Patterns of crop-specific fertilizer-nitrogen losses and opportunities for sustainable mitigation: A quantitative overview of 15N-tracing studies

Cong Xu , Hanshen Zhu , Haokuang Liu , Cheng Ji , Jie Yuan , Guanlin Li , Jidong Wang , Yongchun Zhang

Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (2) : 230206

PDF (3602KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (2) : 230206 DOI: 10.1007/s42832-023-0206-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Patterns of crop-specific fertilizer-nitrogen losses and opportunities for sustainable mitigation: A quantitative overview of 15N-tracing studies

Author information +
History +
PDF (3602KB)

Abstract

● Pattern and mitigation potential of crop-specific fertilizer-N losses were assessed.

● China showed high fertilizer-N losses due to high N application rates and low SOC.

● MAP, SOC, and soil pH are key parameters affecting fertilizer-N losses.

● At a given application rate, soils with higher SOC have lower fertilizer-N losses.

● Optimal N rate combined with SOC improvement could cut 34.8%−59.6% of N losses.

Understanding crop-specific fertilizer-nitrogen (N) loss patterns, driving factors, and mitigation potentials is vital for developing efficient mitigation strategies. However, analyses based on the gross magnitude of fertilizer-N losses within a growing season remain fragmented and inconclusive at a global scale. To address this gap, we conducted a global meta-analysis using 940 observations from 79 published 15N-tracing studies to assess the effects of natural factors, soil parameters, and N application rates on gross fertilizer-N losses in cereal-cropped soils. We found that China had the highest conventional fertilizer-N application and loss rates (230−255 and 75.9−114 kg N ha−1 season−1, respectively) and the lowest soil organic carbon (SOC) contents (10.6 g kg−1) among the countries examined. Mean annual precipitation, SOC content, and soil pH were key parameters affecting fertilizer-N losses in wheat-, maize-, and rice-cropped soils, respectively. Fertilizer-N application rates were positively correlated with N loss amounts, while higher SOC levels led to lower losses. Adopting optimized N application rates combined with improving SOC levels could potentially mitigate 34.8%−59.6% of N losses without compromising crop yields compared with conventional practices. This study underscores the critical role of SOC in reducing N losses and suggests that future research should focus on innovative strategies and efficient organic amendments for enhanced SOC sequestration.

Graphical abstract

Keywords

fertilizer-nitrogen loss / crop-specific / 15N tracing / soil organic carbon / meta-analysis

Cite this article

Download citation ▾
Cong Xu, Hanshen Zhu, Haokuang Liu, Cheng Ji, Jie Yuan, Guanlin Li, Jidong Wang, Yongchun Zhang. Patterns of crop-specific fertilizer-nitrogen losses and opportunities for sustainable mitigation: A quantitative overview of 15N-tracing studies. Soil Ecology Letters, 2024, 6(2): 230206 DOI:10.1007/s42832-023-0206-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amelung, W., Bossio, D., de Vries, W., Kogel-Knabner, I., Lehmann, J., Amundson, R., Bol, R., Collins, C., Lal, R., Leifeld, J., Minasny, B., Pan, G., Paustian, K., Rumpel, C., Sanderman, J., van Groenigen, J.W., Mooney, S., van Wesemael, B., Wander, M., Chabbi, A., 2020. Towards a global-scale soil climate mitigation strategy. Nature Communications11, 5427.

[2]

Bhattacharyya, R., Das, T.K., Das, S., Dey, A., Patra, A.K., Agnihotri, R., Ghosh, A., Sharma, A.R., 2019. Four years of conservation agriculture affects topsoil aggregate-associated 15nitrogen but not the 15nitrogen use efficiency by wheat in a semi-arid climate. Geoderma337, 333–340.

[3]

Cai, G., Chen, D., White, R.E., Fan, X., Pacholski, A., Zhu, Z., Ding, H., 2002. Gaseous nitrogen losses from urea applied to maize on a calcareous fluvo-aquic soil in the North China Plain. Soil Research (Collingwood, Vic.)40, 737–748.

[4]

Chen, G., Zhao, G., Cheng, W., Zhang, H., Lu, C., Zhang, H., Shen, Y., Wang, B., Shi, W., 2020. Rice nitrogen use efficiency does not link to ammonia volatilization in paddy fields. Science of the Total Environment741, 140433.

[5]

Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., Wang, Z., Zhang, W., Yan, X., Yang, J., Deng, X., Gao, Q., Zhang, Q., Guo, S., Ren, J., Li, S., Ye, Y., Wang, Z., Huang, J., Tang, Q., Sun, Y., Peng, X., Zhang, J., He, M., Zhu, Y., Xue, J., Wang, G., Wu, L., An, N., Wu, L., Ma, L., Zhang, W., Zhang, F., 2014. Producing more grain with lower environmental costs. Nature514, 486–489.

[6]

Cheng, Y., Elrys, A.S., Merwad, A.M., Zhang, H., Chen, Z., Zhang, J., Cai, Z., Muller, C., 2022. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium. Environmental Science & Technology56, 3791–3800.

[7]

Cui, X., Shang, Z., Xia, L., Xu, R., Adalibieke, W., Zhan, X., Smith, P., Zhou, F., 2022. Deceleration of cropland-N2O emissions in China and future mitigation potentials. Environmental Science & Technology56, 4665–4675.

[8]

Elrys, A.S., Chen, Z., Wang, J., Uwiragiye, Y., Helmy, A.M., Desoky, E.M., Cheng, Y., Zhang, J., Cai, Z., Müller, C., 2022. Global patterns of soil gross immobilization of ammonium and nitrate in terrestrial ecosystems. Global Change Biology28, 4472–4488.

[9]

Fang, Q., Yu, Q., Wang, E., Chen, Y., Zhang, G., Wang, J., Li, L., 2006. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant and Soil284, 335–350.

[10]

Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D.P., 2011. Solutions for a cultivated planet. Nature478, 337–342.

[11]

Gardner, J.B., Drinkwater, L.E., 2009. The fate of nitrogen in grain cropping systems: A meta-analysis of 15N field experiments. Ecological Applications19, 2167–2184.

[12]

George, T., 2014. Why crop yields in developing countries have not kept pace with advances in agronomy. Global Food Security3, 49–58.

[13]

Gomiero, T., 2016. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability (Basel)8, 281.

[14]

Goodale, C.L., 2016. Multi-year fate of a 15N tracer in a mixed deciduous forest: Retention, redistribution, and differences by mycorrhizal association. Global Change Biology23, 867–880.

[15]

Guo, J., Liu, X., Zhang, Y., Shen, J., Han, W., Zhang, W., Christie, P., Goulding, K.W., Vitousek, P.M., Zhang, F., 2010. Significant acidification in major Chinese croplands. Science327, 1008–1010.

[16]

Gurevitch, J., Curtis, P.S., Jones, M.H., 2001. Meta-analysis in ecology. Advances in Ecological Research32, 199–247.

[17]

Hansen, S., Frøseth, R.B., Stenberg, M., Stalenga, J., Olesen, J.E., Krauss, M., Radzikowski, P., Doltra, J., Nadeem, S., Torp, T., Pappa, V., Watson, C.A., 2019. Reviews and syntheses: Review of causes and sources of N2O emissions and NO3 leaching from organic arable crop rotations. Biogeosciences16, 2795–2819.

[18]

Huang, P., Zhang, J., Zhu, A., Li, X., Ma, D., Xin, X., Zhang, C., Wu, S., Garland, G., Pereira, E.I.P., 2017. Nitrate accumulation and leaching potential reduced by coupled water and nitrogen management in the Huang-Huai-Hai Plain. Science of the Total Environment 610–611, 610–611

[19]

Huddell, A.M., Galford, G.L., Tully, K.L., Crowley, C., Palm, C.A., Neill, C., Hickman, J.E., Menge, D.N.L., 2020. Meta-analysis on the potential for increasing nitrogen losses from intensifying tropical agriculture. Global Change Biology26, 1668–1680.

[20]

Huo, Y., Hu, G., Han, X., Wang, H., Zhuge, Y., 2023. Straw-returning reduces the contribution of microbial anabolism to salt-affected soil organic carbon accumulation over a salinity gradient. Soil Ecology Letters5, 220168.

[21]

Liang, H., Shen, P., Kong, X., Liao, Y., Liu, Y., Wen, X., 2020. Optimal nitrogen practice in winter wheat-summer maize rotation affecting the fates of 15N-labeled fertilizer. Agronomy (Basel)10, 521.

[22]

Liu, D., Mishra, A.K., Ray, D.K., 2020a. Sensitivity of global major crop yields to climate variables: A non-parametric elasticity analysis. Science of the Total Environment748, 141431.

[23]

Liu, J., Ouyang, X., Shen, J., Li, Y., Sun, W., Jiang, W., Wu, J., 2020b. Nitrogen and phosphorus runoff losses were influenced by chemical fertilization but not by pesticide application in a double rice-cropping system in the subtropical hilly region of China. Science of the Total Environment715, 136852.

[24]

Lü, F., Hou, M., Zhang, H., Asif, K., Muhammad, A., Qiangjiu, C., Hu, C., Yang, X., Sun, B., Zhang, S., 2019. Closing the nitrogen use efficiency gap and reducing the environmental impact of wheat-maize cropping on smallholder farms in Guanzhong Plain, Northwest China. Journal of Integrative Agriculture18, 169–178.

[25]

Luvizotto, D.M., Araujo, J.E., Silva, M.C.P., Dias, A.C.F., Kraft, B., Tegetmeye, H., Strous, M., Andreote, F.D., 2019. The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils. Anais da Academia Brasileira de Ciências91, e20180373.

[26]

Ma, Q., Li, X., Song, W., Jia, B., Zhang, Q., Lin, L., Li, F., 2018. Plastic-film mulch and fertilization rate affect the fate of urea-15N in maize production. Nutrient Cycling in Agroecosystems112, 403–416.

[27]

Ma, Z., Yue, Y., Feng, M., Li, Y., Ma, X., Zhao, X., Wang, S., 2019. Mitigation of ammonia volatilization and nitrate leaching via loss control urea triggered H-bond forces. Scientific Reports9, 15140.

[28]

Maaz, T.M., Sapkota, T.B., Eagle, A.J., Kantar, M.B., Bruulsema, T.W., Majumdar, K., 2021. Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. Global Change Biology27, 2343–2360.

[29]

Michalczyk, A., Kersebaum, K.C., Heimann, L., Roelcke, M., Sun, Q.P., Chen, X.P., Zhang, F.S. 2016. Simulating in situ ammonia volatilization losses in the North China Plain using a dynamic soil-crop model. Journal of Plant Nutrition and Soil Science179, 270–285.

[30]

Nair, D., Baral, K.R., Abalos, D., Strobel, B.W., Petersen, S.O., 2020. Nitrate leaching and nitrous oxide emissions from maize after grass-clover on a coarse sandy soil: Mitigation potentials of 3,4-dimethylpyrazole phosphate (DMPP). Journal of Environmental Management260, 110165.

[31]

Oldfield, E.E., Bradford, M.A., Wood, S.A., 2019. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil (Göttingen)5, 15–32.

[32]

Pan, B., Xia, L., Lam, S.K., Wang, E., Zhang, Y., Mosier, A., Chen, D., 2022. A global synthesis of soil denitrification: Driving factors and mitigation strategies. Agriculture, Ecosystems & Environment327, 107850.

[33]

Pan, X., Baquy, M.A.A., Guan, P., Yan, J., Wang, R., Xu, R., Xie, L., 2019. Effect of soil acidification on the growth and nitrogen use efficiency of maize in Ultisols. Journal of Soils and Sediments20, 1435–1445.

[34]

Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M.F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M., Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L.M., Soong, J., Trigalet, S., Vermeire, M.L., Rovira, P., van Wesemael, B., Wiesmeier, M., Yeasmin, S., Yevdokimov, I., Nieder, R., 2018. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils—A comprehensive method comparison. Soil Biology & Biochemistry125, 10–26.

[35]

Poffenbarger, H.J., Sawyer, J.E., Barker, D.W., Olk, D.C., Six, J., Castellano, M.J., 2018. Legacy effects of long-term nitrogen fertilizer application on the fate of nitrogen fertilizer inputs in continuous maize. Agriculture, Ecosystems & Environment265, 544–555.

[36]

Poirier, V., Angers, D.A., Whalen, J.K., 2014. Formation of millimetric-scale aggregates and associated retention of 13C-15N-labelled residues are greater in subsoil than topsoil. Soil Biology & Biochemistry75, 45–53.

[37]

Quan, Z., Li, S., Zhang, X., Zhu, F., Li, P., Sheng, R., Chen, X., Zhang, L., He, J., Wei, W., Fang, Y., 2020. Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: Field 15N tracer studies. Soil & Tillage Research197, 104498.

[38]

Quan, Z., Zhang, X., Davidson, E.A., Zhu, F., Li, S., Zhao, X., Chen, X., Zhang, L., He, J., Wei, W., Fang, Y., 2021. Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices: A global analysis on field 15N tracer studies. Earthʼs Future 9, e2020EF001514

[39]

Ray, D.K., Gerber, J.S., MacDonald, G.K., West, P.C., 2015. Climate variation explains a third of global crop yield variability. Nature Communications6, 5989.

[40]

Rochette, P., Angers, D.A., Chantigny, M.H., MacDonald, J.D., Bissonnette, N., Bertrand, N., 2009. Ammonia volatilization following surface application of urea to tilled and no-till soils: A laboratory comparison. Soil & Tillage Research103, 310–315.

[41]

Rosenberg, M.S., Adams, D.C., Gurevitch, J., 2000. MetaWin: statistical software for meta-analysis. Sinauer Associates, Sunderland, MA, USA

[42]

Schutz, L., Gattinger, A., Meier, M., Muller, A., Boller, T., Mader, P., Mathimaran, N., 2017. Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis. Frontiers in Plant Science8, 2204.

[43]

Sebilo, M., Mayer, B., Nicolardot, B., Pinay, G., Mariotti, A., 2013. Long-term fate of nitrate fertilizer in agricultural soils. Proceedings of the National Academy of Sciences of the United States of America110, 18185–18189.

[44]

Sha, Z., Ma, X., Wang, J., Lv, T., Li, Q., Misselbrook, T., Liu, X., 2020. Effect of N stabilizers on fertilizer-N fate in the soil-crop system: A meta-analysis. Agriculture, Ecosystems & Environment290, 106763.

[45]

Shao, P., Li, T., Dong, K., Yang, H., Sun, J., 2021. Microbial residues as the nexus transforming inorganic carbon to organic carbon in coastal saline soils. Soil Ecology Letters4, 328–336.

[46]

Shelton, R.E., Jacobsen, K.L., McCulley, R.L., 2018. Cover crops and fertilization alter nitrogen loss in organic and conventional conservation agriculture systems. Frontiers in Plant Science8, 2260.

[47]

Sihvonen, M., Pihlainen, S., Lai, T., Salo, T., Hyytiäinen, K. 2021. Crop production, water pollution, or climate change mitigation-Which drives socially optimal fertilization management most?. Agricultural Systems186, 102985.

[48]

Sun, H., Feng, Y., Xue, L., Mandal, S., Wang, H., Shi, W., Yang, L., 2020. Responses of ammonia volatilization from rice paddy soil to application of wood vinegar alone or combined with biochar. Chemosphere242, 125247.

[49]

Sun, R., Myrold, D.D., Wang, D., Guo, X., Chu, H., 2019a. AOA and AOB communities respond differently to changes of soil pH under long-term fertilization. Soil Ecology Letters1, 126–135.

[50]

Sun, X., Zhong, T., Zhang, L., Zhang, K., Wu, W., 2019b. Reducing ammonia volatilization from paddy field with rice straw derived biochar. Science of the Total Environment660, 512–518.

[51]

Suter, H., Lam, S.K., Walker, C., Chen, D., 2020. Enhanced efficiency fertilisers reduce nitrous oxide emissions and improve fertiliser 15N recovery in a Southern Australian pasture. Science of the Total Environment699, 134147.

[52]

Teixeira, E., Kersebaum, K.C., Ausseil, A.G., Cichota, R., Guo, J., Johnstone, P., George, M., Liu, J., Malcolm, B., Khaembah, E., Meiyalaghan, S., Richards, K., Zyskowski, R., Michel, A., Sood, A., Tait, A., Ewert, F., 2021. Understanding spatial and temporal variability of N leaching reduction by winter cover crops under climate change. Science of the Total Environment771, 144770.

[53]

Templer, P.H., Mack, M.C., Chapin, F.S., Christenson, L.M., Compton, J.E., Crook, H.D., Currie, W.S., Curtis, C.J., Dail, D.B., D’Antonio, C.M., Emmett, B.A., Epstein, H.E., Goodale, C.L., Gundersen, P., Hobbie, S.E., Holland, K., Hooper, D.U., Hungate, B.A., Lamontagne, S., Nadelhoffer, K.J., Osenberg, C.W., Perakis, S.S., Schleppi, P., Schimel, J., Schmidt, I.K., Sommerkorn, M., Spoelstra, J., Tietema, A., Wessel, W.W., Zak, D.R., 2012. Sinks for nitrogen inputs in terrestrial ecosystems: A meta-analysis of 15N tracer field studies. Ecology93, 1816–1829.

[54]

Ti, C.P., Xia, L.L., Chang, S.X., Yan, X.Y. 2019. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environmental Pollution245, 141–148.

[55]

Tian, H., Xu, R., Canadell, J.G., Thompson, R.L., Winiwarter, W., Suntharalingam, P., Davidson, E.A., Ciais, P., Jackson, R.B., Janssens-Maenhout, G., Prather, M.J., Regnier, P., Pan, N., Pan, S., Peters, G.P., Shi, H., Tubiello, F.N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A.F., Buitenhuis, E.T., Chang, J., Chipperfield, M.P., Dangal, S.R.S., Dlugokencky, E., Elkins, J.W., Eyre, B.D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P.B., Landolfi, A., Laruelle, G.G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet, D.B., Olin, S., Patra, P.K., Prinn, R.G., Raymond, P.A., Ruiz, D.J., van der Werf, G.R., Vuichard, N., Wang, J., Weiss, R.F., Wells, K.C., Wilson, C., Yang, J., Yao, Y., 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature586, 248–256.

[56]

Tilman, D., Balzer, C., Hill, J., Befort, B.L., 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America108, 20260–20264.

[57]

Wang, G., Chen, X., Cui, Z., Yue, S., Zhang, F., 2014. Estimated reactive nitrogen losses for intensive maize production in China. Agriculture, Ecosystems & Environment197, 293–300.

[58]

Wang, J., Zhao, X., Zhang, H., Shen, R., 2021. The preference of maize plants for nitrate improves fertilizer N recovery efficiency in an acid soil partially because of alleviated Al toxicity. Journal of Soils and Sediments21, 3019–3033.

[59]

Xia, L., Lam, S.K., Wolf, B., Kiese, R., Chen, D., Butterbach-Bahl, K., 2018. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Global Change Biology24, 5919–5932.

[60]

Xu, C., Han, X., Bol, R., Smith, P., Wu, W., Meng, F., 2017. Impacts of natural factors and farming practices on greenhouse gas emissions in the North China Plain: A meta-analysis. Ecology and Evolution7, 6702–6715.

[61]

Xu, C., Wang, J., Wu, D., Li, C., Wang, L., Ji, C., Zhang, Y., Ai, Y., 2022. Optimizing organic amendment applications to enhance carbon sequestration and economic benefits in an infertile sandy soil. Journal of Environmental Management303, 114129.

[62]

Yang, L., Zhang, X., Ju, X., Wu, D., 2021. Oxygen-depletion by rapid ammonia oxidation regulates kinetics of N2O, NO and N2 production in an ammonium fertilised agricultural soil. Soil Biology & Biochemistry163, 108460.

[63]

Yao, Z., Yan, G., Zheng, X., Wang, R., Liu, C., Butterbach-Bahl, K., 2017. Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system. Environmental Pollution231, 929–941.

[64]

Yin, Y., Ying, H., Xue, Y., Zheng, H., Zhang, Q., Cui, Z., 2019. Calculating socially optimal nitrogen (N) fertilization rates for sustainable N management in China. Science of the Total Environment688, 1162–1171.

[65]

Zhang, C., Rees, R.M., Ju, X., 2021. Fate of 15N-labelled urea when applied to long-term fertilized soils of varying fertility. Nutrient Cycling in Agroecosystems121, 151–165.

[66]

Zhang, X., Fang, Q., Zhang, T., Ma, W., Velthof, G.L., Hou, Y., Oenema, O., Zhang, F., 2020. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Global Change Biology26, 888–900.

[67]

Zhao, W., Liang, B., Yang, X., Gale, W., Zhou, J., 2016. Effect of long-term fertilization on 15N uptake and retention in soil. Journal of Plant Nutrition39, 1431–1440.

[68]

Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017. Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports7, 15554.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3602KB)

Supplementary files

SEL-00206-OF-JDW_suppl_1

SEL-00206-OF-JDW_suppl_2

989

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/