Stochastic community assembly of abundant taxa maintains the relationship of soil biodiversity-multifunctionality under mercury stress
Shuai Du , Xin-Qi Li , Li Bi , Dong Zhu , Hang-Wei Hu , Xiuli Hao , Jiao Feng , Qiaoyun Huang , Yu-Rong Liu
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (2) : 230197
Stochastic community assembly of abundant taxa maintains the relationship of soil biodiversity-multifunctionality under mercury stress
● Soil abundant taxa diversity positively related to multifunctionality under Hg stress. ● Microbial network complexity of soil abundant taxa supported the strength of SBF. ● Stochastic assembly of soil abundant subcommunity supported the strength of SBF. ● Stochastic ratio was the most important predictor for the strength of SBF.
It is known that soil microbial communities are intricately linked to multiple ecosystem functions and can maintain the relationship between soil biodiversity and multifunctionality (SBF) under environmental stresses. However, the relative contributions and driving forces of abundant and rare taxa within the communities in maintaining soil biodiversity-multifunctionality relationship under pollution stresses are still unclear. Here, we conducted microcosm experiments to estimate the importance of soil abundant and rare taxa in predicting these relationships under heavy metal mercury (Hg) stress in paired paddy and upland fields. The results revealed that the diversity of abundant taxa, rather than rare taxa, was positively related to multifunctionality, with the abundant subcommunity tending to maintain a larger proportion of soil functions including chitin degradation, protein degradation, and phosphorus mineralization. Soil multitrophic network complexity consisting of abundant species showed positive correlations with biodiversity and multifunctionality, and supported the strength of SBF within a network complexity range. Stochastic assembly processes of the abundant subcommunity were positively correlated with the strength of SBF, although stochastic processes decreased the biodiversity and the multifunctionality, respectively. After simultaneously accounting for multiple factors on the strength of SBF, we found that the stochastic community assembly ratio of abundant taxa was the most important predictor for SBF strength under Hg stress. Our results highlight the importance of abundant taxa in supporting soil multifunctionality, and elucidate the linkages between community assembly, network complexity and SBF relationship under environmental stresses.
abundant taxa / biodiversity-multifunctionality relationship / community assembly / network complexity / environmental stresses
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |