–281.

[33]

Lu, Q.F., Liu, T.T., Wang, N.Q., Dou, Z.C., Wang, K.G., Zuo, Y.M., 2020. A review of soil nematodes as biological indicators for the assessment of soil health. Frontiers of Agricultural Science and Engineering7, 275–281.

[34]

Ma, Q.H., Zhu, Y., Wang, Y., Liu, T., Qing, X., Liu, J.S., Xiao, Y.L., Song, Y.Q., Yue, Y.H., Yu, H.R., Wang, J.Y., Zhong, Z.W., Wang, D.L., Wang, L., 2024. Livestock grazing modifies soil nematode body size structure in mosaic grassland habitats. Journal of Environmental Management351, 119600.

[35]

Martin, T., Sprunger, C.D., 2022. Soil food web structure and function in annual row-crop systems: how can nematode communities infer soil health? Applied Soil Ecology 178, 104553

[36]

Martin, T., Wade, J., Singh, P., Sprunger, C.D., 2022. The integration of nematode communities into the soil biological health framework by factor analysis. Ecological Indicators136, 108676.

[37]

Mulder, C., Maas, R., 2017. Unifying the functional diversity in natural and cultivated soils using the overall body-mass distribution of nematodes. BMC Ecology17, 36.

[38]

Mulder, C., Schouten, A.J., Hund-Rinke, K., Breure, A.M., 2005. The use of nematodes in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety62, 278–289.

[39]

Neher, D.A., Wu, J., Barbercheck, M.E., Anas, O., 2005. Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology30, 47–64.

[40]

Porazinska, D.L., Giblin-Davis, R.M., Powers, T.O., Thomas, W.K., 2012. Nematode spatial and ecological patterns from tropical and temperate rainforests. PLoS One7, e44641.

[41]

Potapov, A.M., Klarner, B., Sandmann, D., Widyastuti, R., Scheu, S., 2019. Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. Journal of Animal Ecology88, 1845–1859.

[42]

Potapov, A.M., Rozanova, O.L., Semenina, E.E., Leonov, V.D., Belyakova, O.I., Bogatyreva, V.Y., Degtyarev, M.I., Esaulov, A.S., Korotkevich, A.Y., Kudrin, A.A., Malysheva, E.A., Mazei, Y.A., Tsurikov, S.M., Zuev, A.G., Tiunov, A.V., 2021. Size compartmentalization of energy channeling in terrestrial belowground food webs. Ecology102, e03421.

[43]

Powers, L.E., Freckman, D.W., Virginia, R.A., 1995. Spatial distribution of nematodes in polar desert soils of Antarctica. Polar Biology15, 325–333.

[44]

Schwarz, B., Barnes, A.D., Thakur, M.P., Brose, U., Ciobanu, M., Reich, P.B., Rich, R.L., Rosenbaum, B., Stefanski, A., Eisenhauer, N., 2017. Warming alters energetic structure and function but not resilience of soil food webs. Nature Climate Change7, 895–900.

[45]

Sechi, V., De Goede, R.G.M., Rutgers, M., Brussaard, L., Mulder, C., 2018. Functional diversity in nematode communities across terrestrial ecosystems. Basic and Applied Ecology30, 76–86.

[46]

Seesao, Y., Gay, M., Merlin, S., Viscogliosi, E., Aliouat-Denis, C.M., Audebert, C., 2017. A review of methods for nematode identification. Journal of Microbiological Methods138, 37–49.

[47]

Trap, J., Bonkowski, M., Plassard, C., Villenave, C., Blanchart, E., 2016. Ecological importance of soil bacterivores for ecosystem functions. Plant and Soil398, 1–24.

[48]

van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A., de Goede, R.G.M., Adams, B.J., Ahmad, W., Andriuzzi, W.S., Bardgett, R.D., Bonkowski, M., Campos-Herrera, R., Cares, J.E., Caruso, T., de Brito Caixeta, L., Chen, X.Y., Costa, S.R., Creamer, R., Mauro da Cunha Castro, J., Dam, M., Djigal, D., Escuer, M., Griffiths, B.S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A., Korthals, G., Krashevska, V., Kudrin, A.A., Li, Q., Liang, W.J., Magilton, M., Marais, M., Martín, J.A.R., Matveeva, E., Mayad, E.H., Mulder, C., Mullin, P., Neilson, R., Nguyen, T.A.D., Nielsen, U.N., Okada, H., Rius, J.E.P., Pan, K.W., Peneva, V., Pellissier, L., Carlos Pereira da Silva, J., Pitteloud, C., Powers, T.O., Powers, K., Quist, C.W., Rasmann, S., Moreno, S.S., Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A.V., Trap, J., van der Putten, W., Vestergård, M., Villenave, C., Waeyenberge, L., Wall, D.H., Wilschut, R., Wright, D.G., Yang, J.I., Crowther, T.W., 2019. Soil nematode abundance and functional group composition at a global scale. Nature572, 194–198.

[49]

Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let the concept of trait be functional. Oikos116, 882–892.

[50]

Vonk, J.A., Breure, A.M., Mulder, C., 2013. Environmentally-driven dissimilarity of trait-based indices of nematodes under different agricultural management and soil types. Agriculture, Ecosystems & Environment179, 133–138.

[51]

Wan, B.B., Hu, Z.K., Liu, T., Yang, Q., Li, D.M., Zhang, C.Z., Chen, X.Y., Hu, F., Kardol, P., Griffiths, B.S., Liu, M.Q., 2022b. Organic amendments increase the flow uniformity of energy across nematode food webs. Soil Biology and Biochemistry170, 108695.

[52]

Wan, B.B., Liu, T., Gong, X., Zhang, Y., Li, C.J., Chen, X.Y., Hu, F., Griffiths, B.S., Liu, M.Q., 2022a. Energy flux across multitrophic levels drives ecosystem multifunctionality: evidence from nematode food webs. Soil Biology and Biochemistry169, 108656.

[53]

Wang, J.C., Zhang, X.Y., Wang, H.L., Liu, T., Fayyaz, A., Gonzalez, N.C.T., Wang, J., Chen, X.Y., Zhao, J., Yan, W.D., 2024. Leguminous crop restores the carbon flow attenuation from nitrogen loading within soil nematode food web in a Camellia oleifera plantation. Journal of Environmental Management349, 119580.

[54]

Wilschut, R.A., Geisen, S., Martens, H., Kostenko, O., de Hollander, M., ten Hooven, F.C., Weser, C., Snoek, L.B., Bloem, J., Caković, D., Čelik, T., Koorem, K., Krigas, N., Manrubia, M., Ramirez, K.S., Tsiafouli, M.A., Vreš, B., van der Putten, W.H., 2019. Latitudinal variation in soil nematode communities under climate warming-related range-expanding and native plants. Global Change Biology25, 2714–2726.

[55]

Xue, X., Adhikari, B.N., Ball, B.A., Barrett, J.E., Miao, J.X., Perkes, A., Martin, M., Simmons, B.L., Wall, D.H., Adams, B.J., 2023. Ecological stoichiometry drives the evolution of soil nematode life history traits. Soil Biology and Biochemistry177, 108891.

[56]

Yeates, G.W., Bongers, T., 1999. Nematode diversity in agroecosystems. Agriculture, Ecosystems & Environment74, 113–135.

[57]

Zhang, C.Z., Wright, I.J., Nielsen, U.N., Geisen, S., Liu, M.Q., 2024. Linking nematodes and ecosystem function: a trait-based framework. Trends in Ecology & Evolution, DOI: 10.1016/j.tree.2024.02.002

[58]

Zhang, S.X., Chang, L., McLaughlin, N.B., Cui, S.Y., Wu, H.T., Wu, D.H., Liang, W.J., Liang, A.Z., 2021. Complex soil food web enhances the association between N mineralization and soybean yield-a model study from long-term application of a conservation tillage system in a black soil of Northeast China. Soil7, 71–82.

[59]

Zhang, S.X., McLaughlin, N.B., Cui, S.Y., Yang, X.M., Liu, P., Wu, D.H., Liang, A.Z., 2019. Effects of long-term tillage on carbon partitioning of nematode metabolism in a black soil of northeast China. Applied Soil Ecology138, 207–212.

[60]

Zhang, X.K., Guan, P.T., Wang, Y.L., Li, Q., Zhang, S.X., Zhang, Z.Y., Bezemer, T.M., Liang, W.J., 2015. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biology and Biochemistry80, 118–126.

[61]

Zhao, L., Yu, B.B., Wang, M.M., Zhao, J., Shen, Z.F., Cui, Y., Li, J.Y., Ye, J., Zu, W.Z., Liu, X.J., Fan, Z.J., Fu, S.L., Shao, Y.H., 2021. The effects of plant resource inputs on the energy flux of soil nematodes are affected by climate and plant resource type. Soil Ecology Letters3, 134–144.

[62]

Zheng, H., Gao, D.D., Zhou, Y.Q., Zhao, J., 2023. Energy flow across soil food webs of different ecosystems: food webs with complex structures support higher energy flux. Geoderma439, 116666.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (783KB)

693

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/