No tillage increases soil microarthropod (Acari and Collembola) abundance at the global scale
Yulin Liu, Lihong Song, Donghui Wu, Zihan Ai, Qian Xu, Xin Sun, Liang Chang
No tillage increases soil microarthropod (Acari and Collembola) abundance at the global scale
● Conservation tillage increases soil microarthropod abundance at the global scale.
● The effect of conservative tillage on microarthropods is soil texture-dependent.
● This positive effect of conservation tillage is particularly evident in nutrient-poor soil areas.
● In temperate humid regions, however, this positive effect of conservation tillage is limited.
● The effect of conservative tillage on microarthropods varies with fauna group and climate regions.
Conservation tillage is crucial for preserving soil structure and fertility. However, the effects of no tillage on the abundance of soil microarthropods (Acari and Collembola) remain unclear, with contrasting results reported. To assess the global impact of no tillage, we compiled a data set consisting of 59 publications, from which we extracted 167 observations for microarthropod abundance, 193 observations for Acari abundance, and 176 observations for Collembola abundance. Our findings revealed significant increases in soil microarthropods (27.1%), Acari (22.1%), and Collembola (32.3%) compared to conventional tillage under no tillage. The impact varied with soil texture, precipitation, and soil nutrient availability. Furthermore, to assess the impact of reduced tillage, we extracted 46 observations for microarthropod abundance, 64 observations for Acari abundance, and 27 observations for Collembola abundance. Reduced tillage also showed positive effects, with a 28.4% increase in soil microarthropods and a 53.7% increase in Acari compared to conventional tillage. Our research demonstrates the beneficial effects of no tillage and reduced tillage on soil microarthropod abundance. However, the positive effect of conservation tillage on soil microarthropods differed in magnitude Collembola and Acari. Conservation tillage should be encouraged, particularly in regions with poor soil nutrients and high precipitation, to prevent further decline in soil microarthropod abundance.
no tillage / soil microarthropod / Acari / Collembola / meta-analysis
[1] |
Anderson, D., Burnham, K., 2004. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer Science and Business Media. Springer New York, NY
|
[2] |
Arroyo, J., Iturrondobeitia, C., 2006. Differences in the diversity of oribatid mite communities in forests and agrosystems lands. European Journal of Soil Biology42, 259–269.
CrossRef
Google scholar
|
[3] |
Barberi, P., Lo Cascio, B., 2001. Long-term tillage and crop rotation effects on weed seedbank size and composition. Weed Research41, 325–340.
CrossRef
Google scholar
|
[4] |
Bedano, J.C., Cantú, M.P., Doucet, M.E., 2006. Soil springtails (Hexapoda: Collembola), symphylans and pauropods (Arthropoda: Myriapoda) under different management systems in agroecosystems of the subhumid Pampa (Argentina). European Journal of Soil Biology42, 107–119.
CrossRef
Google scholar
|
[5] |
Belmonte, S.A.B., Luisella, C.L., Stahel, R.J.S., Bonifacio, E.B., Novello, V.N., Zanini, E., Steenwerth, K.L.S., 2018. Effect of long-term soil management on the mutual interaction among soil organic matter, microbial activity and aggregate stability in a vineyard. Pedosphere28, 288–298.
CrossRef
Google scholar
|
[6] |
Benítez-López, A., Alkemade, R., Schipper, A., Ingram, D., Verweij, P., Eikelboom, J., Huijbregts, M., 2017. The impact of hunting on tropical mammal and bird populations. Science356, 180–183.
CrossRef
Google scholar
|
[7] |
Betancur-Corredor, B., Lang, B., Russell, D.J., 2022. Reducing tillage intensity benefits the soil micro-and mesofauna in a global meta-analysis. European Journal of Soil Science,73, e13321.
CrossRef
Google scholar
|
[8] |
Betancur-Corredor, B., Lang, B., Russell, D.J., 2023. Organic nitrogen fertilization benefits selected soil fauna in global agroecosystems. Biology and Fertility of Soils59, 1–16.
CrossRef
Google scholar
|
[9] |
Beylich, A., Oberholzer, H.R., Schrader, S., Höper, H., Wilke, B.M., 2010. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil & Tillage Research109, 133–143.
CrossRef
Google scholar
|
[10] |
Booher, E.C., Greenwood, C.M., Hattey, J.A., 2012. Effects of soil amendments on soil microarthropods in continuous maize in western Oklahoma. Southwestern Entomologist37, 23–30.
CrossRef
Google scholar
|
[11] |
Borgognone, M.G., Basile, A., 2017. Long-term effects of different tillage systems on soil properties and food production. Agronomy for Sustainable Development34, 24.
|
[12] |
Bulte, E., Hector, A., Larigauderie, A., 2005. ecoSERVICES: assessing the impacts of biodiversity changes on ecosystem functioning and services. Diversitas Report3, 40.
|
[13] |
Calcagno, V., de Mazancourt, C., 2010. glmulti: an R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software34, 1–29.
CrossRef
Google scholar
|
[14] |
Chatelain, M., Drobniak, S.M., Szulkin, M., 2020. The association between stressors and telomeres in non-human vertebrates: a meta-analysis. Ecology Letters23, 381–398.
CrossRef
Google scholar
|
[15] |
Chivenge, P., Murwira, H., Giller, K., Mapfumo, P., Six, J., 2007. Long-term impact of reduced tillage and residue management on soil carbon stabilization: implications for conservation agriculture on contrasting soils. Soil & Tillage Research94, 328–337.
CrossRef
Google scholar
|
[16] |
Corredor, B.B., Lang, B., Russell, D., 2022. Effects of nitrogen fertilization on soil fauna in a global meta-analysis. 16 March 2022, PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-1438491/v1.
|
[17] |
Coulibaly, S.F.M., Aubert, M., Brunet, N., Bureau, F., Legras, M., Chauvat, M., 2022. Short-term dynamic responses of soil properties and soil fauna under contrasting tillage systems. Soil & Tillage Research215, 105191–110519.
CrossRef
Google scholar
|
[18] |
Disque, H.H., Hamby, K.A., Dubey, A., Taylor, C., Dively, G.P., 2019. Effects of clothianidin-treated seed on the arthropod community in a mid-Atlantic no-till corn agroecosystem. Pest Management Science75, 969–978.
CrossRef
Google scholar
|
[19] |
Domínguez, A., Bedano, J.C., Becker, A.R., 2010. Negative effects of no-till on soil macrofauna and litter decomposition in Argentina as compared with natural grasslands. Soil & Tillage Research110, 51–59.
CrossRef
Google scholar
|
[20] |
Dubie, T.R., Greenwood, C.M., Godsey, C., Payton, M.E., 2011. Effects of tillage on soil microarthropods in winter wheat. Southwestern Entomologist36, 11–20.
CrossRef
Google scholar
|
[21] |
Egger, M., Smith, G.D., Schneider, M., Minder, C., 1997. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical Research Ed.)315, 629–634.
CrossRef
Google scholar
|
[22] |
Ehlers, W., Claupein, W., 2017. Approaches toward conservation tillage in Germany. Conservation tillage in temperate agroecosystems. CRC Press, pp. 141–165
|
[23] |
Fiera, C., Ulrich, W., Popescu, D., Buchholz, J., Querner, P., Bunea, C.I., Strauss, P., Bauer, T., Kratschmer, S., Winter, S., Zaller, J.G., 2020. Tillage intensity and herbicide application influence surface-active springtail (Collembola) communities in Romanian vineyards. Agriculture, Ecosystems & Environment300, 107006.
CrossRef
Google scholar
|
[24] |
Filser, J., 2002. The role of Collembola in carbon and nitrogen cycling in soil: Proceedings of the Xth international Colloquium on Apterygota, České Budějovice 2000: Apterygota at the Beginning of the Third Millennium. Pedobiologia46, 234–245.
|
[25] |
Filser, J., Wittmann, R., Lang, A., 2000. Response types in Collembola towards copper in the microenvironment. Environmental Pollution107, 71–78.
CrossRef
Google scholar
|
[26] |
Fiorini, A., Boselli, R., Maris, S.C., Santelli, S., Ardenti, F., Capra, F., Tabaglio, V., 2020. May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agriculture, Ecosystems & Environment296, 106926.
CrossRef
Google scholar
|
[27] |
Gardi, C., Montanarella, L., Arrouays, D., Bispo, A., Lemanceau, P., Jolivet, C., Mulder, C., Ranjard, L., Römbke, J., Rutgers, M., Menta, C., 2009. Soil biodiversity monitoring in Europe: ongoing activities and challenges. European Journal of Soil Science60, 807–819.
CrossRef
Google scholar
|
[28] |
Graham, R.C., Drake, C.J., Judd, E.L., 1994. Morphology and function of antennal sensilla of the springtail, Onychiurus armatus. International Journal of Insect Morphology & Embryology23, 245–258.
|
[29] |
Hedges, L.V., Gurevitch, J., Curtis, P.S., 1999. The meta‐analysis of response ratios in experimental ecology. Ecology80, 1150–1156.
CrossRef
Google scholar
|
[30] |
Hobbs, P.R., Sayre, K., Gupta, R., 2008. The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences363, 543–555.
CrossRef
Google scholar
|
[31] |
Holland, J.M., 2004. The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agriculture, Ecosystems & Environment103, 1–25.
CrossRef
Google scholar
|
[32] |
Hu, J., Zhou, S., Tie, L., Liu, X., Liu, X., Zhao, A., Lai, J., Xiao, L., You, C., Huang, C., 2022. Effects of nitrogen addition on soil faunal abundance: A global meta‐analysis. Global Ecology and Biogeography31, 1655–1666.
CrossRef
Google scholar
|
[33] |
Jerez-Valle, C., García, P.A., Campos, M., Pascual, F., 2014. A simple bioindication method to discriminate olive orchard management types using the soil arthropod fauna. Applied Soil Ecology76, 42–51.
CrossRef
Google scholar
|
[34] |
Jernigan, A.B., Wickings, K., Mohler, C.L., Caldwell, B.A., Pelzer, C.J., Wayman, S., Ryan, M.R., 2020. Legacy effects of contrasting organic grain cropping systems on soil health indicators, soil invertebrates, weeds, and crop yield. Agricultural Systems177, 102719.
CrossRef
Google scholar
|
[35] |
Jiang, Y., Xie, H., Chen, Z., 2021. Relationship between the amounts of surface corn stover mulch and soil mesofauna assemblage varies with the season in cultivated areas of northeastern China. Soil & Tillage Research213, 105091.
CrossRef
Google scholar
|
[36] |
Kaneda, S., Kaneko, N., 2008. Collembolans feeding on soil affect carbon and nitrogen mineralization by their influence on microbial and nematode activities. Biology and Fertility of Soils44, 435–442.
CrossRef
Google scholar
|
[37] |
Kardol, P., Reynolds, W.N., Norby, R.J., Classen, A.T., 2011. Climate change effects on soil microarthropod abundance and community structure. Applied Soil Ecology47, 37–44.
CrossRef
Google scholar
|
[38] |
Karg, W., 1982. Untersuchungen über Habitatansprüche, geographische Verbreitung und Entstehung von Raubmilbengattungen der Cohors Gamasina für ihre Nutzung als Bioindikatoren. Pedobiologia24, 241–247 (in German).
CrossRef
Google scholar
|
[39] |
Kassam, A., Friedrich, T., Derpsch, R., 2010. Conservation agriculture in the 21st century: A paradigm of sustainable agriculture. European Congress on Conservation Agriculture, pp. 4–6
|
[40] |
Kassam, A., Friedrich, T., Shaxson, F., Pretty, J., 2009. The spread of conservation agriculture: justification, sustainability and uptake. International Journal of Agricultural Sustainability7, 292–320.
CrossRef
Google scholar
|
[41] |
Kladivko, E.J., 2001. Tillage systems and soil ecology. Soil & Tillage Research61, 61–76.
CrossRef
Google scholar
|
[42] |
Kracht, M., Schrader, S., 1997. Collembola und Acari in verdichtetem Ackerboden unter verschiedenen Bodenbearbeitungssystemen. Braunschweiger Naturkundliche Schriften5, 425–440.
|
[43] |
Lajeunesse, M.J., 2011. On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology92, 2049–2055.
CrossRef
Google scholar
|
[44] |
Li, Y., Song, D., Liang, S., Dang, P., Qin, X., Liao, Y., Siddique, K.H., 2020. Effect of no-tillage on soil bacterial and fungal community diversity: A meta-analysis. Soil & Tillage Research204, 104721.
CrossRef
Google scholar
|
[45] |
Lissa, C., 2017. MetaForest: Exploring heterogeneity in meta-analysis using random forests. PsyArXiv, 29 Sept. 2017. Web
|
[46] |
Liu, R., Chai, Y., Zhu, F., 2013. Effect of long-term cultivation on soil arthropod community in sandy farmland. Journal of Agricultural Science and Technology15, 144–151.
|
[47] |
Machado, J.S., Filho, L.C.I.O., Santos, J.C.P., Paulino, A.T., Baretta, D., 2019. Morphological diversity of springtails (Hexapoda: Collembola) as soil quality bioindicators in land use systems. Biota Neotropic,19, e20180618.
CrossRef
Google scholar
|
[48] |
Menta, C., Conti, F.D., Fondon, C.L., Staffilani, F., Remelli, S., 2020. Soil arthropod responses in agroecosystem: implications of different management and cropping systems. Agronomy (Basel)10, 982.
CrossRef
Google scholar
|
[49] |
Minor, M.A., Volk, T.A., Norton, R.A., 2004. Effects of site preparation techniques on communities of soil mites (Acari: Oribatida, Acari: Gamasida) under short-rotation forestry plantings in New York, USA. Applied Soil Ecology25, 181–192.
CrossRef
Google scholar
|
[50] |
Mirzaei-Pashami, M., Saboori, A., Nozari, J., Afsahi, K., 2020. Relative abundance of oribatid mites (Sarcoptiformes: Oribatida) in two tillage systems of irrigated and rain-fed wheat farms of Khodabandeh County, Iran. Persian Journal of Acarology9, 341–352.
|
[51] |
Mitchell, J.R., Sutton, G.P., Burrows, R.A., 2017. Biomechanical properties of the springtail furcula: structural adaptations to maximize jumping performance. Journal of Experimental Biology220, 2766–2775.
|
[52] |
Morugán-Coronado, A., Pérez-Rodríguez, P., Insolia, E., Soto-Gómez, D., Fernández-Calvino, D., Zornoza, R., 2022. The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: A worldwide meta-analysis of agricultural sites. Agriculture. Agriculture, Ecosystems & Environment329, 107867.
CrossRef
Google scholar
|
[53] |
Murvanidze, M., Mumladze, L., Todria, N., Salakaia, M., Maraun, M., 2019. Effect of ploughing and pesticide application on oribatid mite communities. International Journal of Acarology45, 181–188.
CrossRef
Google scholar
|
[54] |
Nadia Vignozzi, N., Elio Agnelli, A., Brandi, G., Gagnarli, E., Goggioli, D., Lagomarsino, A., Pellegrini, S., Simoncini, S., Simoni, S., Valboa, G., Caruso, G., Gucci, R., 2019. Soil ecosystem functions in a high-density olive orchard managed by different soil conservation practices. Applied Soil Ecology134, 64–76.
CrossRef
Google scholar
|
[55] |
Oseto, Y, C., Boles, Marcella, 1987. A survey of the microarthropod populations under conventional tillage and no-tillage systems. Farm Research 44, 5
|
[56] |
Rahgozar, M., Irani-Nejad, K.H., Zargaran, M.R., Saboori, A., 2019. Biodiversity and species richness of oribatid mites (Acari: Oribatida) in orchards of East Azerbaijan province, Iran. Persian Journal of Acarology8, 147–159.
|
[57] |
Rebek, E., Hogg, D., Young, D., 2002. Effect of four cropping systems on the abundance and diversity of epedaphic springtails (Hexapoda: Parainsecta: Collembola) in southern Wisconsin. Environmental Entomology31, 37–46.
CrossRef
Google scholar
|
[58] |
Reilly, K., Cavigelli, M., Szlavecz, K., 2023. Agricultural management practices impact soil properties more than soil microarthropods. European Journal of Soil Biology117, 103516.
CrossRef
Google scholar
|
[59] |
Rieff, G.G., Natal-da-Luz, T., Renaud, M., Azevedo-Pereira, H.M.V.S., Chichorro, F., Schmelz, R.M., Sá, E.L.S., Sousa, J.P., 2020. Impact of no-tillage versus conventional maize plantation on soil mesofauna with and without the use of a lambda-cyhalothrin based insecticide: A terrestrial model ecosystem experiment. Applied Soil Ecology147, 103381.
CrossRef
Google scholar
|
[60] |
Rożen, A., Sobczyk, Ł., Liszka, K., Weiner, J., 2010. Soil faunal activity as measured by the bait-lamina test in monocultures of 14 tree species in the Siemianice common-garden experiment, Poland. Applied Soil Ecology45, 160–167.
CrossRef
Google scholar
|
[61] |
Santos, M.A.B.S., Oliveira Filho, L.C.I.O.F., Pompeo, P.N.P., Ortiz, D.C.O., Mafra, Á.L., Filho, O.K., Baretta, D.B., 2018. Morphological diversity of springtails in land use systems. Revista Brasileira de Ciência do Solo42, e0170277.
CrossRef
Google scholar
|
[62] |
Sapkota, T.B., 2012. Conservation Tillage Impact on Soil Aggregation, Organic Matter Turnover and Biodiversity. In: Lichtfouse, E., ed. Organic Fertilisation, Soil Quality and Human Health. Springer, Dordrecht. pp. 141–160
|
[63] |
Schrader, S., Lingnau, M., 1997. Influence of soil tillage and soil compaction on microarthropods in agricultural land. Pedobiologia41, 202–209.
|
[64] |
Seitz, S., Goebes, P., Puerta, V.L., Pereira, E.I.P., Wittwer, R., Six, J., van Der Heijden, M.G., Scholten, T., 2019. Conservation tillage and organic farming reduce soil erosion. Agronomy for Sustainable Development39, 1–10.
CrossRef
Google scholar
|
[65] |
Sékou, F.M., 2017. Effect of different crop management practices on soil Collembola assemblages: A 4-year follow-up. Applied Soil Ecology119, 354–366.
CrossRef
Google scholar
|
[66] |
Siepel, H., 1996. The importance of unpredictable and short-term environmental extremes for biodiversity in oribatid mites. Biodiversity Letters3, 26–34.
CrossRef
Google scholar
|
[67] |
Singh, R.S., Sherawat, M.S., Singh, A.S., 2018. Effect of tillage and crop residue management on soil physical properties. Journal of Soil Salinity and Water Quality10, 200–206.
|
[68] |
Smith, P., House, J.I., Bustamante, M., Sobocka, J., Harper, R., Pan, G., West, P.C., Clark, J.M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M.F., Elliott, J.A., McDowell, R., Griffiths, R.I., Asakawa, S., Bondeau, A., Jain, A.K., Meersmans, J., Pugh, T.A., 2016. Global change pressures on soils from land use and management. Glob Chang Biology22, 1008–1028.
CrossRef
Google scholar
|
[69] |
Spedding, T., Hamel, C., Mehuys, G., Madramootoo, C., 2004. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biology & Biochemistry36, 499–512.
CrossRef
Google scholar
|
[70] |
Speidel, B., 1992. Effective care of the newborn infant. Archives of Disease in Childhood67, 1415–1416.
|
[71] |
Terrer, C., Phillips, R.P., Hungate, B.A., Rosende, J., Pett-Ridge, J., Craig, M.E., van Groenigen, K.J., Keenan, T.F., Sulman, B.N., Stocker, B.D., Reich, P.B., Pellegrini, A.F.A., Pendall, E., Zhang, H., Evans, R.D., Carrillo, Y., Fisher, J.B., Van Sundert, K., Vicca, S., Jackson, R.B., 2021. A trade-off between plant and soil carbon storage under elevated CO2. Nature591, 599–603.
CrossRef
Google scholar
|
[72] |
Tittonell, P., 2014. Ecological intensification of agriculture—sustainable by nature. Current Opinion in Environmental Sustainability8, 53–61.
CrossRef
Google scholar
|
[73] |
Treonis, A.M., Austin, E.E., Buyer, J.S., Maul, J.E., Spicer, L., Zasada, I.A., 2010. Effects of organic amendment and tillage on soil microorganisms and microfauna. Applied Soil Ecology46, 103–110.
CrossRef
Google scholar
|
[74] |
Tsiafouli, M.A., Thébault, E., Sgardelis, S.P., de Ruiter, P.C., van der Putten, W.H., Birkhofer, K., Hemerik, L., de Vries, F.T., Bardgett, R.D., Brady, M.V., Bjornlund, L., Jørgensen, H.B., Christensen, S., Hertefeldt, T.D., Hotes, S., Gera Hol, W.H., Frouz, J., Liiri, M., Mortimer, S.R., Setälä, H., Tzanopoulos, J., Uteseny, K., Pižl, V., Stary, J., Wolters, V., Hedlund, K., 2015. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology21, 973–985.
CrossRef
Google scholar
|
[75] |
van Capelle, C., Schrader, S., Brunotte, J., 2012. Tillage-induced changes in the functional diversity of soil biota–A review with a focus on German data. European Journal of Soil Biology50, 165–181.
CrossRef
Google scholar
|
[76] |
Verhulst, N., Govaerts, B., Verachtert, E., Castellanos-Navarrete, A., Mezzalama, M., Wall, P., Deckers, J., Sayre, K.D., 2010. Conservation Agriculture, Improving Soil Quality for Sustainable Production Systems. In: Lar, R., Stewart, B.A., eds. Food Security and Soil Quality. CRC Press, Boca Raton. pp. 137–208
|
[77] |
Viechtbauer, W., 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software36, 1–48.
CrossRef
Google scholar
|
[78] |
Wang, C., Zhang, Y., Xu, X., Jia, H., Sun, X., Zhou, X., 2019. Competition between two dominant soil mesofauna groups: Springtails (Collembola) and Oribatid mites (Oribatida) under different resource availability. Applied Soil Ecology139, 68–76.
|
[79] |
Xin, X., Yang, W., Zhu, Q., Zhang, X., Zhu, A., Zhang, J.J.S.U., 2018. Abundance and depth stratification of soil arthropods as influenced by tillage regimes in a sandy loam soil. Soil Use and Management34, 286–296.
CrossRef
Google scholar
|
[80] |
Yin, R., Gruss, I., Eisenhauer, N., Kardol, P., Thakur, M.P., Schmidt, A., Xu, Z., Siebert, J., Zhang, C., Wu, G.L.J.S.B., Schädler, M., 2019. Land use modulates the effects of climate change on density but not community composition of Collembola. Soil Biology & Biochemistry138, 107598.
CrossRef
Google scholar
|
[81] |
Yin, R., Kardol, P., Thakur, M.P., Gruss, I., Wu, G.L., Eisenhauer, N., Schädler, M.J.S.B., 2020. Soil functional biodiversity and biological quality under threat: Intensive land use outweighs climate change. Soil Biology & Biochemistry147, 107847.
CrossRef
Google scholar
|
[82] |
Yu, D., Yao, J., Chen, X., Sun, J., Wei, Y., Cheng, Y., Hu, F., Liu, M., 2022. Ecological intensification alters the trait-based responses of soil microarthropods to extreme precipitation in agroecosystem. Geoderma422, 115956.
CrossRef
Google scholar
|
[83] |
Zhan, L., 2013. Diversity and Influencing Factor of Meso-soil Animal under Farm Land of Black Soil. PhD dissertation, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences
|
[84] |
Zhang, S., Chang, L., McLaughlin, N.B., Cui, S., Wu, H., Wu, D., Liang, W., Liang, A., 2021. Complex soil food web enhances the association between N mineralization and soybean yield - a model study from long-term application of a conservation tillage system in a black soil of Northeast China. Soil (Göttingen)7, 71–82.
CrossRef
Google scholar
|
[85] |
Zhu, X., Chang, L., Li, J., Liu, J., Feng, L., Wu, D., 2018. Interactions between earthworms and mesofauna affect CO2 and N2O emissions from soils under long-term conservation tillage. Geoderma: An International. Journal of Soil Science332, 153–160.
|
/
〈 | 〉 |