The combined application of ethylenediurea and arbuscular mycorrhizal fungi alleviates ozone damage to Medicago sativa L.
Rongbin Yin , Zhipeng Hao , Xiangyang Yuan , Xin Zhang , Siyu Gun , Xuemei Hu , Lifan Wang , Baodong Chen
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (4) : 230231
The combined application of ethylenediurea and arbuscular mycorrhizal fungi alleviates ozone damage to Medicago sativa L.
● EDU reduces O3 sensitivity of alfalfa by mediating antioxidant enzyme activities. ● AM symbiosis increases stomatal conductance and plant O3 sensitivity. ● AM fungi increase stomatal conductance by increasing plant stomatal density. ● AM inoculation combined with EDU can mitigate negative effects of O3 on plants.
Ozone (O3) is a phytotoxic air pollutant, both ethylenediurea (EDU) and arbuscular mycorrhizal (AM) fungi can affect plant O3 sensitivity. However, the underlying mechanisms of EDU and AM fungi on plant O3 sensitivity are unclear, and whether the combined application of the two can alleviate O3 damage has not been verified. In this study, an open-top chamber experiment was conducted to examine the effects of EDU and AM inoculation on growth and physiological parameters of alfalfa (Medicago sativa L.) plants under O3 enrichment. The results showed that EDU significantly decreased O3 visible injury (28.67%−68.47%), while AM inoculation significantly increased O3 visible injury. Mechanistically, the reduction of plant O3 sensitivity by EDU was mediated by antioxidant enzyme activities rather than stomatal conductance. Although AM inoculation increased antioxidant enzyme activities (4.99%−211.23%), it significantly increased stomatal conductance (42.69%) and decreased specific leaf weight (12.98%), the negative impact was overwhelming. Therefore, AM inoculation increased alfalfa’s O3 sensitivity. Furthermore, we found AM inoculation increased stomatal conductance by increasing stomatal density. The research indicated EDU was sufficient to counteract the negative effects of AM inoculation on O3 sensitivity. The combined application of EDU and AM fungi could largely alleviate the adverse effects of O3 on plant performance.
ozone sensitivity / antioxidant enzyme / stomatal conductance / specific leaf weight / ethylenediurea (EDU) / alfalfa
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |