Soil pH and phosphorus drive the canonical nitrifiers and comammox Nitrospira communities in citrus orchards with different cultivation ages
Haiyang Liu, Zhikang Tao, Hongen Liu, Wei Xu, Yuanyi Qin, Zhaojun Nie, Wenfeng Tan
Soil pH and phosphorus drive the canonical nitrifiers and comammox Nitrospira communities in citrus orchards with different cultivation ages
● Comammox Nitrospira clade A and B showed contrasting responses to citrus planting.
● 54d9-like AOA and Nitrobacter -NOB dominated in the 5Y and 10Y soils.
● Nitrososphaera -like AOA and Nitrospira -like NOB dominated in the 20Y and 30Y soils.
● Soil pH and P content were the major factors shaping nitrifying communities.
Ammonia oxidizing bacteria (AOB), archaea (AOA), nitrite oxidizing bacteria (NOB) and complete ammonia oxidizers (comammox Nitrospira) are major players in nitrification. However, the distribution and community composition of these nitrifiers in intensively managed orchard soils are still unclear. Here, we chose soil samples from citrus orchards that had been planted for 5 years (5Y), 10 years (10Y), 20 years (20Y) and 30 years (30Y), and adjacent woodland (NF), to study the response of nitrifiers to long-term citrus plantation using quantitative PCR and MiSeq sequencing. Our results revealed that the ammonia and nitrite oxidation potentials in the 5Y soil were the highest, and decreased with increasing plantation age. The AOB abundance was higher in 5Y and 10Y soils than that in 20Y and 30Y soils. The abundance of comammox Nitrospira clade A increased with increasing plantation age, but comammox Nitrospira clade B showed the opposite tendency. MiSeq sequencing results indicated 54d9-like AOA and Nitrobacter-NOB were the dominant populations in 5Y and 10Y soils whereas Nitrososphaera-like AOA and Nitrospira-like NOB dominated in 20Y and 30Y soils. The conversion of woodland to orchard resulted in a significant shift of AOB population from Nitrosospira cluster 3a.1 to cluster 3a.2. In addition, soil pH and phosphorus (P) content were the major factors shaping nitrifying communities. This work suggested citrus plantation altered the distribution of community composition of nitrifiers by affecting soil chemical and physical conditions, and comammox Nitrospira could potentially play an important role in nitrification in intensive managed orchard soils.
AOB / AOA / comammox Nitrospira / NOB / soil pH / phosphorus content
[1] |
Attard, E., Poly, F., Commeaux, C., Laurent, F., Roux, X.L., 2010. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environmental Microbiology12, 315–326.
CrossRef
Google scholar
|
[2] |
Avrahami, S., Conrad, R., Braker, G., 2002. Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Applied and Environmental Microbiology68, 5685–5692.
CrossRef
Google scholar
|
[3] |
Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia, N.A., Bodegom, P.M., Bengtsson-Palme, J., Anslan, S., Coelho, L.P., Harend, H., Huerta-Cepas, J., Medema, M.H., Maltz, M.R., Mundra, S., Olsson, P.A., Pent, M., Põlme, S., Sunagawa, S., Rryberg, M., Tedersoo, L., Bork, P., 2018. Structure and function of the global topsoil microbiome. Nature560, 233–237.
CrossRef
Google scholar
|
[4] |
Bartosch, S., Hartwig, C., Bock, E.S., 2002. Immunological detection of Nitrospira-like bacteria in various Soils. Microbial Ecology43, 26–33.
CrossRef
Google scholar
|
[5] |
Bauhus, J., Khanna, P.K., 1994. Carbon and nitrogen turnover in two acid forest soils of southeast Australia as affected by phosphorus addition and drying and rewetting cycles. Biology and Fertility of Soils17, 212–218.
CrossRef
Google scholar
|
[6] |
Bertagnolli, A.D., Meinhardt, K.A., Pannu, M., Brown, S., Strand, S., Fransen, S.C., Stahl, D.A., 2015. Influence of edaphic and management factors on the diversity and abundance of ammonia‐oxidizing thaumarchaeota and bacteria in soils of bioenergy crop cultivars. Environmental Microbiology Reports7, 312–320.
CrossRef
Google scholar
|
[7] |
Bortoluzzi, E.C., Moterle, D.F., Rheinheimer, D., Casali, C.A., Melo, G.W., Brunetto, G., 2012. Mineralogical changes caused by grape production in a regosol from subtropical Brazilian climate. Journal of Soils and Sediments12, 854–862.
CrossRef
Google scholar
|
[8] |
Cao, S., Zhou, Y., Zhou, Y., Zhou, X., Zhou, W., 2021. Soil organic carbon and soil aggregate stability associated with aggregate fractions in a chronosequence of citrus orchards plantations. Journal of Environmental Management293, 112847.
CrossRef
Google scholar
|
[9] |
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods7, 335–336.
CrossRef
Google scholar
|
[10] |
Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R.H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P.H., Wagner, M., 2015. Complete nitrification by Nitrospira bacteria. Nature528, 504–509.
CrossRef
Google scholar
|
[11] |
De Boer, W., Kowalchuk, G.A., 2001. Nitrification in acid soils: micro-organisms and mechanisms. Soil Biology & Biochemistry33, 853–866.
CrossRef
Google scholar
|
[12] |
Di, H.J., Cameron, K.C., Shen, J.P., Winefield, C.S., O’Callaghan, M., Bowatte, S., He, J.Z., 2009. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience2, 621–624.
CrossRef
Google scholar
|
[13] |
Di, H.J., Cameron, K.C., Shen, J.P., Winefield, C.S., O’Callaghan, M., Bowatte, S., He, J.Z., 2010. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiology Ecology72, 386–394.
CrossRef
Google scholar
|
[14] |
Dick, W.A., Blevins, R.L., Frye, W.W., Peters, S.E., Christenson, D.R., Pierce, F.J., Vitosh, M.L., 1998. Impacts of agricultural management practices on C sequestration in forest-derived soils of the eastern Corn Belt. Soil & Tillage Research47, 235–244.
CrossRef
Google scholar
|
[15] |
Dong, X., Zhang, J., Qiu, H., Zhang, H., Luo, C., Deng, D., Shen, Q., Jia, Z., 2019. Chronic nitrogen fertilization modulates competitive interactions among microbial ammonia oxidizers in a loess soil. Pedosphere29, 24–33.
CrossRef
Google scholar
|
[16] |
Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England)26, 2460–2461.
CrossRef
Google scholar
|
[17] |
FAO (Food and Agricultural Organization of the United Nations), 2021. FAOSTAT. fao.org
|
[18] |
Garcia-Franco, N., Wiesmeier, M., Colocho Hurtarte, L.C., Fella, F., Martínez-Mena, M., Almagro, M., Martínez, E.G., Kögel-Knabner, I., 2021. Pruning residues incorporation and reduced tillage improve soil organic matter stabilization and structure of salt-affected soils in a semi-arid Citrus tree orchard. Soil & Tillage Research213, 105129.
CrossRef
Google scholar
|
[19] |
Gruber, N., Galloway, J.N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature451, 293–296.
CrossRef
Google scholar
|
[20] |
Gubry-Rangin, C., Hai, B., Quince, C., Engel, M., Thomson, B.C., James, P., Schloter, M., Griffiths, R.I., Prosser, J.I., Nicol, G.W., 2011. Niche specialization of terrestrial archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences of the United States of America108, 21206–21211.
CrossRef
Google scholar
|
[21] |
Guo, J., Ling, N., Chen, H., Zhu, C., Kong, Y., Wang, M., Shen, Q., Guo, S., 2017. Distinct drivers of activity, abundance, diversity and composition of ammonia-oxidizers: evidence from a long-term field experiment. Soil Biology & Biochemistry115, 403–414.
CrossRef
Google scholar
|
[22] |
Guo, J.H., Liu, X.J., Zhang, Y., Shen, J.L., Han, W.X., Zhang, W.F., Christie, P., Goulding, K.W., Vitousek, P.M., Zhang, F.S., 2010. Significant acidification in major Chinese croplands. Science327, 1008–1010.
CrossRef
Google scholar
|
[23] |
Han, S., Zeng, L., Luo, X., Xiong, X., Wen, S., Wang, B., Chen, W., Huang, Q., 2018. Shifts in Nitrobacter- and Nitrospira-like nitrite-oxidizing bacterial communities under long-term fertilization practices. Soil Biology & Biochemistry124, 118–125.
CrossRef
Google scholar
|
[24] |
Harayama, S., Rekik, M., Ngai, K.L., Ornston, L.N., 1989. Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida. Journal of Bacteriology171, 6251–6258.
CrossRef
Google scholar
|
[25] |
He, J.Z., Shen, J.P., Zhang, L.M., Zhu, Y.G., Zheng, Y.M., Xu, M.G., Di, H., 2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology9, 3152–3152.
CrossRef
Google scholar
|
[26] |
Hu, B.L., Liu, S., Wang, W., Shen, L.D., Lou, L.P., Liu, W.P., Tian, G., Xu, X., Zheng, P., 2014a. pH dominated niche segregation of ammonia-oxidising microorganisms in Chinese agricultural soils. FEMS Microbiology Ecology90, 290–299.
CrossRef
Google scholar
|
[27] |
Hu, H.W., He, J.Z., 2017. Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. Journal of Soils and Sediments17, 2709–2717.
CrossRef
Google scholar
|
[28] |
Hu, H.W., Xu, Z.H., He, J.Z., 2014b Ammonia oxidizing archaea play a predominant role in acid soil nitrification. Advances in Agronomy 125, 261–302
|
[29] |
Hu, H.W., Zhang, L.M., Dai, Y., Di, H.J., He, J.Z., 2013. pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. Journal of Soils and Sediments13, 1439–1449.
CrossRef
Google scholar
|
[30] |
Hu, J., Zhao, Y., Yao, X., Wang, J., Zheng, P., Xi, C., Hu, B., 2021. Dominance of comammox Nitrospira in soil nitrification. Science of the Total Environment780, 146558.
CrossRef
Google scholar
|
[31] |
Jiang, X., Hou, X., Zhou, X., Xin, X., Wright, A., Jia, Z., 2015. pH regulates key players of nitrification in paddy soils. Soil Biology & Biochemistry81, 9–16.
CrossRef
Google scholar
|
[32] |
Ke, X., Angel, R., Lu, Y., Conrad, R., 2013. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environmental Microbiology15, 2275–2292.
CrossRef
Google scholar
|
[33] |
Kim, J.G., Jung, M.Y., Park, S.J., Rijpstra, W.I., Sinninghe Damste, J.S., Madsen, E.L., Min, D., Kim, J.S., Kim, G.J., Rhee, S.K., 2012. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environmental Microbiology 14, 1528–1543
|
[34] |
Kits, K.D., Sedlacek, C.J., Lebedeva, E.V., Han, P., Bulaev, A., Pjevac, P., Daebeler, A., Romano, S., Albertsen, M., Stein, L.Y., Daims, H., Wagner, M., 2017. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature549, 269–272.
CrossRef
Google scholar
|
[35] |
Könneke, M., Bernhard, A.E., De, L., Walker, C.B., Waterbury, J.B., Stahl, D.A., 2005. Isolation of an autotrophic ammoniaoxidizing marine archaeon. Nature437, 543–546.
CrossRef
Google scholar
|
[36] |
Kurola, J., Salkinoja-Salonen, M., Aarnio, T., Hultman, J., Romantschuk, M., 2005. Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil. FEMS Microbiology Letters250, 33–38.
CrossRef
Google scholar
|
[37] |
Laganière, J.R.M., Angers, D.A., Paré, D., 2010. Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Global Change Biology16, 439–453.
CrossRef
Google scholar
|
[38] |
Li, C., Hu, H.W., Chen, Q.L., Chen, D., He, J.Z., 2019a. Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil Biology & Biochemistry138, 107609.
CrossRef
Google scholar
|
[39] |
Li, C., Hu, H.W., Chen, Q.L., Chen, D., He, J.Z., 2020. Niche differentiation of clade A comammox Nitrospira and canonical ammonia oxidizers in selected forest soils. Soil Biology & Biochemistry149, 107925.
CrossRef
Google scholar
|
[40] |
Li, C., Hu, H.W., Chen, Q.L., Yan, Z.Z., Thi Nguyen, B.A., Chen, D., He, J.Z., 2021. Niche specialization of comammox Nitrospira clade A in terrestrial ecosystems. Soil Biology & Biochemistry156, 108231.
CrossRef
Google scholar
|
[41] |
Li, Y., Chapman, S.J., Nicol, G.W., Yao, H., 2018. Nitrifcation and nitrifers in acidic soils. Soil Biology & Biochemistry116, 290–301.
CrossRef
Google scholar
|
[42] |
Li, Y.J., Yang, M., Zhang, Z.Z., Li, W.L., Zhang, X.D., 2019b. An ecological research on potential for zero-growth of chemical fertilizer use in citrus production in China. Ekoloji28, 1049–1059.
|
[43] |
Lin, Y., Ye, G., Ding, W., Hu, H.W., Zheng, Y., Fan, J., Wan, S., Duan, C., He, J.Z., 2020. Niche differentiation of comammox Nitrospira and canonical ammonia oxidizers in soil aggregate fractions following 27-year fertilizations. Agriculture, Ecosystems & Environment304, 107147.
CrossRef
Google scholar
|
[44] |
Liu, H., Ding, Y., Zhang, Q., Liu, X., Xu, J., Li, Y., Di, H., 2019. Heterotrophic nitrification and denitrification are the main sources of nitrous oxide in two paddy soils. Plant and Soil445, 39–53.
CrossRef
Google scholar
|
[45] |
Liu, H., Hu, H., Huang, X., Ge, T., Li, Y., Zhu, Z., Liu, X., Tan, W., Jia, Z., Di, H., Xu, J., Li, Y., 2021. Canonical ammonia oxidizers, rather than comammox Nitrospira, dominated autotrophic nitrification during the mineralization of organic substances in two paddy soils. Soil Biology & Biochemistry156, 108192.
CrossRef
Google scholar
|
[46] |
Liu, H., Qin, S., Li, Y., Zhao, P., Nie, Z., Liu, H., 2023. Comammox Nitrospira and AOB communities are more sensitive than AOA community to different fertilization strategies in a fluvo-aquic soil. Agriculture, Ecosystems & Environment342, 108224.
CrossRef
Google scholar
|
[47] |
Lu, L., Jia, Z., 2013. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils. Environmental Microbiology15, 1795–1809.
CrossRef
Google scholar
|
[48] |
Luo, G., Sun, B., Li, L., Li, M., Liu, M., Zhu, Y., Guo, S., Ling, N., Shen, Q., 2019. Understanding how long-term organic amendments increase soil phosphatase activities: Insight into phoD- and phoC-harboring functional microbial populations. Soil Biology & Biochemistry139, 107632.
CrossRef
Google scholar
|
[49] |
Nguyen, L., Broughton, K., Osanai, Y., Anderson, I.C., Bange, M.P., Tissue, D.T., Singh, B.K., 2019. Effects of elevated temperature and elevated CO2 on soil nitrification and ammonia-oxidizing microbial communities in field-grown crop. Science of the Total Environment675, 81–89.
CrossRef
Google scholar
|
[50] |
Nicol, G.W., Leininger, S., Schleper, C., Prosser, J.I., 2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology10, 2966–2978.
CrossRef
Google scholar
|
[51] |
Norman, J.S., Barrett, J.E., 2014. Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil. Soil Biology & Biochemistry69, 141–146.
CrossRef
Google scholar
|
[52] |
Norton, J.M., Stark, J.M., 2011. Regulation and measurement of nitrification in terrestrial systems. Methods in Enzymology486, 343–368.
CrossRef
Google scholar
|
[53] |
Olsen, S.R., 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. United States Department of Agriculture, Washington, D.C
|
[54] |
Orellana, L.H., Chee-Sanford, J.C., Sanford, R.A., Loffler, F.E., Konstantinidis, K.T., 2018. Year-round shotgun metagenomes reveal stable microbial communities in agricultural soils and novel ammonia oxidizers responding to fertilization. Applied and Environmental Microbiology84, 01646–17.
|
[55] |
Palomo, A., Pedersen, A.G., Fowler, S.J., Dechesne, A., Sicheritz-Ponten, T., Smets, B.F., 2018. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME Journal12, 1779–1793.
CrossRef
Google scholar
|
[56] |
Sakoula, D., Koch, H., Frank, J., Jetten, M.S.M., van Kessel, M., Lucker, S., 2021. Enrichment and physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition of complete nitrification. ISME Journal15, 1010–1024.
CrossRef
Google scholar
|
[57] |
Scarlett, K., Denman, S., Clark, D.R., Forster, J., Vanguelova, E., Brown, N., Whitby, C., 2021. Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline. ISME Journal15, 623–635.
CrossRef
Google scholar
|
[58] |
Schroder, J.L., Zhang, H., Girma, K., Raun, W.R., Penn, C.J., Payton, M.E., 2011. Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Science Society of America Journal75, 957–964.
CrossRef
Google scholar
|
[59] |
Shen, J.P., Zhang, L.M., Zhu, Y.G., Zhang, J.B., He, J.Z., 2008. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology10, 1601–1611.
CrossRef
Google scholar
|
[60] |
Shi, Z., Li, X., Zhang, L., Wang, Y., 2015. Impacts of farmland conversion to apple (Malus domestica) orchard on soil organic carbon stocks and enzyme activities in a semiarid loess region. Journal of Plant Nutrition and Soil Science178, 440–451.
CrossRef
Google scholar
|
[61] |
Stempfhuber, B., Richter-Heitmann, T., Regan, K.M., Kölbl, A., Wüst, P.K., Marhan, S., Sikorski, J., Overmann, J., Friedrich, M.W., Kandeler, E., Schloter, M., 2016. Spatial interaction of archaeal ammonia-oxidizers and nitrite-oxidizing bacteria in an unfertilized grassland soil. Frontiers in Microbiology6, 1567.
CrossRef
Google scholar
|
[62] |
Sterngren, A.E., Hallin, S., Bengtson, P., 2015. Archaeal ammonia oxidizers dominate in numbers, but bacteria drive gross nitrification in N-amended grassland soil. Frontiers in Microbiology6, 1350.
CrossRef
Google scholar
|
[63] |
Stubner, S., 2002. Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen™ detection. Journal of Microbiological Methods50, 155–164.
CrossRef
Google scholar
|
[64] |
Sun, R., Myrold, D.D., Wang, D., Guo, X., Chu, H., 2019. AOA and AOB communities respond differently to changes of soil pH under long-term fertilization. Soil Ecology Letters1, 126–135.
CrossRef
Google scholar
|
[65] |
Takahashi, Y., Fujitani, H., Hirono, Y., Tago, K., Wang, Y., Hayatsu, M., Tsuneda, S., 2020. Enrichment of comammox and nitrite-oxidizing Nitrospira from acidic soils. Frontiers in Microbiology11, 1737.
CrossRef
Google scholar
|
[66] |
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729
|
[67] |
Tao, L., Li, F.B., Liu, C.S., Feng, X.H., Gu, L.L., Wang, B.R., Wen, S.L., Xu, M.G., 2019. Mitigation of soil acidification through changes in soil mineralogy due to long-term fertilization in southern China. Catena174, 227–234.
CrossRef
Google scholar
|
[68] |
Tzanakakis, V.A., Taylor, A.E., Bakken, L.R., Bottomley, P.J., Myrold, D.D., Dörsch, P., 2019. Relative activity of ammonia oxidizing archaea and bacteria determine nitrification-dependent N2O emissions in Oregon forest soils. Soil Biology & Biochemistry139, 107612.
CrossRef
Google scholar
|
[69] |
van Kessel, M.A., Speth, D.R., Albertsen, M., Nielsen, P.H., Op den Camp, H.J., Kartal, B., Jetten, M.S., Lucker, S., 2015. Complete nitrification by a single microorganism. Nature528, 555–559.
CrossRef
Google scholar
|
[70] |
Wagner, M., Loy, A., Nogueira, R., Purkhold, U., Lee, N., Daims, H., 2002. Microbial community composition and function in wastewater treatment plants. Antonie van Leeuwenhoek81, 665–680.
CrossRef
Google scholar
|
[71] |
Wang, B., Zhao, J., Guo, Z., Ma, J., Xu, H., Jia, Z., 2015. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME Journal9, 1062–1075.
CrossRef
Google scholar
|
[72] |
Wang, B., Zheng, Y., Huang, R., Zhou, X., Wang, D., He, Y., Jia, Z., 2014. Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon. Applied and Environmental Microbiology80, 1684–1691.
CrossRef
Google scholar
|
[73] |
Wang, J., Wang, J., Rhodes, G., He, J.Z., Ge, Y., 2019a. Adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations: Implications for the relative contributions of different ammonia oxidizers to soil nitrogen cycling. Science of the Total Environment668, 224–233.
CrossRef
Google scholar
|
[74] |
Wang, X., Wang, S., Shi, G., Wang, W., Zhu, G., 2019b. Factors driving the distribution and role of AOA and AOB in Phragmites communis rhizosphere in riparian zone. Journal of Basic Microbiology59, 425–436.
CrossRef
Google scholar
|
[75] |
Wang, Z., Meng, Y., Zhu-Barker, X., He, X., Horwath, W.R., Luo, H., Zhao, Y., Jiang, X., 2019c. Responses of nitrification and ammonia oxidizers to a range of background and adjusted pH in purple soils. Geoderma334, 9–14.
CrossRef
Google scholar
|
[76] |
Weidinger, K., Neuhäuser, B., Gilch, S., Ludewig, U., Meyer, O., Schmidt, I., 2007. Functional and physiological evidence for a Rhesustype ammonia transporter in Nitrosomonas europaea. FEMS Microbiology Letters273, 260–267.
CrossRef
Google scholar
|
[77] |
Xia, F., Wang, J.G., Zhu, T., Zou, B., Rhee, S.K., Quan, Z.X., 2018. Ubiquity and diversity of complete ammonia oxidizers (comammox). Applied and Environmental Microbiology84, 13–18.
CrossRef
Google scholar
|
[78] |
Xia, W., Zhang, C., Zeng, X., Feng, Y., Weng, J., Lin, X., Zhu, J., Xiong, Z., Xu, J., Cai, Z., Jia, Z., 2011. Autotrophic growth of nitrifying community in an agricultural soil. ISME Journal5, 1226–1236.
CrossRef
Google scholar
|
[79] |
Xu, S., Wang, B., Li, Y., Jiang, D., Zhou, Y., Ding, A., Zong, Y., Ling, X., Zhang, S., Lu, H., 2020. Ubiquity, diversity, and activity of comammox Nitrospira in agricultural soils. Science of the Total Environment706, 135684.
CrossRef
Google scholar
|
[80] |
Yang, K., Luo, S., Hu, L., Chen, B., Xie, Z., Ma, B., Ma, W., Du, G., Ma, X., Le Roux, X., 2020. Responses of soil ammonia-oxidizing bacteria and archaea diversity to N, P and NP fertilization: Relationships with soil environmental variables and plant community diversity. Soil Biology & Biochemistry145, 107795.
CrossRef
Google scholar
|
[81] |
Yang, X.D., Ni, K., Shi, Y.Z., Yi, X.Y., Zhang, Q.F., Fang, L., Ma, L.F., Ruan, J., 2018. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agriculture, Ecosystems & Environment252, 74–82.
CrossRef
Google scholar
|
[82] |
Zeng, M., de Vries, W., Bonten, L.T., Zhu, Q., Hao, T., Liu, X., Xu, M., Shi, X., Zhang, F., Shen, J., 2017. Model-based analysis of the long-term effects of fertilization management on cropland soil acidification. Environmental Science & Technology51, 3843–3851.
CrossRef
Google scholar
|
[83] |
Zhang, J., Müller, C., Zhu, T., Cai, C.Z., 2011. Heterotrophic nitrification is the predominant NO3− production mechanism in coniferous but not broad-leaf acid forest soil in subtropical China. Biology and Fertility of Soils55, 288–336.
|
[84] |
Zhang, L.M., Hu, H.W., Shen, J.P., He, J.Z., 2012. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME Journal6, 1032–1045.
CrossRef
Google scholar
|
[85] |
Zhang, Q., Li, Y., He, Y., Liu, H., Dumont, M.G., Brookes, P.C., Xu, J., 2019. Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soils. Soil Biology & Biochemistry131, 229–237.
CrossRef
Google scholar
|
[86] |
Zhang, Y., He, X., Liang, H., Zhao, J., Zhang, Y., Xu, C., Shi, X., 2016. Long-term tobacco plantation induces soil acidification and soil base cation loss. Environmental Science and Pollution Research International23, 5442–5450.
CrossRef
Google scholar
|
[87] |
Zhang, Y., Zhang, J., Meng, T., Zhu, T., Müller, C., Cai, Z., 2013. Heterotrophic nitrification is the predominant NO3− production pathway in acid coniferous forest soil in subtropical China. Biology and Fertility of Soils49, 955–957.
CrossRef
Google scholar
|
[88] |
Zhang, Y., Zhang, J., Zhu, T., Muller, C., Cai, Z., 2015. Effect of orchard age on soil nitrogen transformation in subtropical China and implications. Journal of Environmental Sciences (China)34, 10–19.
CrossRef
Google scholar
|
[89] |
Zhong, W., Bian, B., Gao, N., Min, J., Shi, W., Lin, X., Shen, W., 2016. Nitrogen fertilization induced changes in ammonia oxidation are attributable mostly to bacteria rather than archaea in greenhouse-based high N input vegetable soil. Soil Biology & Biochemistry93, 150–159.
CrossRef
Google scholar
|
/
〈 | 〉 |