A single degenerated primer significantly improves COX1 barcoding performance in soil nematode community profiling

Yincai Ren, Dorota L. Porazinska, Quanhui Ma, Shuhan Liu, Hongmei Li, Xue Qing

PDF(7695 KB)
PDF(7695 KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (2) : 230204. DOI: 10.1007/s42832-023-0204-4
RESEARCH ARTICLE
RESEARCH ARTICLE

A single degenerated primer significantly improves COX1 barcoding performance in soil nematode community profiling

Author information +
History +

Highlights

● A new COX1 primer for soil nematode metabarcoding was designed, and this primer outperforms other commonly used COX1 primer pairs in species recovery and quantity of PCR products.

● The lack of reference database is the main reason that led to the low species recovery in COX1 metabarcoding.

● We expanded current NCBI database by adding 51 newly generated COX1 reference sequences.

Abstract

Microscopic nematodes play important roles in soil ecosystems and often serve as bioindicators of soil health. The identification of soil nematodes is often difficult due to their limited diagnostic characters and high phenotypic plasticity. DNA barcoding and metabarcoding techniques are promising but lack universal primers, especially for mitochondrial COX1 gene. In this study a degenerated COX1 forward primer COIFGED was developed. The primer pair (COIFGED/JB5GED) outperforms other four commonly used COX1 primer pairs in species recovery and quantity of polymerase chain reaction (PCR) products. In metabarcoding analysis, the reads obtained from the new primer pair had the highest sequencing saturation threshold and amplicon sequence variant (ASV) diversity in comparison to other COX1 as well as 18S rRNA primers. The annotation of ASVs suggested the new primer pair initially recovered 9 and 6 out of 25 genera from mock communities, respectively, outperformed other COX1 primers, but underperformed the widely used 18S NF1/18Sr2b primers (16 out of 25 genera). By supplementing the COX1 database with our reference sequences, we recovered an additional 6 mock community species bringing the tally closer to that obtained with 18S primers. In summary, our newly designed COX1 primers significantly improved species recovery and thus can be supplementary or alternative to the conventional 18S metabarcoding.

Graphical abstract

Keywords

degenerated primers / DNA metabarcoding / mitochondrial cytochrome oxidase c subunit I gene / phylogeny / ribosomal RNA gene / soil nematodes

Cite this article

Download citation ▾
Yincai Ren, Dorota L. Porazinska, Quanhui Ma, Shuhan Liu, Hongmei Li, Xue Qing. A single degenerated primer significantly improves COX1 barcoding performance in soil nematode community profiling. Soil Ecology Letters, 2024, 6(2): 230204 https://doi.org/10.1007/s42832-023-0204-4

References

[1]
Ahmed, M., Back, M.A., Prior, T., Karssen, G., Lawson, R., Adams, I., Sapp, M., 2019. Metabarcoding of soil nematodes: the importance of taxonomic coverage and availability of reference sequences in choosing suitable marker(s). Metabarcoding and Metagenomics3, 77–99.
CrossRef Google scholar
[2]
Aivelo, T., Medlar, A., 2018. Opportunities and challenges in metabarcoding approaches for helminth community identification in wild mammals. Parasitology145, 608–621.
CrossRef Google scholar
[3]
Avise, J.C., 1994. Molecular Markers, Natural History and Evolution. Dordrecht, Springer Science and Business Media
[4]
Bardgett, R.D., Cook, R., Yeates, G.W., Denton, C.S., 1999. The influence of nematodes on below-ground processes in grassland ecosystems. Plant and Soil212, 23–33.
CrossRef Google scholar
[5]
Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature515, 505–511.
CrossRef Google scholar
[6]
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodriguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S. II, Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.
CrossRef Google scholar
[7]
Bowles, J., Blair, D., McManus, D.P., 1992. Genetic-variants within the genus Echinococcus identified by mitochondrial-DNA sequencing. Molecular and Biochemical Parasitology54, 165–174.
CrossRef Google scholar
[8]
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.
CrossRef Google scholar
[9]
Cheng, C., Qin, J., Wu, C., Lei, M., Wang, Y., Zhang, L., 2018. Suppressing a plant-parasitic nematode with fungivorous behavior by fungal transformation of a Bt cry gene. Microbial Cell Factories17, 1–14.
CrossRef Google scholar
[10]
Cheng, Y., Jiang, Y., Wu, Y., Valentine, T.A., Li, H., 2016. Soil nitrogen status modifies rice root response to nematode-bacteria interactions in the rhizosphere. PLoS One11, e0148021.
CrossRef Google scholar
[11]
Coomans, A., 2002. Present status and future of nematode systematics. Nematology4, 573–582.
CrossRef Google scholar
[12]
Cox, A.J., Hebert, P.D.N., 2001. Colonization, extinction, and phylogeographic patterning in a freshwater crustacean. Molecular Ecology10, 371–386.
CrossRef Google scholar
[13]
Creer, S., Fonseca, V.G., Porazinska, D.L., Giblin-Davis, R.M., Sung, W., Power, D.M., Packer, M., Carvalho, G.R., Blaxter, M.L., Lambshead, P.J.D., Thomas, W.K., 2010. Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Molecular Ecology19, 4–20.
CrossRef Google scholar
[14]
De Ley, P., De Ley, I.T., Morris, K., Abebe, E., Mundo-Ocampo, M., Yoder, M., Heras, J., Waumann, D., Rocha-Olivares, A., Burr, A.H.J., Baldwin, J.G., Thomas, W.K., 2005. An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences360, 1945–1958.
CrossRef Google scholar
[15]
De Mesel, I., Derycke, S., Moens, T., Van der Gucht, K., Vincx, M., Swings, J., 2004. Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environmental Microbiology6, 733–744.
CrossRef Google scholar
[16]
Derycke, S., Backeljau, T., Vlaeminck, C., Vierstraete, A., Vanfleteren, J., Vincx, M., Moens, T., 2007. Spatiotemporal analysis of population genetic structure in Geomonhystera disjuncta (Nematoda, Monhysteridae) reveals high levels of molecular diversity. Marine Biology151, 1799–1812.
CrossRef Google scholar
[17]
Derycke, S., Fonseca, G., Vierstraete, A., Vanfleteren, J., Vincx, M., Moens, T., 2008. Disentangling taxonomy within the Rhabditis (Pellioditis) marina (Nematoda, Rhabditidae) species complex using molecular and morphological tools. Zoological Journal of the Linnean Society152, 1–15.
CrossRef Google scholar
[18]
Derycke, S., Vanaverbeke, J., Rigaux, A., Backeljau, T., Moens, T., 2010. Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLoS One5, e13716.
CrossRef Google scholar
[19]
Dos Santos, C.H.C., de Carvalho, M.G., Franke, K., Wessjohann, L.J.P., 2019. Dammarane-type triterpenoids from the stem of Ziziphus glaziovii Warm (Rhamnaceae). Phytochemistry162, 250–259.
CrossRef Google scholar
[20]
Duyck, P.F., Dortel, E., Tixier, P., Vinatier, F., Loubana, P.M., Chabrier, C., Queneherve, P., 2012. Niche partitioning based on soil type and climate at the landscape scale in a community of plant-feeding nematodes. Soil Biology & Biochemistry44, 49–55.
CrossRef Google scholar
[21]
Ekschmitt, K., Bakonyi, G., Bongers, M., Bongers, T., Boström, S., Dogan, H., Harrison, A., Nagy, P., O’Donnell, A.G., Papatheodorou, E.M., Sohlenius, B., Stamou, G.P., Wolters, V., 2001. Nematode community structure as indicator of soil functioning in European grassland soils. European Journal of Soil Biology37, 263–268.
CrossRef Google scholar
[22]
Elbrecht, V., Leese, F., 2017. Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Frontiers in Environmental Science 5, 16
[23]
Ferreira, R.C., Nascimento, A.B., Santos, P.J.P., Botter-Carvalho, M.L., Pinto, T.K., 2015. Responses of estuarine nematodes to an increase in nutrient supply: an in situ continuous addition experiment. Marine Pollution Bulletin90, 115–120.
CrossRef Google scholar
[24]
Floyd, R., Abebe, E., Papert, A., Blaxter, M., 2002. Molecular barcodes for soil nematode identification. Molecular Ecology11, 839–850.
CrossRef Google scholar
[25]
Floyd, R., Lima, J., Dewaard, J., Humble, L., Hanner, R., 2010. Common goals: policy implications of DNA barcoding as a protocol for identification of arthropod pests. Biological Invasions12, 2947–2954.
CrossRef Google scholar
[26]
Gendron, E.M., Sevigny, J.L., Byiringiro, I., Thomas, W.K., Powers, T.O., Porazinska, D.L., 2023. Nematode mitochondrial metagenomics—a new tool for biodiversity analysis. Molecular Ecology Resources23, 975–989.
CrossRef Google scholar
[27]
Gissi, C., Iannelli, F., Pesole, G., 2008. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity101, 301–320.
CrossRef Google scholar
[28]
Griffin, G.D., 1996. Importance of soil texture to the pathogenicity of plant-parasitic nematodes on rangeland grasses. Nematropica26, 27–37.
[29]
Hebert, P.D., Cywinska, A., Ball, S.L., de Waard, J.R., 2003. Biological identifications through DNA barcodes. Proceedings. Biological Sciences270, 313–321.
CrossRef Google scholar
[30]
Heydari, F., Gharibzadeh, F., Pourjam, E., Pedram, M., 2020. New and known species of the genus Pungentus Thorne & Swanger, 1936 (Dorylaimida, Nordiidae) from Iran. Journal of Helminthology94, e32.
CrossRef Google scholar
[31]
Holovachov, O., Haenel, Q., Bourlat, S.J., Jondelius, U., 2017. Taxonomy assignment approach determines the efficiency of identification of OTUs in marine nematodes. Royal Society Open Science4, 170315.
CrossRef Google scholar
[32]
Holterman, M., Rybarczyk, K., van den Elsen, S., van Megen, H., Mooyman, P., Santiago, R.P., Bongers, T., Bakker, J., Helder, J., 2008. A ribosomal DNA-based framework for the detection and quantification of stress-sensitive nematode families in terrestrial habitats. Molecular Ecology Resources8, 23–34.
CrossRef Google scholar
[33]
Hsieh, T.C., Ma, K.H., Chao, A., 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution7, 1451–1456.
CrossRef Google scholar
[34]
Ito, K., Murphy, D., 2013. Application of ggplot2 to pharmacometric graphics. CPT: Pharmacometrics & Systems Pharmacology2, 1–16.
CrossRef Google scholar
[35]
Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution30, 772–780.
CrossRef Google scholar
[36]
Kawanobe, M., Toyota, K., Ritz, K., 2021. Development and application of a DNA metabarcoding method for comprehensive analysis of soil nematode communities. Applied Soil Ecology166, 103974.
CrossRef Google scholar
[37]
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, A., 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England)28, 1647–1649.
CrossRef Google scholar
[38]
Kiewnick, S., Holterman, M., van den Elsen, S., van Megen, H., Frey, J.E., Helder, J., 2014. Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp. ) and their close relatives. European Journal of Plant Pathology140, 97–110.
CrossRef Google scholar
[39]
Lambshead, P.J.D., Boucher, G., 2003. Marine nematode deep-sea biodiversity-hyperdiverse or hype? Journal of Biogeography 30, 475–485
[40]
Lazarova, S.S., Malloch, G., Oliveira, C.M., Hübschen, J., Neilson, R., 2006. Ribosomal and mitochondrial DNA analyses of Xiphinema americanum—group populations. Journal of Nematology38, 404–410.
[41]
Lehmitz, R., Decker, P., 2017. The nuclear 28S gene fragment D3 as species marker in oribatid mites (Acari, Oribatida) from German peatlands. Experimental & Applied Acarology71, 259–276.
CrossRef Google scholar
[42]
Liu, M., Baker, S.C., Burridge, C.P., Jordan, G.J., Clarke, L.J., 2020. DNA metabarcoding captures subtle differences in forest beetle communities following disturbance. Restoration Ecology28, 1475–1484.
CrossRef Google scholar
[43]
Lorenzen, S., 1994. The Phylogenetic Systematics of Free Living Nematodes. Andover, UK, Ray Society
[44]
Macheriotou, L., Guilini, K., Bezerra, T.N., Tytgat, B., Nguyen, D.T., Nguyen, T.X.P., Noppe, F., Armenteros, M., Boufahja, F., Rigaux, A., Vanreusel, A., Derycke, S., 2019. Metabarcoding free-living marine nematodes using curated 18S and CO1 reference sequence databases for species-level taxonomic assignments. Ecology and Evolution9, 1211–1226.
CrossRef Google scholar
[45]
Martin, M.J.E.J., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal17, 10–12.
CrossRef Google scholar
[46]
Matsuo, Y., Komiya, S., Yasumizu, Y., Yasuoka, Y., Mizushima, K., Takagi, T., Kryukov, K., Fukuda, A., Morimoto, Y., Naito, Y., Okada, H., Bono, H., Nakagawa, S., Hirota, K., 2021. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinION™ nanopore sequencing confers species-level resolution. BMC Microbiology21, 1–13.
CrossRef Google scholar
[47]
McQueen, J.P., Gattoni, K., Gendron, E.M., Schmidt, S.K., Sommers, P., Porazinska, D.L., 2022. Host identity is the dominant factor in the assembly of nematode and tardigrade gut microbiomes in Antarctic Dry Valley streams. Scientific Reports12, 20118.
CrossRef Google scholar
[48]
McQueen, J.P., Gattoni, K., Gendron, E.M.S., Schmidt, S.K., Sommers, P., Porazinska, D.L., 2023. External and internal microbiomes of Antarctic nematodes are distinct, but more similar to each other than the surrounding environment. Journal of Nematology55, 1–28.
CrossRef Google scholar
[49]
Meusnier, I., Singer, G.A., Landry, J.F., Hickey, D.A., Hebert, P.D., Hajibabaei, M., 2008. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics9, 214.
CrossRef Google scholar
[50]
Nadler, S.A., 2002. Species delimitation and nematode biodiversity: phylogenies rule. Nematology4, 615–625.
CrossRef Google scholar
[51]
Nakacwa, R., Kiggundu, A., Talwana, H., Namaganda, J., Lilley, C., Tushemereirwe, W., Atkinson, H., 2013. Nematode 18S rRNA gene is a reliable tool for environmental biosafety assessment of transgenic banana in confined field trials. Transgenic Research22, 1003–1010.
CrossRef Google scholar
[52]
Nassonova, E., Smirnov, A., Fahrni, J., Pawlowski, J., 2010. Barcoding amoebae: comparison of SSU, ITS and COI genes as tools for molecular identification of naked lobose amoebae. Protist161, 102–115.
CrossRef Google scholar
[53]
Neher, D.A., 2001. Role of nematodes in soil health and their use as indicators. Journal of Nematology33, 161–168.
[54]
Nunn, G.B., 1992. Nematode molecular evolution: an investigation of evolutionary patterns among nematodes based upon DNA sequences (Ph.D. dissertation). University of Nottingham, United Kingdom
[55]
Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M.H., Oksanen, M.J., 2007. The Vegan Package-Community Ecology Package. R package version1, 1–190.
[56]
Pagan, C., Coyne, D., Carneiro, R., Kariuki, G., Luambano, N., Affokpon, A., Williamson, V.M., 2015. Mitochondrial haplotype-based identification of ethanol-preserved root-knot nematodes from Africa. Phytopathology105, 350–357.
CrossRef Google scholar
[57]
Porazinska, D.L., Giblin-Davis, R.M., Faller, L., Farmerie, W., Kanzaki, N., Morris, K., Powers, T.O., Tucker, A.E., Sung, W., Thomas, W.K., 2009. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecular Ecology Resources9, 1439–1450.
CrossRef Google scholar
[58]
Porazinska, D.L., Sung, W., Giblin-Davis, R.M., Thomas, W.K., 2010. Reproducibility of read numbers in high-throughput sequencing analysis of nematode community composition and structure. Molecular Ecology Resources10, 666–676.
CrossRef Google scholar
[59]
Prosser, S.W., Velarde-Aguilar, M.G., León-Règagnon, V., Hebert, P.D., 2013. Advancing nematode barcoding: a primer cocktail for the cytochrome c oxidase subunit I gene from vertebrate parasitic nematodes. Molecular Ecology Resources13, 1108–1115.
CrossRef Google scholar
[60]
Qing, X., Bik, H., Yergaliyev, T.M., Gu, J., Fonderie, P., Brown-Miyara, S., Szitenberg, A., Bert, W., 2020. Widespread prevalence but contrasting patterns of intragenomic rRNA polymorphisms in nematodes: Implications for phylogeny, species delimitation and life history inference. Molecular Ecology Resources20, 318–332.
CrossRef Google scholar
[61]
Reise, R.W., Huettel, R.N., Sayre, R.M., 1987. Carrot callus tissue for culture of endoparasitic nematodes. Journal of Nematology19, 387–389.
[62]
Ritter, C.D., Haggqvist, S., Karlsson, D., Saaksjarvi, I.E., Muasya, A.M., Nilsson, R.H., Antonelli, A., 2019. Biodiversity assessments in the 21st century: the potential of insect traps to complement environmental samples for estimating eukaryotic and prokaryotic diversity using high-throughput DNA metabarcoding. Genome62, 147–159.
CrossRef Google scholar
[63]
Roelfsema, J.H., Nozari, N., Pinelli, E., Kortbeek, L.M., 2016. Novel PCRs for differential diagnosis of cestodes. Experimental Parasitology161, 20–26.
CrossRef Google scholar
[64]
Rosli, N., Leduc, D., Rowden, A.A., Probert, P.K., Clark, M.R., 2018. Regional and sediment depth differences in nematode community structure greater than between habitats on the New Zealand margin: Implications for vulnerability to anthropogenic disturbance. Progress in Oceanography160, 26–52.
CrossRef Google scholar
[65]
Schenk, J., Geisen, S., Kleinboelting, N., Traunspurger, W., 2019. Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth. Metabarcoding and Metagenomics3, 117–126.
CrossRef Google scholar
[66]
Schenk, J., Kleinboelting, N., Traunspurger, W., 2020. Comparison of morphological, DNA barcoding, and metabarcoding characterizations of freshwater nematode communities. Ecology and Evolution10, 2885–2899.
CrossRef Google scholar
[67]
Sikder, M.M., Vestergard, M., Sapkota, R., Kyndt, T., Nicolaisen, M., 2020. Evaluation of metabarcoding primers for analysis of soil nematode communities. Diversity (Basel)12, 388.
CrossRef Google scholar
[68]
Skwiercz, A.T., Kornobis, F.W., Winiszewska, G., Przybylska, A., Obrępalska-Stęplowska, A., Gawlak, M., Subbotin, S.A., 2017. Ditylenchus laurae sp. n. (Tylenchida: Anguinidae) from Poland-a new species of the D. dipsaci complex associated with a water plant, Potamogeton perfoliatus L. Nematology19, 197–209.
CrossRef Google scholar
[69]
Stamatakis, A., Hoover, P., Rougemont, J., 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology57, 758–771.
CrossRef Google scholar
[70]
Svenningsen, C.S., Froslev, T.G., Bladt, J., Pedersen, L.B., Larsen, J.C., Ejrnaes, R., Flojgaard, C., Hansen, A.J., Heilmann-Clausen, J., Dunn, R.R., Tottrup, A.P., 2021. Detecting flying insects using car nets and DNA metabarcoding. Biology Letters17, 20200833.
CrossRef Google scholar
[71]
Tedersoo, L., Tooming-Klunderud, A., Anslan, S., 2018. PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives. New Phytologist217, 1370–1385.
CrossRef Google scholar
[72]
Vetrovský, T., Baldrian, P., Morais, D., 2018. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics (Oxford, England)34, 2292–2294.
CrossRef Google scholar
[73]
Vovlas, N., Troccoli, A., Palomares-Rius, J.E., De Luca, F., Liébanas, G., Landa, B.B., Subbotin, S.A., Castillo, P., 2011. Ditylenchus gigas n.sp. parasitizing broad bean: a new stem nematode singled out from the Ditylenchus dipsaci species complex using a polyphasic approach with molecular phylogeny. Plant Pathology60, 762–775.
CrossRef Google scholar
[74]
Waeyenberge, L., de Sutter, N., Viaene, N., Haegeman, A., 2019. New insights into nematode DNA-metabarcoding as revealed by the characterization of artificial and spiked nematode communities. Diversity (Basel)11, 52.
CrossRef Google scholar
[75]
Wang, K.H., McSorley, R., Gallaher, R.N., 2004. Relationships of nematode communities and soil nutrients in cultivated soils. Proceedings-Soil and Crop Science Society of Florida63, 105–113.
[76]
Whitehead, A., Hemming, J.R., 1965. A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annals of Applied Biology55, 25–38.
CrossRef Google scholar
[77]
Williams, B.D., Schrank, B., Huynh, C., Shownkeen, R., Waterston, R.H., 1992. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics131, 609–624.
CrossRef Google scholar
[78]
Yeates, G.W., Bongers, T., De Goede, R.G.M., Freckman, D.W., Georgieva, S.S., 1993. Feeding habits in soil nematode families and genera- and outline for soil ecologists. Journal of Nematology25, 315–331.
[79]
Yi, X., Guo, Y., Khan, R.A.A., Fan, Z., 2021. Understanding the pathogenicity of Pochonia chlamydosporia to root knot nematode through omics approaches and action mechanism. Biological Control162, 104726.
CrossRef Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant number 32001876).

Conflict of interest

The authors declare no competing interests.

Electronic supplementary material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s42832-023-0204-4 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7695 KB)

Accesses

Citations

Detail

Sections
Recommended

/