Prevention and control strategies for antibiotic resistance: from species to community level

Yan-Zi Wang, Hu Li, Qing-Lin Chen, Ting Pan, Yong-Guan Zhu, Dirk Springael, Jian-Qiang Su

PDF(8303 KB)
PDF(8303 KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (3) : 230222. DOI: 10.1007/s42832-023-0222-2
REVIEW

Prevention and control strategies for antibiotic resistance: from species to community level

Author information +
History +

Highlights

● ARGs and ARB in typical environments which exposed to antibiotics are prevalent.

● Nanoparticle- and photosensitizer-related technology can clear specific ARGs or ARB.

● CRISPR-Cas- and phage-related technology can eliminate particular ARGs or ARB.

● Antibiotic combination can be used to eliminate microbial resistance.

● Microbiome-specific technology can eradicate most types of ARGs or ARB in one shot.

Abstract

Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the environment pose serious threats to environmental security and public health. There is an urgent need for methods to specifically and effectively control environmental pollution or pathogen infection associated with ARGs and ARB. This review aims to provide an overview of methods abating the prevalence and spread of ARGs and ARB from species to community level. At the species level, species-specific technologies, such as nanoparticle-, photosensitizer-, CRISPR-Cas-, and phage-related technology can be utilized to clear a particular class of ARGs or ARB, and in combination with low-dose antibiotics, a higher removal efficiency can be achieved. Moreover, the combination of antibiotics can be used to reverse microbial resistance and treat recurrent antibiotic resistant pathogen infections. At the community level, community-specific strategies, such as biochar, hyperthermophilic compost, and fecal microbiota transplantation can eradicate most types of ARGs or ARB in one shot, reducing the probability of resistance development. Though some progress has been made to eliminate ARGs and ARB in disease treatment or decontamination scenarios, further research is still needed to elucidate their mechanisms of action and scopes of application, and efforts should be made to explore novel strategies to counter the prevalence of antibiotic resistance.

Graphical abstract

Keywords

antibiotic resistance genes / antibiotic resistant bacteria / treatment strategy / disinfection

Cite this article

Download citation ▾
Yan-Zi Wang, Hu Li, Qing-Lin Chen, Ting Pan, Yong-Guan Zhu, Dirk Springael, Jian-Qiang Su. Prevention and control strategies for antibiotic resistance: from species to community level. Soil Ecology Letters, 2024, 6(3): 230222 https://doi.org/10.1007/s42832-023-0222-2

References

[1]
Abigail Freedman, M.S.E., Stephen Eppes, M.D., 2014. 1805. Use of stool transplant to clear fecal colonization with carbapenem-resistant Enterobacteraciae (CRE): proof of concept. Open Forum Infectious Diseases1, S65.
[2]
Agrawal, T.J.B.S.P.G., 2013. Fecal microbiota transplantation: indications, methods, evidence, and future directions. Current Gastroenterology Reports15, 337.
CrossRef Google scholar
[3]
Al-Mutairi, R., Tovmasyan, A., Batinic-Haberle, I., Benov, L., 2018. Sublethal photodynamic treatment does not lead to development of resistance. Frontiers in Microbiology9, 1699.
CrossRef Google scholar
[4]
Anas, A., Sobhanan, J., Sulfiya, K.M., Jasmin, C., Sreelakshmi, P.K., Biju, V., 2021. Advances in photodynamic antimicrobial chemotherapy. Journal of Photochemistry and Photobiology C, Photochemistry Reviews49, 100452.
CrossRef Google scholar
[5]
Andoy, N.M.O., Jeon, K., Kreis, C.T., Sullan, R.M.A., 2020. Multifunctional and stimuli-responsive polydopamine nanoparticle-based platform for targeted antimicrobial applications. Advanced Functional Materials30, 2004503.
CrossRef Google scholar
[6]
Angsantikul, P., Thamphiwatana, S., Zhang, Q., Spiekermann, K., Zhuang, J., Fang, R.H., Gao, W., Obonyo, M., Zhang, L., 2018. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. Advanced Therapeutics1, 1800016.
CrossRef Google scholar
[7]
Antimicrobial Resistance, C., 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet399, 629–655.
CrossRef Google scholar
[8]
Anzalone, A.V., Koblan, L.W., Liu, D.R., 2020. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology38, 824–844.
CrossRef Google scholar
[9]
Baptista, M.S., Cadet, J., Greer, A., Thomas, A.H., 2021. Photosensitization reactions of biomolecules: definition, targets and mechanisms. Photochemistry and Photobiology97, 1456–1483.
CrossRef Google scholar
[10]
Baquero, F., Levin, B.R., 2021. Proximate and ultimate causes of the bactericidal action of antibiotics. Nature Reviews Microbiology19, 123–132.
CrossRef Google scholar
[11]
Barancheshme, F., Munir, M., 2017. Strategies to combat antibiotic resistance in the wastewater treatment plants. Frontiers in Microbiology8, 2603.
CrossRef Google scholar
[12]
Barrangou, R., Doudna, J.A., 2016. Applications of CRISPR technologies in research and beyond. Nature Biotechnology34, 933–941.
CrossRef Google scholar
[13]
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., Horvath, P., 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science315, 1709–1712.
CrossRef Google scholar
[14]
Baym, M., Stone, L.K., Kishony, R., 2016. Multidrug evolutionary strategies to reverse antibiotic resistance. Science351, aad3292.
CrossRef Google scholar
[15]
Benech, N., Sokol, H., 2020. Fecal microbiota transplantation in gastrointestinal disorders: time for precision medicine. Genome Medicine12, 58.
CrossRef Google scholar
[16]
Bertoloni, G., Lauro, F.M., Cortella, G., Merchat, M., 2000. Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells. Biochimica et Biophysica Acta. G, General Subjects1475, 169–174.
CrossRef Google scholar
[17]
Bikard, D., Euler, C.W., Jiang, W., Nussenzweig, P.M., Goldberg, G.W., Duportet, X., Fischetti, V.A., Marraffini, L.A., 2014. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnology32, 1146–1150.
CrossRef Google scholar
[18]
Blair, J.M.A., Webber, M.A., Baylay, A.J., Ogbolu, D.O., Piddock, L.J.V., 2015. Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology13, 42–51.
CrossRef Google scholar
[19]
Brandt, L.J., Aroniadis, O.C., Mellow, M., Kanatzar, A., Kelly, C., Park, T., Stollman, N., Rohlke, F., Surawicz, C., 2012. Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. American Journal of Gastroenterology107, 1079–1087.
CrossRef Google scholar
[20]
Buckner, M.M.C., Ciusa, M.L., Piddock, L.J.V., 2018. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiology Reviews42, 781–804.
CrossRef Google scholar
[21]
Buynak, J.D., 2013. Beta-lactamase inhibitors: a review of the patent literature (2010–2013). Expert Opinion on Therapeutic Patents23, 1469–1481.
CrossRef Google scholar
[22]
Cameron, S.J., Sheng, J., Hosseinian, F., Willmore, W.G., 2022. Nanoparticle effects on stress response pathways and nanoparticle-protein interactions. International Journal of Molecular Sciences23, 7962.
CrossRef Google scholar
[23]
Camilleri, M., Dilmaghani, S. 2022. Treatment of irritable bowel syndrome using fecal microbiota transplantation: a step forward?. Gastroenterology163, 815–817.
CrossRef Google scholar
[24]
Carter, J., Hoffman, C., Wiedenheft, B., 2017. The interfaces of genetic conflict are hot spots for innovation. Cell168, 9–11.
CrossRef Google scholar
[25]
Castano, A.P., Mroz, P., Hamblin, M.R., 2006. Photodynamic therapy and anti-tumour immunity. Nature Reviews Cancer6, 535–545.
CrossRef Google scholar
[26]
Chatterjee, S.R., Srivastava, T.S., Kamat, J.P., Devasagayam, T.P.A., 1998. Photocleavage of plasmid pBR322 DNA by some anionic porphyrins. Journal of Porphyrins and Phthalocyanines2, 337–343.
CrossRef Google scholar
[27]
Chen, Q.L., Cui, H.L., Su, J.Q., Penuelas, J., Zhu, Y.G., 2019. Antibiotic resistomes in plant microbiomes. Trends in Plant Science24, 530–541.
CrossRef Google scholar
[28]
Chen, Q.L., Fan, X.T., Zhu, D., An, X.L., Su, J.Q., Cui, L., 2018. Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L. Soil Biology & Biochemistry119, 74–82.
CrossRef Google scholar
[29]
Chevallereau, A., Pons, B.J., van Houte, S., Westra, E.R., 2021. Interactions between bacterial and phage communities in natural environments. Nature Reviews Microbiology20, 49–62.
CrossRef Google scholar
[30]
Cho, G., Lee, D., Kim, S.M., Jeon, T.J., 2022. Elucidation of the interactions of reactive oxygen species and antioxidants in model membranes mimicking cancer cells and normal cells. Membranes (Basel)12, 286.
CrossRef Google scholar
[31]
Chu, N.D., Crothers, J.W., Nguyen, L.T.T., Kearney, S.M., Smith, M.B., Kassam, Z., Collins, C., Xavier, R., Moses, P.L., Alm, E.J., 2021. Dynamic colonization of microbes and their functions after fecal microbiota transplantation for inflammatory bowel disease. mBio12, e00975–21.
CrossRef Google scholar
[32]
Clarke, A.L., De Soir, S., Jones, J.D., 2020. The safety and efficacy of phage therapy for bone and joint infections: a systematic review. Antibiotics (Basel, Switzerland)9, 795.
CrossRef Google scholar
[33]
Colavecchio, A., Cadieux, B., Lo, A., Goodridge, L.D., 2017. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family−a review. Frontiers in Microbiology8, 1108.
CrossRef Google scholar
[34]
Cui, E., Wu, Y., Zuo, Y., Chen, H., 2016. Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. Bioresource Technology203, 11–17.
CrossRef Google scholar
[35]
Cui, P., Liao, H., Bai, Y., Li, X., Zhao, Q., Chen, Z., Yu, Z., Yi, Z., Zhou, S., 2019. Hyperthermophilic composting reduces nitrogen loss via inhibiting ammonifiers and enhancing nitrogenous humic substance formation. Science of the Total Environment692, 98–106.
CrossRef Google scholar
[36]
Dai, M., Liu, Y.F., Chen, W., Buch, H., Shan, Y., Chang, L.H., Bai, Y., Shen, C., Zhang, X., Huo, Y., Huang, D., Yang, Z., Hu, Z., He, X., Pan, J., Hu, L., Pan, X., Wu, X., Deng, B., Li, Z., Cui, B., Zhang, F., 2019. Rescue fecal microbiota transplantation for antibiotic-associated diarrhea in critically ill patients. Critical Care (London, England)23, 324.
CrossRef Google scholar
[37]
Dai, Z.M., Xiong, X.Q., Zhu, H., Xu, H.J., Leng, P., Li, J.H., Tang, C., Xu, J., 2021. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar3, 239–254.
CrossRef Google scholar
[38]
Dedrick, R.M., Smith, B.E., Cristinziano, M., Freeman, K.G., Jacobs-Sera, D., Belessis, Y., Whitney Brown, A., Cohen, K.A., Davidson, R.M., van Duin, D., Gainey, A., Garcia, C.B., Robert George, C.R., Haidar, G., Ip, W., Iredell, J., Khatami, A., Little, J.S., Malmivaara, K., McMullan, B.J., Michalik, D.E., Moscatelli, A., Nick, J.A., Tupayachi Ortiz, M.G., Polenakovik, H.M., Robinson, P.D., Skurnik, M., Solomon, D.A., Soothill, J., Spencer, H., Wark, P., Worth, A., Schooley, R.T., Benson, C.A., Hatfull, G.F., 2023. Phage therapy of Mycobacterium infections: compassionate use of phages in 20 patients with drug-resistant mycobacterial disease. Clinical Infectious Diseases76, 103–112.
CrossRef Google scholar
[39]
Diaz, E., Martin-Loeches, I., Valles, J., 2013. Nosocomial pneumonia. Enfermedades Infecciosas y Microbiologia Clinica31, 692–698.
CrossRef Google scholar
[40]
Ding, J., Yin, Y., Sun, A.Q., Lassen, S.B., Li, G., Zhu, D., Ke, X., 2019. Effects of biochar amendments on antibiotic resistome of the soil and collembolan gut. Journal of Hazardous Materials377, 186–194.
CrossRef Google scholar
[41]
Du, L., Ahmad, S., Liu, L., Wang, L., Tang, J., 2023. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water. Science of the Total Environment858, 159815.
CrossRef Google scholar
[42]
Duan, M.L., Li, H.C., Gu, J., Tuo, X.X., Sun, W., Qian, X., Wang, X., 2017. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environmental Pollution224, 787–795.
CrossRef Google scholar
[43]
El-Salhy, M., Hausken, T., Hatlebakk, J.G., 2021. Current status of fecal microbiota transplantation for irritable bowel syndrome. Neurogastroenterology and Motility33, e14157.
CrossRef Google scholar
[44]
Enault, F., Briet, A., Bouteille, L., Roux, S., Sullivan, M.B., Petit, M.A., 2017. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME Journal11, 237–247.
CrossRef Google scholar
[45]
Fan, X.T., Li, H., Chen, Q.L., Zhang, Y.S., Ye, J., Zhu, Y.G., Su, J.Q., 2019. Fate of antibiotic resistant Pseudomonas putida and broad host range plasmid in natural soil microcosms. Frontiers in Microbiology10, 194.
CrossRef Google scholar
[46]
Fatima, F., Siddiqui, S., Khan, W.A., 2020. Nanoparticles as novel emerging therapeutic antibacterial agents in the antibiotics resistant era. Biological Trace Element Research199, 2552–2564.
CrossRef Google scholar
[47]
Fekrazad, R., Nejat, A, Kalhori, K.A.M., 2017. Antimicrobial Photodynamic Therapy with Nanoparticles versus Conventional Photosensitizer in Oral Diseases. In: Ficai, A., Grumezescu, A.M., eds. Nanostructures for Antimicrobial Therapy. Elsevier
[48]
Fillol-Salom, A., Alsaadi, A., Sousa, J.A.M., Zhong, L., Foster, K.R., Rocha, E.P.C., Penadés, J.R., Ingmer, H., Haaber, J., 2019. Bacteriophages benefit from generalized transduction. PLoS Pathogens15, e1007888.
CrossRef Google scholar
[49]
Fischbach, M.A., 2011. Combination therapies for combating antimicrobial resistance. Current Opinion in Microbiology14, 519–523.
CrossRef Google scholar
[50]
Fu, Y., Jia, M., Wang, F., Wang, Z., Mei, Z., Bian, Y., Jiang, X., Virta, M., Tiedje, J.M., 2021a. Strategy for mitigating antibiotic resistance by biochar and hyperaccumulators in cadmium and oxytetracycline co-contaminated soil. Environmental Science & Technology55, 16369–16378.
CrossRef Google scholar
[51]
Fu, Y.H., Wang, F., Sheng, H.J., Hu, F., Wang, Z.Q., Xu, M., Bian, Y., Jiang, X., Tiedje, J.M., 2021b. Removal of extracellular antibiotic resistance genes using magnetic biochar/quaternary phosphonium salt in aquatic environments: a mechanistic study. Journal of Hazardous Materials411, 125048.
CrossRef Google scholar
[52]
Ginsberg, A.M., Spigelman, M., 2007. Challenges in tuberculosis drug research and development. Nature Medicine13, 290–294.
CrossRef Google scholar
[53]
Gomaa, A.A., Klumpe, H.E., Luo, M.L., Selle, K., Barrangou, R., Beisel, C.L., 2014. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio5, e00928–13.
CrossRef Google scholar
[54]
Gomez-Gomez, C., Blanco-Picazo, P., Brown-Jaque, M., Quiros, P., Rodriguez-Rubio, L., Cerda-Cuellar, M., Muniesa, M., 2019. Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces. Scientific Reports9, 11.
CrossRef Google scholar
[55]
Gonzalez-Bello, C., Rodriguez, D., Pernas, M., Rodriguez, A., Colchon, E., 2020. Beta-lactamase inhibitors to restore the efficacy of antibiotics against superbugs. Journal of Medicinal Chemistry63, 1859–1881.
CrossRef Google scholar
[56]
Guo, M.T., Gao, Y., Xue, Y.B., Liu, Y.P., Zeng, X.Y., Cheng, Y.Q., Ma, J., Wang, H., Sun, J., Wang, Z., Yan, Y., 2021. Bacteriophage cocktails protect dairy cows against mastitis caused by drug resistant Escherichia coli infection. Frontiers in Cellular and Infection Microbiology11, 690377.
CrossRef Google scholar
[57]
Guo, M.T., Yuan, Q.B., Yang, J., 2015. Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater. Environmental Science & Technology49, 5771–5778.
CrossRef Google scholar
[58]
Hrenovic, J., Ivankovic, T., Ivekovic, D., Repec, S., Stipanicev, D., Ganjto, M., 2017. The fate of carbapenem-resistant bacteria in a wastewater treatment plant. Water Research126, 232–239.
CrossRef Google scholar
[59]
Hu, Y., Zhang, T., Jiang, L., Luo, Y., Yao, S., Zhang, D., Lin, K., Cui, C., 2019. Occurrence and reduction of antibiotic resistance genes in conventional and advanced drinking water treatment processes. Science of the Total Environment669, 777–784.
CrossRef Google scholar
[60]
Hua, Y., Luo, T., Yang, Y., Dong, D., Wang, R., Wang, Y., Xu, M., Guo, X., Hu, F., He, P., 2017. Phage therapy as a promising new treatment for lung infection caused by carbapenem-resistant Acinetobacter baumannii in mice. Frontiers in Microbiology8, 2659.
CrossRef Google scholar
[61]
Huang, C., Tang, Z., Xi, B., Tan, W., Guo, W., Wu, W., Ma, C., 2021. Environmental effects and risk control of antibiotic resistance genes in the organic solid waste aerobic composting system: a review. Frontiers of Environmental Science & Engineering15, 127.
CrossRef Google scholar
[62]
Huang, F.Y., Chen, Q.L., Zhang, X., Neilson, R., Su, J.Q., Zhou, S.Y.D., 2021. Dynamics of antibiotic resistance and its association with bacterial community in a drinking water treatment plant and the residential area. Environmental Science and Pollution Research International28, 55690–55699.
CrossRef Google scholar
[63]
Iakovides, I.C., Michael-Kordatou, I., Moreira, N.F.F., Ribeiro, A.R., Fernandes, T., Pereira, M.F.R., Nunes, O.C., Manaia, C.M., Silva, A.M.T., Fatta-Kassinos, D., 2019. Continuous ozonation of urban wastewater: removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. Water Research159, 333–347.
CrossRef Google scholar
[64]
Jacobs, C., Frere, J.M., Normark, S., 1997. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gram-negative bacteria. Cell88, 823–832.
CrossRef Google scholar
[65]
Jiang, Q., Yin, H., Li, G., Liu, H., An, T., Wong, P.K., Zhao, H., 2017. Elimination of antibiotic-resistance bacterium and its associated/dissociative blaTEM-1 and aac(3)-II antibiotic-resistance genes in aqueous system via photoelectrocatalytic process. Water Research125, 219–226.
CrossRef Google scholar
[66]
Jiao, W., Du, R., Ye, M., Sun, M., Feng, Y., Wan, J., Zhao, Y., Zhang, Z., Huang, D., Du, D., Jiang, X., 2018. ‘Agricultural Waste to Treasure’−Biochar and eggshell to impede soil antibiotics/antibiotic resistant bacteria (genes) from accumulating in Solanum tuberosum L. Environmental Pollution242, 2088–2095.
CrossRef Google scholar
[67]
Jones, E.W., Carlson, J.M., 2018. In silico analysis of antibiotic-induced Clostridium difficile infection: remediation techniques and biological adaptations. PLoS Computational Biology14, e1006001.
CrossRef Google scholar
[68]
Jori, G., Fabris, C., Soncin, M., Ferro, S., Coppellotti, O., Dei, D., Fantetti, L., Chiti, G., Roncucci, G., 2006. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers in Surgery and Medicine38, 468–481.
CrossRef Google scholar
[69]
Kassam, Z., Lee, C.H., Yuan, Y.H., Hunt, R.H., 2013. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. American Journal of Gastroenterology108, 500–508.
CrossRef Google scholar
[70]
Kelly, C.R., Kahn, S., Kashyap, P., Laine, L., Rubin, D., Atreja, A., Moore, T., Wu, G., 2015. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology149, 223–237.
CrossRef Google scholar
[71]
Kharkwal, G.B., Sharma, S.K., Huang, Y.Y., Dai, T., Hamblin, M.R., 2011. Photodynamic therapy for infections: clinical applications. Lasers in Surgery and Medicine43, 755–767.
CrossRef Google scholar
[72]
Kim, H.J., Jun, J.W., Giri, S.S., Kim, S.G., Kim, S.W., Kwon, J., Lee, S.B., Chi, C., Park, S.C., 2020. Bacteriophage cocktail for the prevention of multiple-antibiotic-resistant and mono-phage-resistant Vibrio coralliilyticus infection in pacific oyster (Crassostrea gigas) larvae. Pathogens (Basel, Switzerland)9, 831.
CrossRef Google scholar
[73]
Kollef, K.E., Schramm, G.E., Wills, A.R., Reichley, R.M., Micek, S.T., Kollef, M.H., 2008. Predictors of 30-day mortality and hospital costs in patients with ventilator-associated pneumonia attributed to potentially antibiotic-resistant Gram-negative bacteria. Chest134, 281–287.
CrossRef Google scholar
[74]
Labrie, S.J., Samson, J.E., Moineau, S., 2010. Bacteriophage resistance mechanisms. Nature Reviews Microbiology8, 317–327.
CrossRef Google scholar
[75]
Laffin, M., Millan, B., Madsen, K.L., 2017. Fecal microbial transplantation as a therapeutic option in patients colonized with antibiotic resistant organisms. Gut Microbes8, 221–224.
CrossRef Google scholar
[76]
Larsson, D.G.J., Flach, C.F., 2022. Antibiotic resistance in the environment. Nature Reviews Microbiology20, 257–269.
CrossRef Google scholar
[77]
Laskin, J.D., 1994. Cellular and molecular mechanisms in photochemical sensitization−studies on the mechanism of action of psoralens. Food and Chemical Toxicology32, 119–127.
CrossRef Google scholar
[78]
Lewies, A., Wentzel, J.F., Jordaan, A., Bezuidenhout, C., Du Plessis, L.H., 2017. Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity. International Journal of Pharmaceutics526, 244–253.
CrossRef Google scholar
[79]
Liao, H., Lu, X., Rensing, C., Friman, V.P., Geisen, S., Chen, Z., Yu, Z., Wei, Z., Zhou, S., Zhu, Y., 2018. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge. Environmental Science & Technology52, 266–276.
CrossRef Google scholar
[80]
Liao, H.P., Zhao, Q., Cui, P., Chen, Z., Yu, Z., Geisen, S., Friman, V.P., Zhou, S., 2019. Efficient reduction of antibiotic residues and associated resistance genes in tylosin antibiotic fermentation waste using hyperthermophilic composting. Environment International133, 105203.
CrossRef Google scholar
[81]
Limketkai, B.N., Hendler, S., Ting, P., Parian, A.M., 2019. Fecal microbiota transplantation for the critically ill patient. Nutrition in Clinical Practice34, 73–79.
CrossRef Google scholar
[82]
Liu, G.W., Lin, Q.P., Jin, S., Gao, C.X., 2022. The CRISPR-Cas toolbox and gene editing technologies. Molecular Cell82, 333–347.
CrossRef Google scholar
[83]
Liu, X.H., Lu, S.Y., Guo, W., Xi, B.D., Wang, W.L., 2018. Antibiotics in the aquatic environments: a review of lakes, China. Science of the Total Environment627, 1195–1208.
CrossRef Google scholar
[84]
Liu, Y., Busscher, H.J., Zhao, B.R., Li, Y.F., Zhang, Z.K., van der Mei, H.C., Ren, Y., Shi, L., 2016a. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano10, 4779–4789.
CrossRef Google scholar
[85]
Liu, Y.Y., Wang, Y., Walsh, T.R., Yi, L.X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L.F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J.H., Shen, J., 2016b. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infectious Diseases 16, 161–168
[86]
Liu, Z., Dong, H., Cui, Y., Cong, L., Zhang, D., 2020. Application of different types of CRISPR/Cas-based systems in bacteria. Microbial Cell Factories19, 172.
CrossRef Google scholar
[87]
Lu, C., Gu, J., Wang, X., Liu, J., Zhang, K., Zhang, X., Zhang, R., 2018. Effects of coal gasification slag on antibiotic resistance genes and the bacterial community during swine manure composting. Bioresource Technology268, 20–27.
CrossRef Google scholar
[88]
Luong, T., Salabarria, A.C., Edwards, R.A., Roach, D.R., 2020. Standardized bacteriophage purification for personalized phage therapy. Nature Protocols15, 2867–2890.
CrossRef Google scholar
[89]
Mahler, M., Costa, A.R., van Beljouw, S.P.B., Fineran, P.C., Brouns, S.J.J., 2023. Approaches for bacteriophage genome engineering. Trends in Biotechnology41, 669–685.
CrossRef Google scholar
[90]
Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J.J., Charpentier, E., Haft, D.H., Horvath, P., Moineau, S., Mojica, F.J.M., Terns, R.M., Terns, M.P., White, M.F., Yakunin, A.F., Garrett, R.A., van der Oost, J., Backofen, R., Koonin, E.V., 2015. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology13, 722–736.
CrossRef Google scholar
[91]
Manoto, S.L., Oluwole, D.O., Malabi, R., Maphanga, C., Ombinda-Lemboumba, S., Nyokong, T., Mthunzi-Kufa, P., 2017. Phototodynamic activity of zinc monocarboxyphenoxy phthalocyane (ZnMCPPc) conjugated to gold silver (AuAg) nanoparticles in melanoma cancer cells. Conference on Optical Methods for Tumor Treatment and Detection - Mechanisms and Techniques in Photodynamic Therapy XXVI. 10047, San Francisco, CA,
[92]
Marraffini, L.A., 2013. CRISPR-Cas immunity against phages: its effects on the evolution and survival of bacterial pathogens. PLoS Pathogens9, e1003765.
CrossRef Google scholar
[93]
Martinez, J.L., Baquero, F., 2000. Mutation frequencies and antibiotic resistance. Antimicrobial Agents and Chemotherapy44, 1771–1777.
CrossRef Google scholar
[94]
Martínez, J.L., Coque, T.M., Baquero, F., 2014. What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology13, 116–123.
CrossRef Google scholar
[95]
McMurry, L.M., Oethinger, M., Levy, S.B., 1998. Triclosan targets lipid synthesis. Nature394, 531–532.
CrossRef Google scholar
[96]
Mousa, S., Magdy, M., Xiong, D.Y., Nyaruabaa, R., Rizk, S.M., Yu, J.P., Wei, H., 2022. Microbial profiling of potato-associated rhizosphere bacteria under bacteriophage therapy. Antibiotics (Basel, Switzerland)11, 1117.
CrossRef Google scholar
[97]
Nitzan, Y., Salmon-Divon, M., Shporen, E., Malik, Z., 2004. ALA induced photodynamic effects on Gram positive and negative bacteria. Photochemical & Photobiological Sciences3, 430–435.
CrossRef Google scholar
[98]
Oh, J., Salcedo, D.E., Medriano, C.A., Kim, S., 2014. Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes. Journal of Environmental Sciences (China)26, 1238–1242.
CrossRef Google scholar
[99]
Ojemaye, M.O., Adefisoye, M.A., Okoh, A.I., 2020. Nanotechnology as a viable alternative for the removal of antimicrobial resistance determinants from discharged municipal effluents and associated watersheds: a review. Journal of Environmental Management275, 111234.
CrossRef Google scholar
[100]
Oshima, T., Moriya, T., 2008. A Preliminary Analysis of Microbial and Biochemical Properties of High-Temperature Compost. In: Wiegel, J., Maier, R.J., Adams, M.W.W., eds. Incredible Anaerobes: From Physiology to Genomics to Fuels. 1125. Blackwell Publishing, Oxford, pp. 338–344
[101]
Ouyang, W.Y., Huang, F.Y., Zhao, Y., Li, H., Su, J.Q., 2015. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Applied Microbiology and Biotechnology99, 5697–5707.
CrossRef Google scholar
[102]
Palmer, A.C., Kishony, R., 2013. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nature Reviews Genetics14, 243–248.
CrossRef Google scholar
[103]
Patwardhan, S.V., Emami, F.S., Berry, R.J., Jones, S.E., Naik, R.R., Deschaume, O., Heinz, H., Perry, C.C., 2012. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. Journal of the American Chemical Society134, 6244–6256.
CrossRef Google scholar
[104]
Pires, D.P., Cleto, S., Sillankorva, S., Azeredo, J., Lu, T.K., 2016. Genetically engineered phages: a review of advances over the last decade. Microbiology and Molecular Biology Reviews80, 523–543.
CrossRef Google scholar
[105]
Proenca, I.M., Bernardo, W.M., da Ponte, A.M., Matsubayashi, C.O., Kotinda, A.P.S., Flor, M.M., de Moura, D.T., de Moura, E.G., 2020. Fecal microbiota transplantation for metabolic syndrome and obesity: a systematic review and meta-analysis based on randomized clinical trials. Gastroenterology158, S480–S481.
CrossRef Google scholar
[106]
Pruden, A., Larsson, D.G., Amezquita, A., Collignon, P., Brandt, K.K., Graham, D.W., Lazorchak, J.M., Suzuki, S., Silley, P., Snape, J.R., Topp, E., Zhang, T., Zhu, Y.G., 2013. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives121, 878–885.
CrossRef Google scholar
[107]
Pu, Q., Zhao, L.X., Li, Y.T., Su, J.Q., 2020. Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China. Journal of Hazardous Materials391, 122267.
CrossRef Google scholar
[108]
Pursey, E., Sunderhauf, D., Gaze, W.H., Westra, E.R., van Houte, S., 2018. CRISPR-Cas antimicrobials: challenges and future prospects. PLoS Pathogens14, e1006990.
CrossRef Google scholar
[109]
Qing, G., Zhao, X., Gong, N., Chen, J., Li, X., Gan, Y., Wang, Y., Zhang, Z., Zhang, Y., Guo, W., Luo, Y., Liang, X.J., 2019. Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multidrug-resistant bacterial infection. Nature Communications10, 4336.
CrossRef Google scholar
[110]
Raffi, M., Mehrwan, S., Bhatti, T.M., Akhter, J.I., Hameed, A., Yawar, W., ul Hasan, M.M., 2010. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology60, 75–80.
CrossRef Google scholar
[111]
Ranghar, S., Sirohi, P., Verma, P., Agarwal, V., 2014. Nanoparticle-based drug delivery systems: promising approaches against infections. Brazilian Archives of Biology and Technology57, 209–222.
CrossRef Google scholar
[112]
Rineh, A., Kelso, M.J., Vatansever, F., Tegos, G.P., Hamblin, M.R., 2014. Clostridium difficile infection: molecular pathogenesis and novel therapeutics. Expert Review of Anti-Infective Therapy12, 131–150.
CrossRef Google scholar
[113]
Romo, A.L., Quiros, R., 2019. Appropriate use of antibiotics: an unmet need. Therapeutic Advances in Urology11, 9.
CrossRef Google scholar
[114]
Ruddaraju, L.K., Pammi, S.V.N., Guntuku, G.S., Padavala, V.S., Kolapalli, V.R.M., 2020. A review on anti-bacterials to combat resistance: from ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian J Pharm Sci15, 42–59.
CrossRef Google scholar
[115]
Salmon-Divon, M., Nitzan, Y., Malik, Z., 2004. Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra-meso (N-methylpyridyl)porphine. Photochemical & Photobiological Sciences3, 423–429.
CrossRef Google scholar
[116]
Sandanayaka, V.P., Prashad, A.S., 2002. Resistance to beta-lactam antibiotics: structure and mechanism based design of beta-lactamase inhibitors. Current Medicinal Chemistry9, 1145–1165.
CrossRef Google scholar
[117]
Sanganyado, E., Gwenzi, W., 2019. Antibiotic resistance in drinking water systems: occurrence, removal, and human health risks. Science of the Total Environment669, 785–797.
CrossRef Google scholar
[118]
Sharma, V.K., Johnson, N., Cizmas, L., McDonald, T.J., Kim, H., 2016. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere150, 702–714.
CrossRef Google scholar
[119]
Shehreen, S., Chyou, T.y., Fineran, P.C., Brown, C.M., 2019. Genome-wide correlation analysis suggests different roles of CRISPR-Cas systems in the acquisition of antibiotic resistance genes in diverse species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences374, 20180384.
CrossRef Google scholar
[120]
Shorr, A.F., Zilberberg, M.D., Micek, S.T., Kollef, M.H., 2008. Prediction of infection due to antibiotic-resistant bacteria by select risk factors for health care-associated pneumonia. Archives of Internal Medicine168, 2205–2210.
CrossRef Google scholar
[121]
Soncin, M., Fabris, C., Busetti, A., Dei, D., Nistri, D., Roncucci, G., Jori, G., 2002. Approaches to selectivity in the Zn(II)-phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus. Photochemical & Photobiological Sciences1, 815–819.
CrossRef Google scholar
[122]
Sun, M., Ye, M., Zhang, Z., Zhang, S., Zhao, Y., Deng, S., Kong, L., Ying, R., Xia, B., Jiao, W., Cheng, J., Feng, Y., Liu, M., Hu, F., 2019. Biochar combined with polyvalent phage therapy to mitigate antibiotic resistance pathogenic bacteria vertical transfer risk in an undisturbed soil column system. Journal of Hazardous Materials365, 1–8.
CrossRef Google scholar
[123]
Tacconelli, E., 2006. New strategies to identify patients harbouring antibiotic-resistant bacteria at hospital admission. Clinical Microbiology and Infection12, 102–109.
CrossRef Google scholar
[124]
Tagliaferri, T.L., Guimaraes, N.R., Pereira, M.P.M., Vilela, L.F.F., Horz, H.P., dos Santos, S.G., Mendes, T.A.O., 2020. Exploring the potential of CRISPR-Cas9 under challenging conditions: facing high-copy plasmids and counteracting beta-lactam resistance in clinical strains of Enterobacteriaceae. Frontiers in Microbiology11, 578.
CrossRef Google scholar
[125]
Thabit, A.K., Crandon, J.L., Nicolau, D.P., 2015. Antimicrobial resistance: impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opinion on Pharmacotherapy16, 159–177.
CrossRef Google scholar
[126]
Thomas, C.M., Nielsen, K.M., 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology3, 711–721.
CrossRef Google scholar
[127]
Walter, J., Maldonado-Gomez, M.X., Martinez, I., 2018. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Current Opinion in Biotechnology49, 129–139.
CrossRef Google scholar
[128]
Wang, J.L., Mao, D.Q., Mu, Q.H., Luo, Y., 2015. Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants. Science of the Total Environment526, 366–373.
CrossRef Google scholar
[129]
Wang, L., Hu, C., Shao, L., 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine12, 1227–1249.
CrossRef Google scholar
[130]
Wang, X.F., Wei, Z., Yang, K.M., Wang, J.N., Jousset, A., Xu, Y.C., Shen, Q., Friman, V.-P., 2019. Phage combination therapies for bacterial wilt disease in tomato. Nature Biotechnology37, 1513–1520.
CrossRef Google scholar
[131]
Wang, Y.Z., An, X.L., Fan, X.T., Pu, Q., Li, H., Liu, W.Z., Chen, Z., Su, J.Q., 2024. Visible light-activated photosensitizer inhibits the plasmid-mediated horizontal gene transfer of antibiotic resistance genes. Journal of Hazardous Materials461, 132564.
CrossRef Google scholar
[132]
Wang, Y.Z., Zhou, S.Y.D., Zhou, X.Y., An, X.L., Su, J.Q., 2022. Manure and biochar have limited effect on lettuce leaf endophyte resistome. Science of the Total Environment860, 160515–160515.
CrossRef Google scholar
[133]
Wang, Z., Wu, D., Lin, Y., Wang, X., 2021. Role of temperature in sludge composting and hyperthermophilic systems: a review. BioEnergy Research15, 962–976.
CrossRef Google scholar
[134]
Weldrick, P.J., Iveson, S., Hardman, M.J., Paunov, V.N., 2019. Breathing new life into old antibiotics: overcoming antibacterial resistance by antibiotic-loaded nanogel carriers with cationic surface functionality. Nanoscale11, 10472–10485.
CrossRef Google scholar
[135]
Wittebole, X., De Roock, S., Opal, S.M., 2014. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence5, 226–235.
CrossRef Google scholar
[136]
Worthington, R.J., Melander, C., 2013. Combination approaches to combat multidrug-resistant bacteria. Trends in Biotechnology31, 177–184.
CrossRef Google scholar
[137]
Wright, G.D., 2016. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends in Microbiology24, 862–871.
CrossRef Google scholar
[138]
Yang, W., Shang, J., Li, B., Flury, M., 2020. Surface and colloid properties of biochar and implications for transport in porous media. Critical Reviews in Environmental Science and Technology50, 2484–2522.
CrossRef Google scholar
[139]
Ye, M., Sun, M., Feng, Y., Wan, J., Xie, S., Tian, D., Zhao, Y., Wu, J., Hu, F., Li, H., Jiang, X., 2016. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues. Journal of Hazardous Materials309, 219–227.
CrossRef Google scholar
[140]
Ye, M., Sun, M., Huang, D., Zhang, Z., Zhang, H., Zhang, S., Hu, F., Jiang, X., Jiao, W., 2019. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. Environment International129, 488–496.
CrossRef Google scholar
[141]
Ye, M., Sun, M., Zhao, Y., Jiao, W., Xia, B., Liu, M., Feng, Y., Zhang, Z., Huang, D., Huang, R., Wan, J., Du, R., Jiang, X., Hu, F., 2018. Targeted inactivation of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa in a soil-lettuce system by combined polyvalent bacteriophage and biochar treatment. Environmental Pollution241, 978–987.
CrossRef Google scholar
[142]
Yoon, Y., Chung, H.J., Wen Di, D.Y., Dodd, M.C., Hur, H.G., Lee, Y., 2017. Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/H2O2. Water Research123, 783–793.
CrossRef Google scholar
[143]
Yosef, I., Manor, M., Kiro, R., Qimron, U., 2015. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proceedings of the National Academy of Sciences of the United States of America112, 7267–7272.
CrossRef Google scholar
[144]
Zeina, B., Greenman, J., Corry, D., Purcell, W.M., 2002. Cytotoxic effects of antimicrobial photodynamic therapy on keratinocytes in vitro. British Journal of Dermatology146, 568–573.
CrossRef Google scholar
[145]
Zhang, F., Zhang, T., Zhu, H., Borody, T.J., 2019a. Evolution of fecal microbiota transplantation in methodology and ethical issues. Current Opinion in Pharmacology49, 11–16.
CrossRef Google scholar
[146]
Zhang, T.Y., Hu, Y.R., Jiang, L., Yao, S.J., Lin, K.F., Zhou, Y.B., Cui, C., 2019b. Removal of antibiotic resistance genes and control of horizontal transfer risk by UV, chlorination and UV/chlorination treatments of drinking water. Chemical Engineering Journal358, 589–597.
CrossRef Google scholar
[147]
Zhang, Y., Huang, P., Wang, D., Chen, J., Liu, W., Hu, P., Huang, M., Chen, X., Chen, Z., 2018. Near-infrared-triggered antibacterial and antifungal photodynamic therapy based on lanthanide-doped upconversion nanoparticles. Nanoscale10, 15485–15495.
CrossRef Google scholar
[148]
Zhao, Y., Lu, Z.T., Dai, X.M., Wei, X.S., Yu, Y.J., Chen, X.L., Zhang, X., Li, C., 2018. Glycomimetic-conjugated photosensitizer for specific Pseudomonas aeruginosa recognition and targeted photodynamic therapy. Bioconjugate Chemistry29, 3222–3230.
CrossRef Google scholar
[149]
Zhao, Y., Ye, M., Zhang, X., Sun, M., Zhang, Z., Chao, H., Huang, D., Wan, J., Zhang, S., Jiang, X., Sun, D., Yuan, Y., Hu, F., 2019. Comparing polyvalent bacteriophage and bacteriophage cocktails for controlling antibiotic-resistant bacteria in soil-plant system. Science of the Total Environment657, 918–925.
CrossRef Google scholar
[150]
Zheng, G., Lu, Y., Wang, D., Zhou, L., 2019. Importance of sludge conditioning in attenuating antibiotic resistance: removal of antibiotic resistance genes by bioleaching and chemical conditioning with Fe[III]/CaO. Water Research152, 61–73.
CrossRef Google scholar
[151]
Zheng, J., Su, C., Zhou, J., Xu, L., Qian, Y., Chen, H., 2017. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chemical Engineering Journal317, 309–316.
CrossRef Google scholar
[152]
Zhu, Y.G., Zhao, Y., Li, B., Huang, C.L., Zhang, S.Y., Yu, S., Chen, Y.S., Zhang, T., Gillings, M.R., Su, J.Q., 2017. Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology2, 16270.
CrossRef Google scholar

Conflict of interest

The authors declare there is no conflict of interest.

Acknowledgments

This study was financially supported by the National Key Research and Development Plan (Grant No. 2020YFC1806902), and the National Natural Science Foundation of China (Grant No. 42161134002).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(8303 KB)

Accesses

Citations

Detail

Sections
Recommended

/