
Exploring the blindspot: The soil plastisphere
Xiaoxuan Su, Kai Yang
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (2) : 230209.
Exploring the blindspot: The soil plastisphere
Plastic pollution is a growing concern in soil ecosystems worldwide. The accumulation of (micro)plastic debris leads to a unique microenvironment, termed the “plastisphere.” Notably, the dynamics and behaviors of the soil plastisphere diverge from its marine counterpart, where it is initially defined, thereby likely exhibiting an uncharacterized feature in ecological effects and biogeochemistry. The understanding of the soil plastisphere holds significant implications for environmental science and practical applications in pollution management and agricultural practices. Compared with the oceanic plastisphere, research on the soil plastisphere is still in its infancy with limited but significant studies contributing to current knowledge. A recent seminal work by Rillig et al. (Rillig et al., 2023. Nature Reviews Microbiology. doi:10.1038/s41579-023-00967-2) has inspired us and provided comprehensive insights into the characteristics and function of the soil plastisphere. In this commentary, we present core aspects of the soil plastisphere, encompassing its microbial communities, biogeochemical processes, and ecological implications, as well as highlight current methodologies probing this domain.
[1] |
Amaral-Zettler, L.A., Zettler, E.R., Mincer, T.J., 2020. Ecology of the plastisphere. Nature Reviews Microbiology18, 139–151.
CrossRef
Google scholar
|
[2] |
Galloway, T.S., Cole, M., Lewis, C., 2017. Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology & Evolution1, 0116.
CrossRef
Google scholar
|
[3] |
Gambarini, V., Pantos, O., Kingsbury, J.M., Weaver, L., Handley, K.M., Lear, G., 2021. Phylogenetic distribution of plastic-degrading microorganisms. mSystems6, e01112–20.
CrossRef
Google scholar
|
[4] |
Lee, J., Hestrin, R., Nuccio, E.E., Morrison, K.D., Ramon, C.E., Samo, T.J., Pett-Ridge, J., Ly, S.S., Laurence, T.A., Weber, P.K., 2022. Label-free multiphoton imaging of microbes in root, mineral, and soil matrices with Time-Gated Coherent Raman and Fluorescence Lifetime Imaging. Environmental Science & Technology56, 1994–2008.
CrossRef
Google scholar
|
[5] |
Li, H.Z., Zhu, D., Lindhardt, J.H., Lin, S.M., Ke, X., Cui, L., 2021. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environmental Science & Technology55, 4658–4668.
CrossRef
Google scholar
|
[6] |
Luo, G.W., Jin, T., Zhang, H.R., Peng, J.W., Zuo, N., Huang, Y., Han, Y.L., Tian, C., Yang, Y., Peng, K.W., Fei, J.C., 2022. Deciphering the diversity and functions of plastisphere bacterial communities in plastic-mulching croplands of subtropical China. Journal of Hazardous Materials422, 126865.
CrossRef
Google scholar
|
[7] |
MacLean, J., Mayanna, S., Benning, L.G., Horn, F., Bartholomäus, A., Wiesner, Y., Wagner, D., Liebner, S., 2021. The Terrestrial plastisphere: Diversity and polymer-colonizing potential of plastic-associated microbial communities in soil. Microorganisms9, 1876.
CrossRef
Google scholar
|
[8] |
Magnin, A., Hoornaert, L., Pollet, E., Laurichesse, S., Phalip, V., Avérous, L., 2019. Isolation and characterization of different promising fungi for biological waste management of polyurethanes. Microbial Biotechnology12, 544–555.
CrossRef
Google scholar
|
[9] |
Pang, G., Li, X.S., Ding, M.Y., Jiang, S.Q., Chen, P.J., Zhao, Z., Gao, R.W., Song, B., Xu, X.W., Shen, Q.R., Cai, F.M., Druzhinina, I.S., 2023. The distinct plastisphere microbiome in the terrestrial-marine ecotone is a reservoir for putative degraders of petroleum-based polymers. Journal of Hazardous Materials453, 131399.
CrossRef
Google scholar
|
[10] |
Rillig, M.C., Kim, S.W., Zhu, Y.G., 2023. The soil plastisphere. Nature Reviews. Microbiology doi:10.1038/s1579–023-01579-023
|
[11] |
Rüthi, J., Rast, B.M., Qi, W.H., Perez-Mon, C., Pardi-Comensoli, L., Brunner, I., Frey, B., 2023. The plastisphere microbiome in alpine soils alters the microbial genetic potential for plastic degradation and biogeochemical cycling. Journal of Hazardous Materials441, 129941.
CrossRef
Google scholar
|
[12] |
Sabev, H.A., Handley, P.S., Robson, G.D., 2006. Fungal colonization of soil-buried plasticized polyvinyl chloride (pPVC) and the impact of incorporated biocides. Microbiology (Reading, England)152, 1731–1739.
CrossRef
Google scholar
|
[13] |
Stubbins, A., Law, K.L., Munoz, S.E., Bianchi, T.S., Zhu, L., 2021. Plastics in the Earth system. Science373, 51–55.
CrossRef
Google scholar
|
[14] |
Su, X., Yang, L., Yang, K., Tang, Y., Wen, T., Wang, Y., Rillig, M.C., Rohe, L., Pan, J., Li, H., Zhu, Y., 2022. Estuarine plastisphere as an overlooked source of N2O production. Nature Communications13, 3884.
CrossRef
Google scholar
|
[15] |
Sun, Y.Z., Shi, J., Wang, X., Ding, C.F., Wang, J., 2022. Deciphering the mechanisms shaping the plastisphere microbiota in soil. mSystems7, e00352–22.
CrossRef
Google scholar
|
[16] |
Wang, C.Q., Wang, L.W., Ok, Y.S., Tsang, D.C.W., Hou, D.Y., 2022. Soil plastisphere: Exploration methods, influencing factors, and ecological insights. Journal of Hazardous Materials430, 128503.
CrossRef
Google scholar
|
[17] |
Wright, R.J., Bosch, R., Gibson, M.I., Christie-Oleza, J.A., 2020a. Plasticizer degradation by marine bacterial isolates: A proteogenomic and metabolomic characterization. Environmental Science & Technology54, 2244–2256.
CrossRef
Google scholar
|
[18] |
Wright, R.J., Erni-Cassola, G., Zadjelovic, V., Latva, M., Christie-Oleza, J.A., 2020b. Marine plastic debris: A new surface for microbial colonization. Environmental Science & Technology54, 11657–11672.
CrossRef
Google scholar
|
[19] |
Yang, K., Chen, Q.L., Chen, M.L., Li, H.Z., Liao, H., Pu, Q., Zhu, Y.G., Cui, L., 2020. Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization. Environmental Science & Technology54, 11322–11332.
CrossRef
Google scholar
|
[20] |
Yang, K., Xu, F., Zhu, L.J., Li, H.Z., Sun, Q., Yan, A.X., Ren, B., Zhu, Y.G., Cui, L., 2023a. An isotope-labeled single-cell Raman spectroscopy approach for tracking the physiological evolution trajectory of bacteria toward antibiotic resistance. Angewandte Chemie-International Edition62, e202217412.
CrossRef
Google scholar
|
[21] |
Yang, L.Y., Huang, X.R., Neilson, R., Zhou, S.Y.D., Li, Z.L., Yang, X.R., Su, X.X., 2023b. Characterization of microbial community, ecological functions and antibiotic resistance in estuarine plastisphere. Science of the Total Environment866, 161322.
CrossRef
Google scholar
|
[22] |
Zettler, E.R., Mincer, T.J., Amaral-Zettler, L.A., 2013. Life in the “Plastisphere”: Microbial communities on plastic marine debris. Environmental Science & Technology47, 7137–7146.
CrossRef
Google scholar
|
[23] |
Zhang, G.S., Liu, Y.F., 2018. The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment642, 12–20.
CrossRef
Google scholar
|
[24] |
Zhu, D., Ma, J., Li, G., Rillig, M.C., Zhu, Y.G., 2022. Soil plastispheres as hotspots of antibiotic resistance genes and potential pathogens. ISME Journal16, 521–532.
CrossRef
Google scholar
|
/
〈 |
|
〉 |