Soil microbial ecology through the lens of metatranscriptomics
Jingjing Peng, Xi Zhou, Christopher Rensing, Werner Liesack, Yong-Guan Zhu
Soil microbial ecology through the lens of metatranscriptomics
● Metatranscriptomics uncovers the dynamic expression of functional genes in soil environments, providing insights into the intricate metabolic activities within microbial communities.
● mRNA enrichment from soil samples remains a formidable challenge due to the presence of inhibitory compounds, low RNA yields, and sample heterogeneity.
● Soil metatranscriptomics unravels the expression levels of genes involved in the real-time molecular dialogues between plants and rhizobionts, uncovering the dynamics of nutrient exchange, symbiotic interactions, and plant-microbe communication.
● Metatranscriptomics unlocks the active expression of the soil resistome, elucidating the mechanisms of resistance dissemination under anthropogenic activities.
● Metatranscriptomics provides comprehensive data regarding the identification, quantification, and evolutionary history of RNA viruses.
Metatranscriptomics is a cutting-edge technology for exploring the gene expression by, and functional activities of, the microbial community across diverse ecosystems at a given time, thereby shedding light on their metabolic responses to the prevailing environmental conditions. The double-RNA approach involves the simultaneous analysis of rRNA and mRNA, also termed structural and functional metatranscriptomics. By contrast, mRNA-centered metatranscriptomics is fully focused on elucidating community-wide gene expression profiles, but requires either deep sequencing or effective rRNA depletion. In this review, we critically assess the challenges associated with various experimental and bioinformatic strategies that can be applied in soil microbial ecology through the lens of functional metatranscriptomics. In particular, we demonstrate how recent methodological advancements in soil metatranscriptomics catalyze the development and expansion of emerging research fields, such as rhizobiomes, antibiotic resistomes, methanomes, and viromes. Our review provides a framework that will help to design advanced metatranscriptomic research in elucidating the functional roles and activities of microbiomes in soil ecosystems.
metatranscriptomics / mRNA / MAGs / rhizobiont / resistome / virome
[1] |
Alcock, B.P., Raphenya, A.R., Lau, T.T., Tsang, K.K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A.L.V., Cheng, A.A., Liu, S., 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research48, D517–D525.
CrossRef
Google scholar
|
[2] |
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. Journal of Molecular Biology215, 403–410.
CrossRef
Google scholar
|
[3] |
Angle, J.C., Morin, T.H., Solden, L.M., Narrowe, A.B., Smith, G.J., Borton, M.A., Rey-Sanchez, C., Daly, R.A., Mirfenderesgi, G., Hoyt, D.W., Riley, W.J., Miller, C.S., Bohrer, G., Wrighton, K.C., 2017. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nature Communications8, 1567.
CrossRef
Google scholar
|
[4] |
Bei, Q., Moser, G., Wu, X., Müller, C., Liesack, W., 2019. Metatranscriptomics reveals climate change effects on the rhizosphere microbiomes in European grassland. Soil Biology & Biochemistry138, 107604.
CrossRef
Google scholar
|
[5] |
Bei, Q., Reitz, T., Schnabel, B., Eisenhauer, N., Schädler, M., Buscot, F., Heintz-Buschart, A., 2023. Extreme summers impact cropland and grassland soil microbiomes. ISME Journal17, 1589–1600.
CrossRef
Google scholar
|
[6] |
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.C.C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G.H., 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome8, 1–22.
CrossRef
Google scholar
|
[7] |
Blanco-Míguez, A., Beghini, F., Cumbo, F., McIver, L.J., Thompson, K.N., Zolfo, M., Manghi, P., Dubois, L., Huang, K.D., Thomas, A.M., Nickols, W.A., Piccinno, G., Piperni, E., Punčochář, M., Valles-Colomer, M., Tett, A., Giordano, F., Davies, R., Wolf, J., Berry, S.E., Spector, T.D., Franzosa, E.A., Pasolli, E., Asnicar, F., Huttenhower, C., Segata, N., 2023. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nature Biotechnology41, 1–12.
CrossRef
Google scholar
|
[8] |
Blazewicz, S.J., Barnard, R.L., Daly, R.A., Firestone, M.K., 2013. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME Journal7, 2061–2068.
CrossRef
Google scholar
|
[9] |
Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England)30, 2114–2120.
CrossRef
Google scholar
|
[10] |
Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods12, 59–60.
CrossRef
Google scholar
|
[11] |
Burstein, D., Harrington, L.B., Strutt, S.C., Probst, A.J., Anantharaman, K., Thomas, B.C., Doudna, J.A., Banfield, J.F., 2017. New CRISPR–Cas systems from uncultivated microbes. Nature542, 237–241.
CrossRef
Google scholar
|
[12] |
Bushmanova, E., Antipov, D., Lapidus, A., Prjibelski, A.D., 2019. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. GigaScience8, giz100.
CrossRef
Google scholar
|
[13] |
Cai, Y., Zheng, Y., Bodelier, P.L., Conrad, R., Jia, Z., 2016. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nature Communications7, 11728.
CrossRef
Google scholar
|
[14] |
Callanan, J., Stockdale, S.R., Shkoporov, A., Draper, L.A., Ross, R.P., Hill, C., 2020. Expansion of known ssRNA phage genomes: from tens to over a thousand. Science Advances6, eaay5981.
CrossRef
Google scholar
|
[15] |
Camargo, A.P., Nayfach, S., Chen, I.M.A., Palaniappan, K., Ratner, A., Chu, K., Ritter, S.J., Reddy, T., Mukherjee, S., Schulz, F., Call, L., Neches, R.Y., Woyke, T., Ivanova, N.N., Eloe-Fadrosh, E.A., Kyrpides, N.C., Roux, S., 2023. IMG/VR v4: an expanded database of uncultivated virus genomes within a framework of extensive functional, taxonomic, and ecological metadata. Nucleic Acids Research51, D733–D743.
CrossRef
Google scholar
|
[16] |
Carrión, V.J., Perez-Jaramillo, J., Cordovez, V., Tracanna, V., De Hollander, M., Ruiz-Buck, D., Mendes, L.W., van Ijcken, W.F., Gomez-Exposito, R., Elsayed, S.S., Mohanraju, P., Arifah, A., van der Oost, J., Paulson, J.N., Mendes, R., van Wezel, G.P., Medema, M.H., Raaijmakers, J.M., 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science366, 606–612.
CrossRef
Google scholar
|
[17] |
Celaj, A., Markle, J., Danska, J., Parkinson, J., 2014. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation. Microbiome2, 1–13.
CrossRef
Google scholar
|
[18] |
Chakoory, O., Comtet-Marre, S., Peyret, P., 2022. RiboTaxa: combined approaches for rRNA genes taxonomic resolution down to the species level from metagenomics data revealing novelties. NAR Genomics and Bioinformatics4, lqac070.
CrossRef
Google scholar
|
[19] |
Chappell, L., 2012. Finding a needle in a haystack. Nature Reviews Microbiology10, 446–446.
CrossRef
Google scholar
|
[20] |
Chen, J., Quiles-Puchalt, N., Chiang, Y.N., Bacigalupe, R., Fillol-Salom, A., Chee, M.S.J., Fitzgerald, J.R., Penadés, J.R., 2018. Genome hypermobility by lateral transduction. Science362, 207–212.
CrossRef
Google scholar
|
[21] |
Chen, Y.M., Sadiq, S., Tian, J.H., Chen, X., Lin, X.D., Shen, J.J., Chen, H., Hao, Z.Y., Wille, M., Zhou, Z.C., Wu, J., Li, F., Wang, H.W., Yang, W.D., Xu, Q.Y., Wang, W., Gao, W.H., Holmes, E.C., Zhang, Y.Z., 2022. RNA viromes from terrestrial sites across China expand environmental viral diversity. Nature Microbiology7, 1312–1323.
CrossRef
Google scholar
|
[22] |
Chevallereau, A., Pons, B.J., van Houte, S., Westra, E.R., 2022. Interactions between bacterial and phage communities in natural environments. Nature Reviews Microbiology20, 49–62.
CrossRef
Google scholar
|
[23] |
Ciuffreda, L., Rodríguez-Pérez, H., Flores, C., 2021. Nanopore sequencing and its application to the study of microbial communities. Computational and Structural Biotechnology Journal19, 1497–1511.
CrossRef
Google scholar
|
[24] |
Culviner, P.H., Guegler, C.K., Laub, M.T., 2020. A simple, cost-effective, and robust method for rRNA depletion in RNA-sequencing studies. mBio11, e00010–e00020.
CrossRef
Google scholar
|
[25] |
Damon, C., Lehembre, F., Oger-Desfeux, C., Luis, P., Ranger, J., Fraissinet-Tachet, L., Marmeisse, R., 2012. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLoS One7, e28967.
CrossRef
Google scholar
|
[26] |
de Menezes, A., Clipson, N., Doyle, E., 2012. Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environmental Microbiology14, 2577–2588.
CrossRef
Google scholar
|
[27] |
Despotovic, M., de Nies, L., Busi, S.B., Wilmes, P., 2023. Reservoirs of antimicrobial resistance in the context of One Health. Current Opinion in Microbiology73, 102291.
CrossRef
Google scholar
|
[28] |
Eddy, S.R., 2001. Non-coding RNA genes and the modern RNA world. Nature Reviews Genetics2, 919–929.
CrossRef
Google scholar
|
[29] |
Emerson, J.B., Roux, S., Brum, J.R., Bolduc, B., Woodcroft, B.J., Jang, H.B., Singleton, C.M., Solden, L.M., Naas, A.E., Boyd, J.A., Hodgkins, S.B., Wilson, R.M., Trubl, G., Li, C., Frolking, S., Pope, P.B., Wrighton, K.C., Crill, P.M., Chanton, J.P., Saleska, S.R., Tyson, G.W., Rich, V.I., Sullivan, M.B., 2018. Host-linked soil viral ecology along a permafrost thaw gradient. Nature Microbiology3, 870–880.
CrossRef
Google scholar
|
[30] |
Esser, S.P., Rahlff, J., Zhao, W., Predl, M., Plewka, J., Sures, K., Wimmer, F., Lee, J., Adam, P.S., McGonigle, J., Turzynski, V., Banas, I., Schwank, K., Krupovic, M., Bornemann, T.L.V., Figueroa-Gonzalez, P.A., Jarett, J., Rattei, T., Amano, Y., Blaby, I.K., Cheng, J.F., Brazelton, W.J., Beisel, C.L., Woyke, T., Zhang, Y., Probst, A.J., 2023. A predicted CRISPR-mediated symbiosis between uncultivated archaea. Nature Microbiology8, 1619–1633.
CrossRef
Google scholar
|
[31] |
Franzosa, E.A., McIver, L.J., Rahnavard, G., Thompson, L.R., Schirmer, M., Weingart, G., Lipson, K.S., Knight, R., Caporaso, J.G., Segata, N., Huttenhower, C., 2018. Species-level functional profiling of metagenomes and metatranscriptomes. Nature Methods15, 962–968.
CrossRef
Google scholar
|
[32] |
Frias-Lopez, J., Shi, Y., Tyson, G.W., Coleman, M.L., Schuster, S.C., Chisholm, S.W., DeLong, E.F., 2008. Microbial community gene expression in ocean surface waters. Proceedings of the National Academy of Sciences of the United States of America105, 3805–3810.
CrossRef
Google scholar
|
[33] |
Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W., 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics (Oxford, England)28, 3150–3152.
CrossRef
Google scholar
|
[34] |
Geisen, S., Tveit, A.T., Clark, I.M., Richter, A., Svenning, M.M., Bonkowski, M., Urich, T., 2015. Metatranscriptomic census of active protists in soils. ISME Journal9, 2178–2190.
CrossRef
Google scholar
|
[35] |
Gelsinger, D.R., Uritskiy, G., Reddy, R., Munn, A., Farney, K., DiRuggiero, J., 2020. Regulatory noncoding small RNAs are diverse and abundant in an extremophilic microbial community. mSystems5, e00584–e00519.
CrossRef
Google scholar
|
[36] |
Gifford, S.M., Sharma, S., Rinta-Kanto, J.M., Moran, M.A., 2011. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME Journal5, 461–472.
CrossRef
Google scholar
|
[37] |
Gilbert, J.A., Field, D., Huang, Y., Edwards, R., Li, W., Gilna, P., Joint, I., 2008. Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One3, e3042.
CrossRef
Google scholar
|
[38] |
Gilbert, J.A., Thomas, S., Cooley, N.A., Kulakova, A., Field, D., Booth, T., McGrath, J.W., Quinn, J.P., Joint, I., 2009. Potential for phosphonoacetate utilization by marine bacteria in temperate coastal waters. Environmental Microbiology11, 111–125.
CrossRef
Google scholar
|
[39] |
Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., Regev, A., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology29, 644–652.
CrossRef
Google scholar
|
[40] |
Grant, S., Grant, W.D., Cowan, D.A., Jones, B.E., Ma, Y., Ventosa, A., Heaphy, S., 2006. Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples. Applied and Environmental Microbiology72, 135–143.
CrossRef
Google scholar
|
[41] |
Gu, Y., Banerjee, S., Dini-Andreote, F., Xu, Y., Shen, Q., Jousset, A., Wei, Z., 2022. Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations. ISME Journal16, 2448–2456.
CrossRef
Google scholar
|
[42] |
Hayden, H.L., Savin, K.W., Wadeson, J., Gupta, V.V., Mele, P.M., 2018. Comparative metatranscriptomics of wheat rhizosphere microbiomes in disease suppressive and non-suppressive soils for Rhizoctonia solani AG8. Frontiers in Microbiology9, 859.
CrossRef
Google scholar
|
[43] |
He, S., Wurtzel, O., Singh, K., Froula, J.L., Yilmaz, S., Tringe, S.G., Wang, Z., Chen, F., Lindquist, E.A., Sorek, R., Hugenholtz, P., 2010. Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nature Methods7, 807–812.
CrossRef
Google scholar
|
[44] |
Hempel, C.A., Wright, N., Harvie, J., Hleap, J.S., Adamowicz, S.J., Steinke, D., 2022. Metagenomics versus total RNA sequencing: most accurate data-processing tools, microbial identification accuracy and perspectives for ecological assessments. Nucleic Acids Research50, 9279–9293.
CrossRef
Google scholar
|
[45] |
Hillary, L.S., Adriaenssens, E.M., Jones, D.L., McDonald, J.E., 2022. RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple trophic levels. ISME Communications2, 1–10.
CrossRef
Google scholar
|
[46] |
Huang, L., Zhang, H., Wu, P., Entwistle, S., Li, X., Yohe, T., Yi, H., Yang, Z., Yin, Y., 2018. dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Research46, D516–D521.
CrossRef
Google scholar
|
[47] |
Huang, Y., Sheth, R.U., Kaufman, A., Wang, H.H., 2020. Scalable and cost-effective ribonuclease-based rRNA depletion for transcriptomics. Nucleic Acids Research48, e20.
CrossRef
Google scholar
|
[48] |
Huson, D.H., Auch, A.F., Qi, J., Schuster, S.C., 2007. MEGAN analysis of metagenomic data. Genome Research17, 377–386.
CrossRef
Google scholar
|
[49] |
Ivanova, A.A., Wegner, C.E., Kim, Y., Liesack, W., Dedysh, S.N., 2016. Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis. Molecular Ecology25, 4818–4835.
CrossRef
Google scholar
|
[50] |
Jansson, J.K., Wu, R., 2022. Soil viral diversity, ecology and climate change. Nature Reviews Microbiology21, 296–311.
CrossRef
Google scholar
|
[51] |
Ju, F., Beck, K., Yin, X., Maccagnan, A., McArdell, C.S., Singer, H.P., Johnson, D.R., Zhang, T., Bürgmann, H., 2019. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME Journal13, 346–360.
CrossRef
Google scholar
|
[52] |
Kopylova, E., Noé, L., Touzet, H., 2012. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics (Oxford, England)28, 3211–3217.
CrossRef
Google scholar
|
[53] |
Krinos, A.I., Cohen, N.R., Follows, M.J., Alexander, H., 2023. Reverse engineering environmental metatranscriptomes clarifies best practices for eukaryotic assembly. BMC Bioinformatics24, 1–36.
CrossRef
Google scholar
|
[54] |
Lackner, M., Drew, D., Bychkova, V., Mustakhimov, I., 2022. Value-Added Products from Natural Gas Using Fermentation Processes: Fermentation of Natural Gas as Valorization Route, Part 1. In: Ravanchi, M.T., ed. Natural Gas—New Perspectives and Future Developments. IntechOpen Limited, London. pp. 23–46
|
[55] |
Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods9, 357–359.
CrossRef
Google scholar
|
[56] |
Law, S.R., Serrano, A.R., Daguerre, Y., Sundh, J., Schneider, A.N., Stangl, Z.R., Castro, D., Grabherr, M., Näsholm, T., Street, N.R., Hurry, V., 2022. Metatranscriptomics captures dynamic shifts in mycorrhizal coordination in boreal forests. Proceedings of the National Academy of Sciences of the United States of America119, e2118852119.
CrossRef
Google scholar
|
[57] |
Lawther, K., Santos, F.G., Oyama, L.B., Rubino, F., Morrison, S., Creevey, C.J., McGrath, J.W., Huws, S.A., 2022. Resistome analysis of global livestock and soil microbiomes. Frontiers in Microbiology13, 897905.
CrossRef
Google scholar
|
[58] |
Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S., Schleper, C., 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature442, 806–809.
CrossRef
Google scholar
|
[59] |
Leung, H.C., Yiu, S.M., Parkinson, J., Chin, F.Y., 2013. IDBA-MT: de novo assembler for metatranscriptomic data generated from next-generation sequencing technology. Journal of Computational Biology20, 540–550.
CrossRef
Google scholar
|
[60] |
Levy-Booth, D.J., Hashimi, A., Roccor, R., Liu, L.Y., Renneckar, S., Eltis, L.D., Mohn, W.W., 2021. Genomics and metatranscriptomics of biogeochemical cycling and degradation of lignin-derived aromatic compounds in thermal swamp sediment. ISME Journal15, 879–893.
CrossRef
Google scholar
|
[61] |
Li, D., Liu, C.M., Luo, R., Sadakane, K., Lam, T.W., 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics (Oxford, England)31, 1674–1676.
CrossRef
Google scholar
|
[62] |
Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics (Oxford, England)25, 1754–1760.
CrossRef
Google scholar
|
[63] |
Liao, H., Li, H., Duan, C.S., Zhou, X.Y., Luo, Q.P., An, X.L., Zhu, Y.G., Su, J.Q., 2022. Response of soil viral communities to land use changes. Nature Communications13, 6027.
CrossRef
Google scholar
|
[64] |
Liao, H., Liu, C., Ai, C., Gao, T., Yang, Q.E., Yu, Z., Gao, S., Zhou, S., Friman, V.P., 2023. Mesophilic and thermophilic viruses are associated with nutrient cycling during hyperthermophilic composting. ISME Journal17, 916–930.
CrossRef
Google scholar
|
[65] |
Liu, B., Zheng, D., Jin, Q., Chen, L., Yang, J., 2019. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research47, D687–D692.
CrossRef
Google scholar
|
[66] |
Lott, S.C., Voigt, K., Lambrecht, S.J., Hess, W.R., Steglich, C., 2020. A framework for the computational prediction and analysis of non-coding RNAs in microbial environmental populations and their experimental validation. ISME Journal14, 1955–1965.
CrossRef
Google scholar
|
[67] |
Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal17, 10–12.
CrossRef
Google scholar
|
[68] |
McGrath, K.C., Thomas-Hall, S.R., Cheng, C.T., Leo, L., Alexa, A., Schmidt, S., Schenk, P.M., 2008. Isolation and analysis of mRNA from environmental microbial communities. Journal of Microbiological Methods75, 172–176.
CrossRef
Google scholar
|
[69] |
McIlroy, S.J., Leu, A.O., Zhang, X., Newell, R., Woodcroft, B.J., Yuan, Z., Hu, S., Tyson, G.W., 2023. Anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’ has a pleomorphic life cycle. Nature Microbiology8, 321–331.
CrossRef
Google scholar
|
[70] |
Mettel, C., Kim, Y., Shrestha, P.M., Liesack, W., 2010. Extraction of mRNA from soil. Applied and Environmental Microbiology76, 5995–6000.
CrossRef
Google scholar
|
[71] |
Middleton, H., Yergeau, É., Monard, C., Combier, J.P., El Amrani, A., 2021. Rhizospheric plant–microbe interactions: miRNAs as a key mediator. Trends in Plant Science26, 132–141.
CrossRef
Google scholar
|
[72] |
Miller, C.S., Baker, B.J., Thomas, B.C., Singer, S.W., Banfield, J.F., 2011. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biology12, 1–14.
CrossRef
Google scholar
|
[73] |
Moran, M.A., Satinsky, B., Gifford, S.M., Luo, H., Rivers, A., Chan, L.K., Meng, J., Durham, B.P., Shen, C., Varaljay, V.A., Smith, C.B., Yager, P.L., Hopkinson, B.M., 2013. Sizing up metatranscriptomics. ISME Journal7, 237–243.
CrossRef
Google scholar
|
[74] |
Muscatt, G., Hilton, S., Raguideau, S., Teakle, G., Lidbury, I.D., Wellington, E.M., Quince, C., Millard, A., Bending, G.D., Jameson, E., 2022. Crop management shapes the diversity and activity of DNA and RNA viruses in the rhizosphere. Microbiome10, 1–16.
CrossRef
Google scholar
|
[75] |
Neri, U., Wolf, Y.I., Roux, S., Camargo, A.P., Lee, B., Kazlauskas, D., Chen, I.M., Ivanova, N., Allen, L.Z., Paez-Espino, D., 2022. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell185, 4023–4037.e18.
CrossRef
Google scholar
|
[76] |
Nuccio, E.E., Nguyen, N.H., Nunes da Rocha, U., Mayali, X., Bougoure, J., Weber, P.K., Brodie, E., Firestone, M., Pett-Ridge, J., 2021. Community RNA-Seq: multi-kingdom responses to living versus decaying roots in soil. ISME Communications1, 1–10.
CrossRef
Google scholar
|
[77] |
Nuccio, E.E., Starr, E., Karaoz, U., Brodie, E.L., Zhou, J., Tringe, S.G., Malmstrom, R.R., Woyke, T., Banfield, J.F., Firestone, M.K., Pett-Ridge, J., 2020. Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME Journal14, 999–1014.
CrossRef
Google scholar
|
[78] |
Ojala, T., Häkkinen, A.E., Kankuri, E., Kankainen, M., 2023. Current concepts, advances, and challenges in deciphering the human microbiota with metatranscriptomics. Trends in Genetics39, 686–702.
CrossRef
Google scholar
|
[79] |
Ortiz, R., Gera, P., Rivera, C., Santos, J.C., 2021. Pincho: a modular approach to high quality de novo transcriptomics. Genes12, 953.
CrossRef
Google scholar
|
[80] |
Parro, V., Moreno-Paz, M., González-Toril, E., 2007. Analysis of environmental transcriptomes by DNA microarrays. Environmental Microbiology9, 453–464.
CrossRef
Google scholar
|
[81] |
Passmore, L.A., Coller, J., 2022. Roles of mRNA poly (A) tails in regulation of eukaryotic gene expression. Nature Reviews Molecular Cell Biology23, 93–106.
CrossRef
Google scholar
|
[82] |
Peng, J., Wegner, C.E., Bei, Q., Liu, P., Liesack, W., 2018. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil. Microbiome6, 1–16.
CrossRef
Google scholar
|
[83] |
Perez-Coronel, E., Michael Beman, J., 2022. Multiple sources of aerobic methane production in aquatic ecosystems include bacterial photosynthesis. Nature Communications13, 6454.
CrossRef
Google scholar
|
[84] |
Poretsky, R.S., Bano, N., Buchan, A., LeCleir, G., Kleikemper, J., Pickering, M., Pate, W.M., Moran, M.A., Hollibaugh, J.T., 2005. Analysis of microbial gene transcripts in environmental samples. Applied and Environmental Microbiology71, 4121–4126.
CrossRef
Google scholar
|
[85] |
Prosser, J.I., 2015. Dispersing misconceptions and identifying opportunities for the use of ʻomics’ in soil microbial ecology. Nature Reviews Microbiology13, 439–446.
CrossRef
Google scholar
|
[86] |
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.
CrossRef
Google scholar
|
[87] |
Roux, S., Adriaenssens, E.M., Dutilh, B.E., Koonin, E.V., Kropinski, A.M., Krupovic, M., Kuhn, J.H., Lavigne, R., Brister, J.R., Varsani, A., Amid, C., Aziz, R.K., Bordenstein, S.R., Bork, P., Breitbart, M., Cochrane, G.R., Daly, R.A., Desnues, C., Duhaime, M.B., Emerson, J.B., Enault, F., Fuhrman, J.A., Hingamp, P., Hugenholtz, P., Hurwitz, B.L., Ivanova, N.N., Labonté, J.M., Lee, K.B., Malmstrom, R.R., Martinez-Garcia, M., Mizrachi, I.K., Ogata, H., Páez-Espino, D., Petit, M.A., Putonti, C., Rattei, T., Reyes, A., Rodriguez-Valera, F., Rosario, K., Schriml, L., Schulz, F., Steward, G.F., Sullivan, M.B., Sunagawa, S., Suttle, C.A., Temperton, B., Tringe, S.G., Thurber, R.V., Webster, N.S., Whiteson, K.L., Wilhelm, S.W., Wommack, K.E., Woyke, T., Wrighton, K.C., Yilmaz, P., Yoshida, T., Young, M.J., Yutin, N., Allen, L.Z., Kyrpides, N.C., Eloe-Fadrosh, E.A., 2019. Minimum information about an uncultivated virus genome (MIUViG). Nature Biotechnology37, 29–37.
CrossRef
Google scholar
|
[88] |
Sabino, Y.N.V., Santana, M.F., Oyama, L.B., Santos, F.G., Moreira, A.J.S., Huws, S.A., Mantovani, H.C., 2019. Characterization of antibiotic resistance genes in the species of the rumen microbiota. Nature Communications10, 5252.
CrossRef
Google scholar
|
[89] |
Schoelmerich, M.C., Ouboter, H.T., Sachdeva, R., Penev, P.I., Amano, Y., West-Roberts, J., Welte, C.U., Banfield, J.F., 2022. A widespread group of large plasmids in methanotrophic Methanoperedens archaea. Nature Communications13, 7085.
CrossRef
Google scholar
|
[90] |
Semmouri, I., De Schamphelaere, K.A., Mees, J., Janssen, C.R., Asselman, J., 2020. Evaluating the potential of direct RNA nanopore sequencing: Metatranscriptomics highlights possible seasonal differences in a marine pelagic crustacean zooplankton community. Marine Environmental Research153, 104836.
CrossRef
Google scholar
|
[91] |
Shakya, M., Lo, C.C., Chain, P.S., 2019. Advances and challenges in metatranscriptomic analysis. Frontiers in Genetics10, 904.
CrossRef
Google scholar
|
[92] |
Shi, M., Lin, X.D., Chen, X., Tian, J.H., Chen, L.J., Li, K., Wang, W., Eden, J.S., Shen, J.J., Liu, L., Holmes, E.C., Zhang, Y.Z., 2018. The evolutionary history of vertebrate RNA viruses. Nature556, 197–202.
CrossRef
Google scholar
|
[93] |
Shi, M., Lin, X.D., Tian, J.H., Chen, L.J., Chen, X., Li, C.X., Qin, X.C., Li, J., Cao, J.P., Eden, J.S., Buchmann, J., Wang, W., Xu, J., Holmes, E.C., Zhang, Y.Z., 2016. Redefining the invertebrate RNA virosphere. Nature540, 539–543.
CrossRef
Google scholar
|
[94] |
Shi, Y., Tyson, G.W., DeLong, E.F., 2009. Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. Nature459, 266–269.
CrossRef
Google scholar
|
[95] |
Shrestha, P.M., Kube, M., Reinhardt, R., Liesack, W., 2009. Transcriptional activity of paddy soil bacterial communities. Environmental Microbiology11, 960–970.
CrossRef
Google scholar
|
[96] |
Söllinger, A., Séneca, J., Borg Dahl, M., Motleleng, L.L., Prommer, J., Verbruggen, E., Sigurdsson, B.D., Janssens, I., Peñuelas, J., Urich, T., Richter, A., Tveit, A.T., 2022. Down-regulation of the bacterial protein biosynthesis machinery in response to weeks, years, and decades of soil warming. Science Advances8, eabm3230.
CrossRef
Google scholar
|
[97] |
Starr, E.P., Nuccio, E.E., Pett-Ridge, J., Banfield, J.F., Firestone, M.K., 2019. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proceedings of the National Academy of Sciences of the United States of America116, 25900–25908.
CrossRef
Google scholar
|
[98] |
Stewart, F.J., Ottesen, E.A., DeLong, E.F., 2010. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME Journal4, 896–907.
CrossRef
Google scholar
|
[99] |
Tan, S., Liu, J., Fang, Y., Hedlund, B.P., Lian, Z.H., Huang, L.Y., Li, J.T., Huang, L.N., Li, W.J., Jiang, H.C., Dong, H.L., Shu, W.S., 2019. Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics. ISME Journal13, 2044–2057.
CrossRef
Google scholar
|
[100] |
Täumer, J., Marhan, S., Groß, V., Jensen, C., Kuss, A.W., Kolb, S., Urich, T., 2022. Linking transcriptional dynamics of CH4-cycling grassland soil microbiomes to seasonal gas fluxes. ISME Journal16, 1788–1797.
CrossRef
Google scholar
|
[101] |
Tong, D., Wang, Y., Yu, H., Shen, H., Dahlgren, R.A., Xu, J., 2023. Viral lysing can alleviate microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components in soil. ISME Journal17, 1247–1256.
CrossRef
Google scholar
|
[102] |
Toseland, A., Moxon, S., Mock, T., Moulton, V., 2014. Metatranscriptomes from diverse microbial communities: assessment of data reduction techniques for rigorous annotation. BMC Genomics15, 1–7.
CrossRef
Google scholar
|
[103] |
Turner, T.R., Ramakrishnan, K., Walshaw, J., Heavens, D., Alston, M., Swarbreck, D., Osbourn, A., Grant, A., Poole, P.S., 2013. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME Journal7, 2248–2258.
CrossRef
Google scholar
|
[104] |
Urich, T., Lanzén, A., Qi, J., Huson, D.H., Schleper, C., Schuster, S.C., 2008. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One3, e2527.
CrossRef
Google scholar
|
[105] |
Van Goethem, M.W., Osborn, A.R., Bowen, B.P., Andeer, P.F., Swenson, T.L., Clum, A., Riley, R., He, G., Koriabine, M., Sandor, L., Yan, M., Daum, C.G., Yoshinaga, Y., Makhalanyane, T.P., Garcia-Pichel, F., Visel, A., Pennacchio, L.A., O’Malley, R.C., Northen, T.R., 2021. Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics. Communications Biology4, 1–10.
CrossRef
Google scholar
|
[106] |
Wahl, A., Huptas, C., Neuhaus, K., 2022. Comparison of rRNA depletion methods for efficient bacterial mRNA sequencing. Scientific Reports12, 1–11.
CrossRef
Google scholar
|
[107] |
Wang, F., Fu, Y.H., Sheng, H.J., Topp, E., Jiang, X., Zhu, Y.G., Tiedje, J.M., 2021. Antibiotic resistance in the soil ecosystem: A One Health perspective. Current Opinion in Environmental Science & Health20, 100230.
CrossRef
Google scholar
|
[108] |
Wang, J., Qu, Y.N., Evans, P.N., Guo, Q., Zhou, F., Nie, M., Jin, Q., Zhang, Y., Zhai, X., Zhou, M., Yu, Z., Fu, Q.L., Xie, Y.G., Hedlund, B.P., Li, W.J., Hua, Z.S., Wang, Z., Wang, Y., 2023. Evidence for nontraditional mcr-containing archaea contributing to biological methanogenesis in geothermal springs. Science Advances9, eadg6004.
CrossRef
Google scholar
|
[109] |
Wood, D.E., Lu, J., Langmead, B., 2019. Improved metagenomic analysis with Kraken 2. Genome Biology20, 1–13.
CrossRef
Google scholar
|
[110] |
Woodcroft, B.J., Singleton, C.M., Boyd, J.A., Evans, P.N., Emerson, J.B., Zayed, A.A., Hoelzle, R.D., Lamberton, T.O., McCalley, C.K., Hodgkins, S.B., Wilson, R.M., Purvine, S.O., Nicora, C.D., Li, C., Frolking, S., Chanton, J.P., Crill, P.M., Saleska, S.R., Rich, V.I., Tyson, G.W., 2018. Genome-centric view of carbon processing in thawing permafrost. Nature560, 49–54.
CrossRef
Google scholar
|
[111] |
Xia, R., Sun, M., Balcázar, J.L., Yu, P., Hu, F., Alvarez, P.J., 2023. Benzo[a]pyrene stress impacts adaptive strategies and ecological functions of earthworm intestinal viromes. ISME Journal17, 1004–1014.
CrossRef
Google scholar
|
[112] |
Xu, L., Dong, Z., Chiniquy, D., Pierroz, G., Deng, S., Gao, C., Diamond, S., Simmons, T., Wipf, H.M.L., Caddell, D., Varoquaux, N., Madera, M.A., Hutmacher, R., Deutschbauer, A., Dahlberg, J.A., Guerinot, M.L., Purdom, E., Banfield, J.F., Taylor, J.W., Lemaux, P.G., Coleman-Derr, D., 2021. Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics. Nature Communications12, 3209.
CrossRef
Google scholar
|
[113] |
Yates, M.C., Derry, A.M., Cristescu, M.E. 2021. Environmental RNA: a revolution in ecological resolution?. Trends in Ecology & Evolution36, 601–609.
CrossRef
Google scholar
|
[114] |
Yergeau, E., Tremblay, J., Joly, S., Labrecque, M., Maynard, C., Pitre, F.E., St-Arnaud, M., Greer, C.W., 2018. Soil contamination alters the willow root and rhizosphere metatranscriptome and the root–rhizosphere interactome. ISME Journal12, 869–884.
CrossRef
Google scholar
|
[115] |
Yin, Z., Ye, L., Jing, C., 2022. Genome-resolved metagenomics and metatranscriptomics reveal that Aquificae dominates arsenate reduction in Tengchong geothermal springs. Environmental Science & Technology56, 16473–16482.
CrossRef
Google scholar
|
[116] |
Yuan, C., Lei, J., Cole, J., Sun, Y., 2015. Reconstructing 16S rRNA genes in metagenomic data. Bioinformatics (Oxford, England)31, i35–i43.
CrossRef
Google scholar
|
[117] |
Yuan, L., Wang, Y., Zhang, L., Palomo, A., Zhou, J., Smets, B.F., Bürgmann, H., Ju, F., 2021. Pathogenic and indigenous denitrifying bacteria are transcriptionally active and key multi-antibiotic-resistant players in wastewater treatment plants. Environmental Science & Technology55, 10862–10874.
CrossRef
Google scholar
|
[118] |
Zhou, Z., Zhang, C., Liu, P., Fu, L., Laso-Pérez, R., Yang, L., Bai, L., Li, J., Yang, M., Lin, J., Wang, W., Wegener, G., Li, M., Cheng, L., 2022. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Nature601, 257–262.
CrossRef
Google scholar
|
/
〈 | 〉 |