Stochastic community assembly of abundant taxa maintains the relationship of soil biodiversity-multifunctionality under mercury stress

Shuai Du , Xin-Qi Li , Li Bi , Dong Zhu , Hang-Wei Hu , Xiuli Hao , Jiao Feng , Qiaoyun Huang , Yu-Rong Liu

Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (2) : 230197

PDF (1158KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (2) : 230197 DOI: 10.1007/s42832-023-0197-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Stochastic community assembly of abundant taxa maintains the relationship of soil biodiversity-multifunctionality under mercury stress

Author information +
History +
PDF (1158KB)

Abstract

● Soil abundant taxa diversity positively related to multifunctionality under Hg stress.

● Microbial network complexity of soil abundant taxa supported the strength of SBF.

● Stochastic assembly of soil abundant subcommunity supported the strength of SBF.

● Stochastic ratio was the most important predictor for the strength of SBF.

It is known that soil microbial communities are intricately linked to multiple ecosystem functions and can maintain the relationship between soil biodiversity and multifunctionality (SBF) under environmental stresses. However, the relative contributions and driving forces of abundant and rare taxa within the communities in maintaining soil biodiversity-multifunctionality relationship under pollution stresses are still unclear. Here, we conducted microcosm experiments to estimate the importance of soil abundant and rare taxa in predicting these relationships under heavy metal mercury (Hg) stress in paired paddy and upland fields. The results revealed that the diversity of abundant taxa, rather than rare taxa, was positively related to multifunctionality, with the abundant subcommunity tending to maintain a larger proportion of soil functions including chitin degradation, protein degradation, and phosphorus mineralization. Soil multitrophic network complexity consisting of abundant species showed positive correlations with biodiversity and multifunctionality, and supported the strength of SBF within a network complexity range. Stochastic assembly processes of the abundant subcommunity were positively correlated with the strength of SBF, although stochastic processes decreased the biodiversity and the multifunctionality, respectively. After simultaneously accounting for multiple factors on the strength of SBF, we found that the stochastic community assembly ratio of abundant taxa was the most important predictor for SBF strength under Hg stress. Our results highlight the importance of abundant taxa in supporting soil multifunctionality, and elucidate the linkages between community assembly, network complexity and SBF relationship under environmental stresses.

Graphical abstract

Keywords

abundant taxa / biodiversity-multifunctionality relationship / community assembly / network complexity / environmental stresses

Cite this article

Download citation ▾
Shuai Du, Xin-Qi Li, Li Bi, Dong Zhu, Hang-Wei Hu, Xiuli Hao, Jiao Feng, Qiaoyun Huang, Yu-Rong Liu. Stochastic community assembly of abundant taxa maintains the relationship of soil biodiversity-multifunctionality under mercury stress. Soil Ecology Letters, 2024, 6(2): 230197 DOI:10.1007/s42832-023-0197-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adler, P.B., HilleRisLambers, J., Levine, J.M., 2007. A niche for neutrality. Ecology Letters10, 95–104.

[2]

Archer, E., 2016. rfPermute: estimate permutation p-values for random forest importance metrics. R package version 1

[3]

Balvanera, P., Pfisterer, A.B., Buchmann, N., He, J.S., Nakashizuka, T., Raffaelli, D., Schmid, B., 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters9, 1146–1156.

[4]

Balvanera, P., Siddique, I., Dee, L., Paquette, A., Isbell, F., Gonzalez, A., Byrnes, J., O’Connor, M.I., Hungate, B.A., Griffin, J.N., 2014. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience64, 49–57.

[5]

Barberán, A., Bates, S.T., Casamayor, E.O., Fierer, N., 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME Journal6, 343–351.

[6]

Barberán, A., Ramirez, K.S., Leff, J.W., Bradford, M.A., Wall, D.H., Fierer, N., 2014. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria.. Ecology Letters17, 794–802.

[7]

Bardgett, R.D., Van Der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature515, 505–511.

[8]

Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media3, 361–362.

[9]

Bell, C.W., Fricks, B.E., Rocca, J.D., Steinweg, J.M., McMahon, S.K., Wallenstein, M.D., 2013. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. Journal of Visualized Experiments81, e50961.

[10]

Bender, S.F., Wagg, C., van der Heijden, M.G., 2016. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution31, 440–452.

[11]

Breiman, L., 2001. Random forests. Machine Learning45, 5–32.

[12]

Byrnes, J.E., Gamfeldt, L., Isbell, F., Lefcheck, J.S., Griffin, J.N., Hector, A., Cardinale, B.J., Hooper, D.U., Dee, L.E., Emmett Duffy, J., 2014. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution5, 111–124.

[13]

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Tumbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods7, 335–336.

[14]

Cardinale, B.J., 2011. Biodiversity improves water quality through niche partitioning. Nature472, 86–89.

[15]

Carlson, M.L., Flagstad, L.A., Gillet, F., Mitchell, E.A., 2010. Community development along a proglacial chronosequence: are above-ground and below-ground community structure controlled more by biotic than abiotic factors? Journal of Ecology 98, 1084–1095

[16]

Chase, J.M., Myers, J.A., 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences366, 2351–2363.

[17]

Csardi, G., Nepusz, T., 2006. The igraph software package for complex network research. InterJournal, Complex Systems1695, 1–9.

[18]

De Vries, F.T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., De Ruiter, P.C., d’Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V., Bardgett, R.D., 2013. Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences of the United States of America110, 14296–14301.

[19]

Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., Singh, B.K., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications7, 1–8.

[20]

Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., Garcia-Velazquez, L., Hart, S.C., Hayes, P.E., He, J.Z., Hseu, Z.Y., Hu, H.W., Kirchmair, M., Neuhauser, S., Perez, C.A., Reed, S.C., Santos, F., Sullivan, B.W., Trivedi, P., Wang, J.T., Weber-Grullon, L., Williams, M.A., Singh, B.K., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution4, 210–220.

[21]

Du, S., Li, X.Q., Feng, J., Huang, Q., Liu, Y.R., 2023. Soil core microbiota drive community resistance to mercury stress and maintain functional stability. Science of the Total Environment894, 165056.

[22]

Du, S., Li, X.Q., Hao, X., Hu, H.W., Feng, J., Huang, Q., Liu, Y.R., 2022. Stronger responses of soil protistan communities to legacy mercury pollution than bacterial and fungal communities in agricultural systems. ISME Communications2, 1–12.

[23]

Duffy, J.E., Cardinale, B.J., France, K.E., McIntyre, P.B., Thébault, E., Loreau, M., 2007. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters10, 522–538.

[24]

Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods10, 996–998.

[25]

Fajardo, C., Costa, G., Nande, M., Botías, P., García-Cantalejo, J., Martín, M., 2019. Pb, Cd, and Zn soil contamination: monitoring functional and structural impacts on the microbiome. Applied Soil Ecology135, 56–64.

[26]

Fortmann-Roe, S., 2015. Consistent and clear reporting of results from diverse modeling techniques: the A3 method. Journal of Statistical Software66, 1–23.

[27]

Gamfeldt, L., Hillebrand, H., Jonsson, P.R., 2008. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology89, 1223–1231.

[28]

Gardes, M., Bruns, T.D., 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology2, 113–118.

[29]

Gaston, K.J., Fuller, R.A., 2007. Biodiversity and extinction: losing the common and the widespread. Progress in Physical Geography31, 213–225.

[30]

Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., Del Campo, J., Dolan, J.R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W.H., Lara, E., Le Bescot, N., Logares, R., Mahe, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A.L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P., Christen, R., 2013. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Research41, D597–D604.

[31]

Hao, X., Zhu, J., Rensing, C., Liu, Y., Gao, S., Chen, W., Huang, Q., Liu, Y.R., 2021. Recent advances in exploring the heavy metal (loid) resistant microbiome. Computational and Structural Biotechnology Journal19, 94–109.

[32]

Hughes, J.B., Daily, G.C., Ehrlich, P.R., 1997. Population diversity: its extent and extinction. Science278, 689–692.

[33]

Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T.M., Bonin, C., Bruelheide, H., De Luca, E., Ebeling, A., Griffin, J.N., Guo, Q., Hautier, Y., Hector, A., Jentsch, A., Kreyling, J., Lanta, V., Manning, P., Meyer, S.T., Mori, A.S., Naeem, S., Niklaus, P.A., Polley, H.W., Reich, P.B., Roscher, C., Seabloom, E.W., Smith, M.D., Thakur, M.P., Tilman, D., Tracy, B.F., van der Putten, W.H., van Ruijven, J., Weigelt, A., Weisser, W.W., Wilsey, B., Eisenhauer, N., 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature526, 574–577.

[34]

Jassey, V.E., Lamentowicz, Ł., Robroek, B.J., Gąbka, M., Rusińska, A., Lamentowicz, M., 2014. Plant functional diversity drives niche‐size‐structure of dominant microbial consumers along a poor to extremely rich fen gradient. Journal of Ecology102, 1150–1162.

[35]

Jiao, S., Chen, W., Wei, G., 2017. Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Molecular Ecology26, 5305–5317.

[36]

Jiao, S., Lu, Y., 2020. Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields. Global Change Biology26, 4506–4520.

[37]

Jiao, S., Lu, Y., Wei, G., 2021. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biology28, 140–153.

[38]

Jiao, S., Wang, J., Wei, G., Chen, W., Lu, Y., 2019. Dominant role of abundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances. Chemosphere235, 248–259.

[39]

Jiao, S., Yang, Y., Xu, Y., Zhang, J., Lu, Y., 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME Journal14, 202–216.

[40]

Jousset, A., Bienhold, C., Chatzinotas, A., Gallien, L., Gobet, A., Kurm, V., Küsel, K., Rillig, M.C., Rivett, D.W., Salles, J.F., van der Heijden, M.G.A., Youssef, N.H., Zhang, X., Wei, Z., Hol, W.H.G., 2017. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME Journal11, 853–862.

[41]

Kardol, P., Wardle, D.A., 2010. How understanding aboveground-belowground linkages can assist restoration ecology. Trends in Ecology & Evolution25, 670–679.

[42]

Knelman, J.E., Nemergut, D.R., 2014. Changes in community assembly may shift the relationship between biodiversity and ecosystem function. Frontiers Media SA, p. 424

[43]

Kraft, N.J., Adler, P.B., Godoy, O., James, E.C., Fuller, S., Levine, J.M., 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology29, 592–599.

[44]

Langfelder, P., Horvath, S., 2012. Fast R functions for robust correlations and hierarchical clustering. Journal of Statistical Software46, 1–17.

[45]

Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M., Gonzalez, A., 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters7, 601–613.

[46]

Lennon, J.T., Jones, S.E., 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Reviews Microbiology9, 119–130.

[47]

Li, H.Z., Zhu, D., Lindhardt, J.H., Lin, S.M., Ke, X., Cui, L., 2021. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environmental Science & Technology55, 4658–4668.

[48]

Li, M., Wei, Z., Wang, J., Jousset, A., Friman, V.P., Xu, Y., Shen, Q., Pommier, T., 2019a. Facilitation promotes invasions in plant-associated microbial communities. Ecology Letters22, 149–158.

[49]

Li, P., Liu, J., Jiang, C., Wu, M., Liu, M., Li, Z., 2019b. Distinct Successions of common and rare bacteria in soil under humic acid amendment – a microcosm study. Frontiers in Microbiology10, 2271.

[50]

Liu, L., Yang, J., Yu, Z., Wilkinson, D.M., 2015. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME Journal9, 2068–2077.

[51]

Liu, Y.R., Delgado-Baquerizo, M., Bi, L., Zhu, J., He, J.Z., 2018. Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China. Microbiome6, 183.

[52]

Liu, Y.R., van der Heijden, M.G., Riedo, J., Sanz-Lazaro, C., Eldridge, D.J., Bastida, F., Moreno-Jiménez, E., Zhou, X.Q., Hu, H.W., He, J.Z., Moreno, J.L., Abades, S., Alfaro, F., Bamigboye, A.R., Berdugo, M., Blanco-Pastor, J.L., de los Ríos, A., Duran, J., Grebenc, T., Illán, J.G., Makhalanyane, T.P., Molina-Montenegro, M.A., Nahberger, T.U., Peñaloza-Bojacá, G.F., Plaza, C., Rey, A., Rodríguez, A., Siebe, C., Teixido, A.L., Casado-Coy, N., Trivedi, P., Torres-Díaz, C., Verma, J.P., Mukherjee, A., Zeng, X.M., Wang, L., Wang, J., Zaady, E., Zhou, X., Huang, Q., Tan, W., Zhu, Y.G., Rillig, M.C., Delgado-Baquerizo, M., 2023. Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide. Nature Communications14, 1706.

[53]

Lu, T., Xu, N., Lei, C., Zhang, Q., Zhang, Z., Sun, L., He, F., Zhou, N.Y., Peñuelas, J., Zhu, Y.G., Qian, H., 2023. Bacterial biogeography in China and its association to land use and soil organic carbon. Soil Ecology Letters5, .

[54]

Lynch, M.D., Neufeld, J.D., 2015. Ecology and exploration of the rare biosphere. Nature Reviews Microbiology13, 217–229.

[55]

Ma, B., Wang, H., Dsouza, M., Lou, J., He, Y., Dai, Z., Brookes, P.C., Xu, J., Gilbert, J.A., 2016. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME Journal10, 1891–1901.

[56]

Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., García-Gómez, M., Bowker, M.A., Soliveres, S., Escolar, C., García-Palacios, P., Berdugo, M., Valencia, E., Gozalo, B., Gallardo, A., Aguilera, L., Arredondo, T., Blones, J., Boeken, B., Bran, D., Conceição, A.A., Cabrera, O., Chaieb, M., Derak, M., Eldridge, D.J., Espinosa, C.I., Florentino, A., Gaitán, J., Gatica, M.G., Ghiloufi, W., Gómez-González, S., Gutiérrez, J.R., Hernández, R.M., Huang, X., Huber-Sannwald, E., Jankju, M., Miriti, M., Monerris, J., Mau, R.L., Morici, E., Naseri, K., Ospina, A., Polo, V., Prina, A., Pucheta, E., Ramírez-Collantes, D.A., Romão, R., Tighe, M., Torres-Díaz, C., Val, J., Veiga, J.P., Wang, D., Zaady, E., 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science335, 214–218.

[57]

Mahbub, K.R., Krishnan, K., Naidu, R., Andrews, S., Megharaj, M., 2017. Mercury toxicity to terrestrial biota. Ecological Indicators74, 451–462.

[58]

Meyer, S.T., Ptacnik, R., Hillebrand, H., Bessler, H., Buchmann, N., Ebeling, A., Eisenhauer, N., Engels, C., Fischer, M., Halle, S., Klein, A.M., Oelmann, Y., Roscher, C., Rottstock, T., Scherber, C., Scheu, S., Schmid, B., Schulze, E.D., Temperton, V.M., Tscharntke, T., Voigt, W., Weigelt, A., Wilcke, W., Weisser, W.W., 2018. Biodiversity–multifunctionality relationships depend on identity and number of measured functions. Nature Ecology & Evolution2, 44–49.

[59]

Mokany, K., Burley, H.M., Paini, D.R., 2013. β Diversity contributes to ecosystem processes more than by simply summing the parts. Proceedings of the National Academy of Sciences of the United States of America110, E4057–E4057.

[60]

Mori, A.S., Isbell, F., Seidl, R., 2018. β-diversity, community assembly, and ecosystem functioning. Trends in Ecology & Evolution33, 549–564.

[61]

Mouillot, D., Graham, N.A., Villéger, S., Mason, N.W., Bellwood, D.R., 2013. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution28, 167–177.

[62]

Newman, M.E., 2003. The structure and function of complex networks. SIAM Review45, 167–256.

[63]

Newman, M.E., 2006. Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America103, 8577–8582.

[64]

Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F.O., Tedersoo, L., Saar, I., Kõljalg, U., Abarenkov, K., 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research47, D259–D264.

[65]

Ning, D., Deng, Y., Tiedje, J.M., Zhou, J., 2019. A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences of the United States of America116, 16892–16898.

[66]

Pedrós-Alió, C., 2012. The rare bacterial biosphere. Annual Review of Marine Science4, 449–466.

[67]

Pocock, M.J., Evans, D.M., Memmott, J., 2012. The robustness and restoration of a network of ecological networks. Science335, 973–977.

[68]

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glockner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.

[69]

Rillig, M.C., Ryo, M., Lehmann, A., 2021. Classifying human influences on terrestrial ecosystems. Global Change Biology27, 2273–2278.

[70]

Rillig, M.C., Ryo, M., Lehmann, A., Aguilar-Trigueros, C.A., Buchert, S., Wulf, A., Iwasaki, A., Roy, J., Yang, G., 2019. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science366, 886–890.

[71]

Rivett, D.W., Bell, T., 2018. Abundance determines the functional role of bacterial phylotypes in complex communities. Nature Microbiology3, 767–772.

[72]

Schermelleh-Engel, K., Moosbrugger, H., Müller, H., 2003. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online8, 23–74.

[73]

Soliveres, S., Manning, P., Prati, D., Gossner, M.M., Alt, F., Arndt, H., Baumgartner, V., Binkenstein, J., Birkhofer, K., Blaser, S., Blüthgen, N., Boch, S., Böhm, S., Börschig, C., Buscot, F., Diekötter, T., Heinze, J., Hölzel, N., Jung, K., Klaus, V.H., Klein, A.M., Kleinebecker, T., Klemmer, S., Krauss, J., Lange, M., Morris, E.K., Müller, J., Oelmann, Y., Overmann, J., Pašalić, E., Renner, S.C., Rillig, M.C., Schaefer, H.M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Sikorski, J., Socher, S.A., Solly, E.F., Sonnemann, I., Sorkau, E., Steckel, J., Steffan-Dewenter, I., Stempfhuber, B., Tschapka, M., Türke, M., Venter, P., Weiner, C.N., Weisser, W.W., Werner, M., Westphal, C., Wilcke, W., Wolters, V., Wubet, T., Wurst, S., Fischer, M., Allan, E., 2016. Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences371, 20150269.

[74]

Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., Rockhold, M.L., Konopka, A., 2013. Quantifying community assembly processes and identifying features that impose them. ISME Journal7, 2069–2079.

[75]

Stoeck, T., Bass, D., Nebel, M., Christen, R., Jones, M.D., Breiner, H.W., Richards, T.A., 2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology19, 21–31.

[76]

Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hu, H., Anderson, I.C., Jeffries, T.C., Zhou, J., Singh, B.K., 2016. Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME Journal10, 2593–2604.

[77]

Tsiafouli, M.A., Thébault, E., Sgardelis, S.P., De Ruiter, P.C., Van Der Putten, W.H., Birkhofer, K., Hemerik, L., De Vries, F.T., Bardgett, R.D., Brady, M.V., Bjornlund, L., Jørgensen, H.B., Christensen, S., Hertefeldt, T.D., Hotes, S., Gera Hol, W.H., Frouz, J., Liiri, M., Mortimer, S.R., Setälä, H., Tzanopoulos, J., Uteseny, K., Pižl, V., Stary, J., Wolters, V., Hedlund, K., 2015. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology21, 973–985.

[78]

Van Elsas, J.D., Chiurazzi, M., Mallon, C.A., Elhottovā, D., Krištůfek, V., Salles, J.F., 2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences of the United States of America109, 1159–1164.

[79]

Vellend, M., 2010. Conceptual synthesis in community ecology. Quarterly Review of Biology85, 183–206.

[80]

Wagg, C., Bender, S.F., Widmer, F., Van Der Heijden, M.G., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America111, 5266–5270.

[81]

Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden, M.G., 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications10, 4841.

[82]

Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science37, 29–38.

[83]

Wang, Y.F., Chen, P., Wang, F.H., Han, W.X., Qiao, M., Dong, W.X., Hu, C.S., Zhu, D., Chu, H.Y., Zhu, Y.G., 2022b. The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. Environment International161, 107133.

[84]

Wu, W., Logares, R., Huang, B., Hsieh, C., 2017. Abundant and rare picoeukaryotic sub-communities present contrasting patterns in the epipelagic waters of marginal seas in the northwestern Pacific Ocean. Environmental Microbiology19, 287–300.

[85]

Xun, W., Li, W., Xiong, W., Ren, Y., Liu, Y., Miao, Y., Xu, Z., Zhang, N., Shen, Q., Zhang, R., 2019. Diversity-triggered deterministic bacterial assembly constrains community functions. Nature Communications10, 3833.

[86]

Xun, W., Liu, Y., Li, W., Ren, Y., Xiong, W., Xu, Z., Zhang, N., Miao, Y., Shen, Q., Zhang, R., 2021. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome9, 35.

[87]

Yu, X., Polz, M.F., Alm, E.J., 2019. Interactions in self-assembled microbial communities saturate with diversity. ISME Journal13, 1602–1617.

[88]

Zhang, Z., Lu, Y., Wei, G., Jiao, S., Zambrano, M.M., 2022. Rare species-driven diversity-ecosystem multifunctionality relationships are promoted by stochastic community assembly. mBio0, e00449–e00422.

[89]

Zhao, J., Duan, G., Zhu, Y., Zhu, D., 2023. Gut microbiota and transcriptome response of earthworms (Metaphire guillelmi) to polymyxin B exposure. Journal of Environmental Sciences133, 37–47.

[90]

Zhao, Z.B., He, J.Z., Geisen, S., Han, L.L., Wang, J.T., Shen, J.P., Wei, W.X., Fang, Y.T., Li, P.P., Zhang, L.M., 2019. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome7, 33.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1158KB)

Supplementary files

SEL-00197-OF-YRL_suppl_1

654

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/