Patterns of crop-specific fertilizer-nitrogen losses and opportunities for sustainable mitigation: A quantitative overview of 15N-tracing studies

Cong Xu, Hanshen Zhu, Haokuang Liu, Cheng Ji, Jie Yuan, Guanlin Li, Jidong Wang, Yongchun Zhang

PDF(3602 KB)
PDF(3602 KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (2) : 230206. DOI: 10.1007/s42832-023-0206-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Patterns of crop-specific fertilizer-nitrogen losses and opportunities for sustainable mitigation: A quantitative overview of 15N-tracing studies

Author information +
History +

Highlights

● Pattern and mitigation potential of crop-specific fertilizer-N losses were assessed.

● China showed high fertilizer-N losses due to high N application rates and low SOC.

● MAP, SOC, and soil pH are key parameters affecting fertilizer-N losses.

● At a given application rate, soils with higher SOC have lower fertilizer-N losses.

● Optimal N rate combined with SOC improvement could cut 34.8%−59.6% of N losses.

Abstract

Understanding crop-specific fertilizer-nitrogen (N) loss patterns, driving factors, and mitigation potentials is vital for developing efficient mitigation strategies. However, analyses based on the gross magnitude of fertilizer-N losses within a growing season remain fragmented and inconclusive at a global scale. To address this gap, we conducted a global meta-analysis using 940 observations from 79 published 15N-tracing studies to assess the effects of natural factors, soil parameters, and N application rates on gross fertilizer-N losses in cereal-cropped soils. We found that China had the highest conventional fertilizer-N application and loss rates (230−255 and 75.9−114 kg N ha−1 season−1, respectively) and the lowest soil organic carbon (SOC) contents (10.6 g kg−1) among the countries examined. Mean annual precipitation, SOC content, and soil pH were key parameters affecting fertilizer-N losses in wheat-, maize-, and rice-cropped soils, respectively. Fertilizer-N application rates were positively correlated with N loss amounts, while higher SOC levels led to lower losses. Adopting optimized N application rates combined with improving SOC levels could potentially mitigate 34.8%−59.6% of N losses without compromising crop yields compared with conventional practices. This study underscores the critical role of SOC in reducing N losses and suggests that future research should focus on innovative strategies and efficient organic amendments for enhanced SOC sequestration.

Graphical abstract

Keywords

fertilizer-nitrogen loss / crop-specific / 15N tracing / soil organic carbon / meta-analysis

Cite this article

Download citation ▾
Cong Xu, Hanshen Zhu, Haokuang Liu, Cheng Ji, Jie Yuan, Guanlin Li, Jidong Wang, Yongchun Zhang. Patterns of crop-specific fertilizer-nitrogen losses and opportunities for sustainable mitigation: A quantitative overview of 15N-tracing studies. Soil Ecology Letters, 2024, 6(2): 230206 https://doi.org/10.1007/s42832-023-0206-2

References

[1]
Amelung, W., Bossio, D., de Vries, W., Kogel-Knabner, I., Lehmann, J., Amundson, R., Bol, R., Collins, C., Lal, R., Leifeld, J., Minasny, B., Pan, G., Paustian, K., Rumpel, C., Sanderman, J., van Groenigen, J.W., Mooney, S., van Wesemael, B., Wander, M., Chabbi, A., 2020. Towards a global-scale soil climate mitigation strategy. Nature Communications11, 5427.
CrossRef Google scholar
[2]
Bhattacharyya, R., Das, T.K., Das, S., Dey, A., Patra, A.K., Agnihotri, R., Ghosh, A., Sharma, A.R., 2019. Four years of conservation agriculture affects topsoil aggregate-associated 15nitrogen but not the 15nitrogen use efficiency by wheat in a semi-arid climate. Geoderma337, 333–340.
CrossRef Google scholar
[3]
Cai, G., Chen, D., White, R.E., Fan, X., Pacholski, A., Zhu, Z., Ding, H., 2002. Gaseous nitrogen losses from urea applied to maize on a calcareous fluvo-aquic soil in the North China Plain. Soil Research (Collingwood, Vic.)40, 737–748.
CrossRef Google scholar
[4]
Chen, G., Zhao, G., Cheng, W., Zhang, H., Lu, C., Zhang, H., Shen, Y., Wang, B., Shi, W., 2020. Rice nitrogen use efficiency does not link to ammonia volatilization in paddy fields. Science of the Total Environment741, 140433.
CrossRef Google scholar
[5]
Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., Wang, Z., Zhang, W., Yan, X., Yang, J., Deng, X., Gao, Q., Zhang, Q., Guo, S., Ren, J., Li, S., Ye, Y., Wang, Z., Huang, J., Tang, Q., Sun, Y., Peng, X., Zhang, J., He, M., Zhu, Y., Xue, J., Wang, G., Wu, L., An, N., Wu, L., Ma, L., Zhang, W., Zhang, F., 2014. Producing more grain with lower environmental costs. Nature514, 486–489.
CrossRef Google scholar
[6]
Cheng, Y., Elrys, A.S., Merwad, A.M., Zhang, H., Chen, Z., Zhang, J., Cai, Z., Muller, C., 2022. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium. Environmental Science & Technology56, 3791–3800.
CrossRef Google scholar
[7]
Cui, X., Shang, Z., Xia, L., Xu, R., Adalibieke, W., Zhan, X., Smith, P., Zhou, F., 2022. Deceleration of cropland-N2O emissions in China and future mitigation potentials. Environmental Science & Technology56, 4665–4675.
CrossRef Google scholar
[8]
Elrys, A.S., Chen, Z., Wang, J., Uwiragiye, Y., Helmy, A.M., Desoky, E.M., Cheng, Y., Zhang, J., Cai, Z., Müller, C., 2022. Global patterns of soil gross immobilization of ammonium and nitrate in terrestrial ecosystems. Global Change Biology28, 4472–4488.
CrossRef Google scholar
[9]
Fang, Q., Yu, Q., Wang, E., Chen, Y., Zhang, G., Wang, J., Li, L., 2006. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant and Soil284, 335–350.
CrossRef Google scholar
[10]
Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D.P., 2011. Solutions for a cultivated planet. Nature478, 337–342.
CrossRef Google scholar
[11]
Gardner, J.B., Drinkwater, L.E., 2009. The fate of nitrogen in grain cropping systems: A meta-analysis of 15N field experiments. Ecological Applications19, 2167–2184.
CrossRef Google scholar
[12]
George, T., 2014. Why crop yields in developing countries have not kept pace with advances in agronomy. Global Food Security3, 49–58.
CrossRef Google scholar
[13]
Gomiero, T., 2016. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability (Basel)8, 281.
CrossRef Google scholar
[14]
Goodale, C.L., 2016. Multi-year fate of a 15N tracer in a mixed deciduous forest: Retention, redistribution, and differences by mycorrhizal association. Global Change Biology23, 867–880.
CrossRef Google scholar
[15]
Guo, J., Liu, X., Zhang, Y., Shen, J., Han, W., Zhang, W., Christie, P., Goulding, K.W., Vitousek, P.M., Zhang, F., 2010. Significant acidification in major Chinese croplands. Science327, 1008–1010.
CrossRef Google scholar
[16]
Gurevitch, J., Curtis, P.S., Jones, M.H., 2001. Meta-analysis in ecology. Advances in Ecological Research32, 199–247.
CrossRef Google scholar
[17]
Hansen, S., Frøseth, R.B., Stenberg, M., Stalenga, J., Olesen, J.E., Krauss, M., Radzikowski, P., Doltra, J., Nadeem, S., Torp, T., Pappa, V., Watson, C.A., 2019. Reviews and syntheses: Review of causes and sources of N2O emissions and NO3 leaching from organic arable crop rotations. Biogeosciences16, 2795–2819.
CrossRef Google scholar
[18]
Huang, P., Zhang, J., Zhu, A., Li, X., Ma, D., Xin, X., Zhang, C., Wu, S., Garland, G., Pereira, E.I.P., 2017. Nitrate accumulation and leaching potential reduced by coupled water and nitrogen management in the Huang-Huai-Hai Plain. Science of the Total Environment 610–611, 610–611
[19]
Huddell, A.M., Galford, G.L., Tully, K.L., Crowley, C., Palm, C.A., Neill, C., Hickman, J.E., Menge, D.N.L., 2020. Meta-analysis on the potential for increasing nitrogen losses from intensifying tropical agriculture. Global Change Biology26, 1668–1680.
CrossRef Google scholar
[20]
Huo, Y., Hu, G., Han, X., Wang, H., Zhuge, Y., 2023. Straw-returning reduces the contribution of microbial anabolism to salt-affected soil organic carbon accumulation over a salinity gradient. Soil Ecology Letters5, 220168.
CrossRef Google scholar
[21]
Liang, H., Shen, P., Kong, X., Liao, Y., Liu, Y., Wen, X., 2020. Optimal nitrogen practice in winter wheat-summer maize rotation affecting the fates of 15N-labeled fertilizer. Agronomy (Basel)10, 521.
CrossRef Google scholar
[22]
Liu, D., Mishra, A.K., Ray, D.K., 2020a. Sensitivity of global major crop yields to climate variables: A non-parametric elasticity analysis. Science of the Total Environment748, 141431.
CrossRef Google scholar
[23]
Liu, J., Ouyang, X., Shen, J., Li, Y., Sun, W., Jiang, W., Wu, J., 2020b. Nitrogen and phosphorus runoff losses were influenced by chemical fertilization but not by pesticide application in a double rice-cropping system in the subtropical hilly region of China. Science of the Total Environment715, 136852.
CrossRef Google scholar
[24]
Lü, F., Hou, M., Zhang, H., Asif, K., Muhammad, A., Qiangjiu, C., Hu, C., Yang, X., Sun, B., Zhang, S., 2019. Closing the nitrogen use efficiency gap and reducing the environmental impact of wheat-maize cropping on smallholder farms in Guanzhong Plain, Northwest China. Journal of Integrative Agriculture18, 169–178.
CrossRef Google scholar
[25]
Luvizotto, D.M., Araujo, J.E., Silva, M.C.P., Dias, A.C.F., Kraft, B., Tegetmeye, H., Strous, M., Andreote, F.D., 2019. The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils. Anais da Academia Brasileira de Ciências91, e20180373.
CrossRef Google scholar
[26]
Ma, Q., Li, X., Song, W., Jia, B., Zhang, Q., Lin, L., Li, F., 2018. Plastic-film mulch and fertilization rate affect the fate of urea-15N in maize production. Nutrient Cycling in Agroecosystems112, 403–416.
CrossRef Google scholar
[27]
Ma, Z., Yue, Y., Feng, M., Li, Y., Ma, X., Zhao, X., Wang, S., 2019. Mitigation of ammonia volatilization and nitrate leaching via loss control urea triggered H-bond forces. Scientific Reports9, 15140.
CrossRef Google scholar
[28]
Maaz, T.M., Sapkota, T.B., Eagle, A.J., Kantar, M.B., Bruulsema, T.W., Majumdar, K., 2021. Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. Global Change Biology27, 2343–2360.
CrossRef Google scholar
[29]
Michalczyk, A., Kersebaum, K.C., Heimann, L., Roelcke, M., Sun, Q.P., Chen, X.P., Zhang, F.S. 2016. Simulating in situ ammonia volatilization losses in the North China Plain using a dynamic soil-crop model. Journal of Plant Nutrition and Soil Science179, 270–285.
CrossRef Google scholar
[30]
Nair, D., Baral, K.R., Abalos, D., Strobel, B.W., Petersen, S.O., 2020. Nitrate leaching and nitrous oxide emissions from maize after grass-clover on a coarse sandy soil: Mitigation potentials of 3,4-dimethylpyrazole phosphate (DMPP). Journal of Environmental Management260, 110165.
CrossRef Google scholar
[31]
Oldfield, E.E., Bradford, M.A., Wood, S.A., 2019. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil (Göttingen)5, 15–32.
CrossRef Google scholar
[32]
Pan, B., Xia, L., Lam, S.K., Wang, E., Zhang, Y., Mosier, A., Chen, D., 2022. A global synthesis of soil denitrification: Driving factors and mitigation strategies. Agriculture, Ecosystems & Environment327, 107850.
CrossRef Google scholar
[33]
Pan, X., Baquy, M.A.A., Guan, P., Yan, J., Wang, R., Xu, R., Xie, L., 2019. Effect of soil acidification on the growth and nitrogen use efficiency of maize in Ultisols. Journal of Soils and Sediments20, 1435–1445.
CrossRef Google scholar
[34]
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M.F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M., Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L.M., Soong, J., Trigalet, S., Vermeire, M.L., Rovira, P., van Wesemael, B., Wiesmeier, M., Yeasmin, S., Yevdokimov, I., Nieder, R., 2018. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils—A comprehensive method comparison. Soil Biology & Biochemistry125, 10–26.
CrossRef Google scholar
[35]
Poffenbarger, H.J., Sawyer, J.E., Barker, D.W., Olk, D.C., Six, J., Castellano, M.J., 2018. Legacy effects of long-term nitrogen fertilizer application on the fate of nitrogen fertilizer inputs in continuous maize. Agriculture, Ecosystems & Environment265, 544–555.
CrossRef Google scholar
[36]
Poirier, V., Angers, D.A., Whalen, J.K., 2014. Formation of millimetric-scale aggregates and associated retention of 13C-15N-labelled residues are greater in subsoil than topsoil. Soil Biology & Biochemistry75, 45–53.
CrossRef Google scholar
[37]
Quan, Z., Li, S., Zhang, X., Zhu, F., Li, P., Sheng, R., Chen, X., Zhang, L., He, J., Wei, W., Fang, Y., 2020. Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: Field 15N tracer studies. Soil & Tillage Research197, 104498.
CrossRef Google scholar
[38]
Quan, Z., Zhang, X., Davidson, E.A., Zhu, F., Li, S., Zhao, X., Chen, X., Zhang, L., He, J., Wei, W., Fang, Y., 2021. Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices: A global analysis on field 15N tracer studies. Earthʼs Future 9, e2020EF001514
[39]
Ray, D.K., Gerber, J.S., MacDonald, G.K., West, P.C., 2015. Climate variation explains a third of global crop yield variability. Nature Communications6, 5989.
CrossRef Google scholar
[40]
Rochette, P., Angers, D.A., Chantigny, M.H., MacDonald, J.D., Bissonnette, N., Bertrand, N., 2009. Ammonia volatilization following surface application of urea to tilled and no-till soils: A laboratory comparison. Soil & Tillage Research103, 310–315.
CrossRef Google scholar
[41]
Rosenberg, M.S., Adams, D.C., Gurevitch, J., 2000. MetaWin: statistical software for meta-analysis. Sinauer Associates, Sunderland, MA, USA
[42]
Schutz, L., Gattinger, A., Meier, M., Muller, A., Boller, T., Mader, P., Mathimaran, N., 2017. Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis. Frontiers in Plant Science8, 2204.
CrossRef Google scholar
[43]
Sebilo, M., Mayer, B., Nicolardot, B., Pinay, G., Mariotti, A., 2013. Long-term fate of nitrate fertilizer in agricultural soils. Proceedings of the National Academy of Sciences of the United States of America110, 18185–18189.
CrossRef Google scholar
[44]
Sha, Z., Ma, X., Wang, J., Lv, T., Li, Q., Misselbrook, T., Liu, X., 2020. Effect of N stabilizers on fertilizer-N fate in the soil-crop system: A meta-analysis. Agriculture, Ecosystems & Environment290, 106763.
CrossRef Google scholar
[45]
Shao, P., Li, T., Dong, K., Yang, H., Sun, J., 2021. Microbial residues as the nexus transforming inorganic carbon to organic carbon in coastal saline soils. Soil Ecology Letters4, 328–336.
CrossRef Google scholar
[46]
Shelton, R.E., Jacobsen, K.L., McCulley, R.L., 2018. Cover crops and fertilization alter nitrogen loss in organic and conventional conservation agriculture systems. Frontiers in Plant Science8, 2260.
CrossRef Google scholar
[47]
Sihvonen, M., Pihlainen, S., Lai, T., Salo, T., Hyytiäinen, K. 2021. Crop production, water pollution, or climate change mitigation-Which drives socially optimal fertilization management most?. Agricultural Systems186, 102985.
CrossRef Google scholar
[48]
Sun, H., Feng, Y., Xue, L., Mandal, S., Wang, H., Shi, W., Yang, L., 2020. Responses of ammonia volatilization from rice paddy soil to application of wood vinegar alone or combined with biochar. Chemosphere242, 125247.
CrossRef Google scholar
[49]
Sun, R., Myrold, D.D., Wang, D., Guo, X., Chu, H., 2019a. AOA and AOB communities respond differently to changes of soil pH under long-term fertilization. Soil Ecology Letters1, 126–135.
CrossRef Google scholar
[50]
Sun, X., Zhong, T., Zhang, L., Zhang, K., Wu, W., 2019b. Reducing ammonia volatilization from paddy field with rice straw derived biochar. Science of the Total Environment660, 512–518.
CrossRef Google scholar
[51]
Suter, H., Lam, S.K., Walker, C., Chen, D., 2020. Enhanced efficiency fertilisers reduce nitrous oxide emissions and improve fertiliser 15N recovery in a Southern Australian pasture. Science of the Total Environment699, 134147.
CrossRef Google scholar
[52]
Teixeira, E., Kersebaum, K.C., Ausseil, A.G., Cichota, R., Guo, J., Johnstone, P., George, M., Liu, J., Malcolm, B., Khaembah, E., Meiyalaghan, S., Richards, K., Zyskowski, R., Michel, A., Sood, A., Tait, A., Ewert, F., 2021. Understanding spatial and temporal variability of N leaching reduction by winter cover crops under climate change. Science of the Total Environment771, 144770.
CrossRef Google scholar
[53]
Templer, P.H., Mack, M.C., Chapin, F.S., Christenson, L.M., Compton, J.E., Crook, H.D., Currie, W.S., Curtis, C.J., Dail, D.B., D’Antonio, C.M., Emmett, B.A., Epstein, H.E., Goodale, C.L., Gundersen, P., Hobbie, S.E., Holland, K., Hooper, D.U., Hungate, B.A., Lamontagne, S., Nadelhoffer, K.J., Osenberg, C.W., Perakis, S.S., Schleppi, P., Schimel, J., Schmidt, I.K., Sommerkorn, M., Spoelstra, J., Tietema, A., Wessel, W.W., Zak, D.R., 2012. Sinks for nitrogen inputs in terrestrial ecosystems: A meta-analysis of 15N tracer field studies. Ecology93, 1816–1829.
CrossRef Google scholar
[54]
Ti, C.P., Xia, L.L., Chang, S.X., Yan, X.Y. 2019. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environmental Pollution245, 141–148.
CrossRef Google scholar
[55]
Tian, H., Xu, R., Canadell, J.G., Thompson, R.L., Winiwarter, W., Suntharalingam, P., Davidson, E.A., Ciais, P., Jackson, R.B., Janssens-Maenhout, G., Prather, M.J., Regnier, P., Pan, N., Pan, S., Peters, G.P., Shi, H., Tubiello, F.N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A.F., Buitenhuis, E.T., Chang, J., Chipperfield, M.P., Dangal, S.R.S., Dlugokencky, E., Elkins, J.W., Eyre, B.D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P.B., Landolfi, A., Laruelle, G.G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet, D.B., Olin, S., Patra, P.K., Prinn, R.G., Raymond, P.A., Ruiz, D.J., van der Werf, G.R., Vuichard, N., Wang, J., Weiss, R.F., Wells, K.C., Wilson, C., Yang, J., Yao, Y., 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature586, 248–256.
CrossRef Google scholar
[56]
Tilman, D., Balzer, C., Hill, J., Befort, B.L., 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America108, 20260–20264.
CrossRef Google scholar
[57]
Wang, G., Chen, X., Cui, Z., Yue, S., Zhang, F., 2014. Estimated reactive nitrogen losses for intensive maize production in China. Agriculture, Ecosystems & Environment197, 293–300.
CrossRef Google scholar
[58]
Wang, J., Zhao, X., Zhang, H., Shen, R., 2021. The preference of maize plants for nitrate improves fertilizer N recovery efficiency in an acid soil partially because of alleviated Al toxicity. Journal of Soils and Sediments21, 3019–3033.
CrossRef Google scholar
[59]
Xia, L., Lam, S.K., Wolf, B., Kiese, R., Chen, D., Butterbach-Bahl, K., 2018. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Global Change Biology24, 5919–5932.
CrossRef Google scholar
[60]
Xu, C., Han, X., Bol, R., Smith, P., Wu, W., Meng, F., 2017. Impacts of natural factors and farming practices on greenhouse gas emissions in the North China Plain: A meta-analysis. Ecology and Evolution7, 6702–6715.
CrossRef Google scholar
[61]
Xu, C., Wang, J., Wu, D., Li, C., Wang, L., Ji, C., Zhang, Y., Ai, Y., 2022. Optimizing organic amendment applications to enhance carbon sequestration and economic benefits in an infertile sandy soil. Journal of Environmental Management303, 114129.
CrossRef Google scholar
[62]
Yang, L., Zhang, X., Ju, X., Wu, D., 2021. Oxygen-depletion by rapid ammonia oxidation regulates kinetics of N2O, NO and N2 production in an ammonium fertilised agricultural soil. Soil Biology & Biochemistry163, 108460.
CrossRef Google scholar
[63]
Yao, Z., Yan, G., Zheng, X., Wang, R., Liu, C., Butterbach-Bahl, K., 2017. Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system. Environmental Pollution231, 929–941.
CrossRef Google scholar
[64]
Yin, Y., Ying, H., Xue, Y., Zheng, H., Zhang, Q., Cui, Z., 2019. Calculating socially optimal nitrogen (N) fertilization rates for sustainable N management in China. Science of the Total Environment688, 1162–1171.
CrossRef Google scholar
[65]
Zhang, C., Rees, R.M., Ju, X., 2021. Fate of 15N-labelled urea when applied to long-term fertilized soils of varying fertility. Nutrient Cycling in Agroecosystems121, 151–165.
CrossRef Google scholar
[66]
Zhang, X., Fang, Q., Zhang, T., Ma, W., Velthof, G.L., Hou, Y., Oenema, O., Zhang, F., 2020. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Global Change Biology26, 888–900.
CrossRef Google scholar
[67]
Zhao, W., Liang, B., Yang, X., Gale, W., Zhou, J., 2016. Effect of long-term fertilization on 15N uptake and retention in soil. Journal of Plant Nutrition39, 1431–1440.
CrossRef Google scholar
[68]
Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017. Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports7, 15554.
CrossRef Google scholar

Conflict of interest

The authors declare that they have no competing interest.

Acknowledgments

Special thanks to the anonymous reviewers for their helpful comments that significantly improved the manuscript. This work was supported by the National Natural Science Foundation of China (41907069, 42007088, and 42377338), the Basic Research Program of Jiangsu Province (BK20230076), the Jiangsu Agriculture Science and Technology Innovation Fund (CX(23)1019), the Key Research and Development Project of Jiangsu Province (BE2021378), and the China Agriculture Research System (CARS-10-Sweetpotato).

Electronic supplementary material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s42832-023-0206-2 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3602 KB)

Accesses

Citations

Detail

Sections
Recommended

/