Different responses of soil fauna gut and plant rhizosphere microbiomes to manure applications
Shuai Du, Xiang Zhao, Yue Zhang, Changlong Shu, Ju-Pei Shen
Different responses of soil fauna gut and plant rhizosphere microbiomes to manure applications
● Microbial attributes were compared between soil fauna gut and plant rhizosphere.
● Manure applications decreased or increased gut or rhizosphere bacterial diversity.
● Stochastic or deterministic processes drove gut or rhizosphere bacterial assembly.
● Manure applications increased bacterial network complexity of gut and rhizosphere.
Diverse microbes inhabit animals and plants, helping their hosts perform multiple functions in agricultural ecosystems. However, the responses of soil fauna gut and plant rhizosphere microbiomes to livestock manure applications are still not well understood. Here we fed Protaetia brevitarsis larvae (PBL) with chicken manure and collected their frass. The frass and manure were applied as fertilizers to lettuce pots. We then compared the changes of microbial diversity, community assembly, and potential functions between the gut group (i.e., all PBL gut and frass samples) and the rhizosphere group (i.e., all rhizosphere soil samples). We revealed that manure applications (i.e., feeding or fertilization) decreased bacterial diversity in the gut group but increased that in the rhizosphere group. Particularly, the proportions of Bacilli in the gut group and Gammaproteobacteria in the rhizosphere group were increased (up to a maximum of 33.8% and 20.4%, respectively) after manure applications. Stochastic and deterministic processes dominated community assembly in the gut and rhizosphere microbiomes, respectively. Manure applications increased the microbial co-occurrence network complexity of both the gut and rhizosphere groups. Moreover, the proportions of functional taxa associated with human/animal pathogens in the gut group and carbon/nitrogen cycling in the rhizosphere group were enhanced (up to 2.6-fold and 24.6-fold, respectively). Our findings illustrate the different responses of microbial diversity, community assembly, and potential functions in soil fauna gut and plant rhizosphere to manure applications. The results could enhance our knowledge on the reasonable utilization of animal and plant microbiomes in agricultural management.
soil fauna gut / plant rhizosphere / manure applications / community assembly / microbial functions
[1] |
Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media3, 361–362.
CrossRef
Google scholar
|
[2] |
Bhunia, S., Bhowmik, A., Mallick, R., Mukherjee, J., 2021. Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: A review. Agronomy (Basel)11, 823.
CrossRef
Google scholar
|
[3] |
Blakemore, R., Hochkirch, A., 2017. Restore earthworms to rebuild topsoil. Nature545, 30.
CrossRef
Google scholar
|
[4] |
Bonkowski, M., Villenave, C., Griffiths, B., 2009. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant and Soil321, 213–233.
CrossRef
Google scholar
|
[5] |
Bradford, M., Jones, T.H., Bardgett, R.D., Black, H.I., Boag, B., Bonkowski, M., Cook, R., Eggers, T., Gange, A., Grayston, S., Kandeler, E., McCaig, A.E., Newington, J.E., Prosser, J.I., Setälä, H., Staddon, P.L., Tordoff, G.M., Tscherko, D., Lawton, J.H., 2002. Impacts of soil faunal community composition on model grassland ecosystems. Science298, 615–618.
CrossRef
Google scholar
|
[6] |
Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F.O., Amann, R., Eickhorst, T., Schulze-Lefert, P., 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature488, 91–95.
CrossRef
Google scholar
|
[7] |
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Tumbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods7, 335–336.
CrossRef
Google scholar
|
[8] |
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America108, 4516–4522.
CrossRef
Google scholar
|
[9] |
Cazemier, A.E., Verdoes, J.C., Reubsaet, F.A., Hackstein, J.H., van der Drift, C., Op den Camp, H.J., 2003. Promicromonospora pachnodae sp. nov., a member of the (hemi) cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie van Leeuwenhoek83, 135–148.
CrossRef
Google scholar
|
[10] |
Coleman, D.C., Wall, D.H., 2015. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. Soil Microbiology Ecology and Biochemistry4, 111–149.
|
[11] |
Csardi, G., Nepusz, T., 2006. The igraph software package for complex network research. InterJournal Complex Systems1695, 1–9.
|
[12] |
Deng, Y., Jiang, Y.H., Yang, Y.F., He, Z.L., Luo, F., Zhou, J.Z., 2012. Molecular ecological network analyses. BMC Bioinformatics13, 1–20.
CrossRef
Google scholar
|
[13] |
Du, S., Zhang, Y., Shen, J.P., Hu, H.W., Zhang, J., Shu, C., He, J.Z., 2022. Alteration of manure antibiotic resistance genes via soil fauna is associated with the intestinal microbiome. mSystems7, 00529–00522.
CrossRef
Google scholar
|
[14] |
Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England)26, 2460–2461.
CrossRef
Google scholar
|
[15] |
Edgar, R.C., 2016. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv, 081257
|
[16] |
Enebe, M.C., Babalola, O.O., 2021. Soil fertilization affects the abundance and distribution of carbon and nitrogen cycling genes in the maize rhizosphere. AMB Express11, 1–10.
CrossRef
Google scholar
|
[17] |
Engel, P., Moran, N.A., 2013. The gut microbiota of insects−diversity in structure and function. FEMS Microbiology Reviews37, 699–735.
CrossRef
Google scholar
|
[18] |
Fassarella, M., Blaak, E.E., Penders, J., Nauta, A., Smidt, H., Zoetendal, E.G., 2021. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut70, 595–605.
CrossRef
Google scholar
|
[19] |
Fitzpatrick, C.R., Salas-González, I., Conway, J.M., Finkel, O.M., Gilbert, S., Russ, D., Teixeira, P.J.P.L., Dangl, J.L., 2020. The plant microbiome: from ecology to reductionism and beyond. Annual Review of Microbiology74, 81–100.
CrossRef
Google scholar
|
[20] |
Hacquard, S., Garrido-Oter, R., González, A., Spaepen, S., Ackermann, G., Lebeis, S., McHardy, A.C., Dangl, J.L., Knight, R., Ley, R., Schulze-Lefert, P., 2015. Microbiota and host nutrition across plant and animal kingdoms. Cell Host & Microbe17, 603–616.
CrossRef
Google scholar
|
[21] |
Hamilton, N.E., Ferry, M., 2018. ggtern: Ternary diagrams using ggplot2. Journal of Statistical Software87, 1–17.
CrossRef
Google scholar
|
[22] |
Hannula, S.E., Zhu, F., Heinen, R., Bezemer, T.M., 2019. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nature Communications10, 1254.
CrossRef
Google scholar
|
[23] |
Huang, S.W., Zhang, H.Y., Marshall, S., Jackson, T.A., 2010. The scarab gut: A potential bioreactor for bio-fuel production. Insect Science17, 175–183.
CrossRef
Google scholar
|
[24] |
Jiao, S., Yang, Y., Xu, Y., Zhang, J., Lu, Y., 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME Journal14, 202–216.
CrossRef
Google scholar
|
[25] |
Kardol, P., Cregger, M.A., Campany, C.E., Classen, A.T., 2010. Soil ecosystem functioning under climate change: plant species and community effects. Ecology91, 767–781.
CrossRef
Google scholar
|
[26] |
Kolde, R., 2012. Pheatmap: pretty heatmaps. R package version1, 747.
|
[27] |
Langfelder, P., Horvath, S., 2012. Fast R functions for robust correlations and hierarchical clustering. Journal of Statistical Software46, 1–17.
CrossRef
Google scholar
|
[28] |
Lavelle, P., 1996. Diversity of soil fauna and ecosystem function. Biology International33, 1–16.
|
[29] |
Li, H.Z., Zhu, D., Lindhardt, J.H., Lin, S.M., Ke, X., Cui, L., 2021. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environmental Science & Technology55, 4658–4668.
CrossRef
Google scholar
|
[30] |
Ling, N., Wang, T., Kuzyakov, Y., 2022. Rhizosphere bacteriome structure and functions. Nature Communications13, 1–13.
CrossRef
Google scholar
|
[31] |
Liu, D., Lian, B., Wu, C., Guo, P., 2018. A comparative study of gut microbiota profiles of earthworms fed in three different substrates. Symbiosis74, 21–29.
CrossRef
Google scholar
|
[32] |
Louca, S., Parfrey, L.W., Doebeli, M., 2016. Decoupling function and taxonomy in the global ocean microbiome. Science353, 1272–1277.
CrossRef
Google scholar
|
[33] |
Luo, F., Zhong, J., Yang, Y., Scheuermann, R.H., Zhou, J., 2006. Application of random matrix theory to biological networks. Physics Letters. [Part A]357, 420–423.
CrossRef
Google scholar
|
[34] |
Mallott, E.K., Amato, K.R., 2021. Host specificity of the gut microbiome. Nature Reviews. Microbiology19, 639–653.
CrossRef
Google scholar
|
[35] |
Mendes, L.W., Kuramae, E.E., Navarrete, A.A., Van Veen, J.A., Tsai, S.M., 2014. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME Journal8, 1577–1587.
CrossRef
Google scholar
|
[36] |
Mendes, R., Raaijmakers, J.M., 2015. Cross-kingdom similarities in microbiome functions. ISME Journal9, 1905–1907.
CrossRef
Google scholar
|
[37] |
Müller, D.B., Vogel, C., Bai, Y., Vorholt, J.A., 2016. The plant microbiota: systems-level insights and perspectives. Annual Review of Genetics50, 211–234.
CrossRef
Google scholar
|
[38] |
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Simpson, G., Solymos, P., Henry, M., Stevens, M., 2015. Vegan: community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. R package ver, 2.3–1
|
[39] |
Pickard, J.M., Zeng, M.Y., Caruso, R., Núñez, G., 2017. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews279, 70–89.
CrossRef
Google scholar
|
[40] |
Ramírez-Puebla, S.T., Servín-Garcidueñas, L.E., Jiménez-Marín, B., Bolaños, L.M., Rosenblueth, M., Martínez, J., Rogel, M.A., Ormeño-Orrillo, E., Martínez-Romero, E., 2013. Gut and root microbiota commonalities. Applied and Environmental Microbiology79, 2–9.
CrossRef
Google scholar
|
[41] |
Schreiter, S., Ding, G.C., Heuer, H., Neumann, G., Sandmann, M., Grosch, R., Kropf, S., Smalla, K., 2014. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Frontiers in Microbiology5, 144.
CrossRef
Google scholar
|
[42] |
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. Genome Biology12, 1–18.
CrossRef
Google scholar
|
[43] |
Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., Rockhold, M.L., Konopka, A., 2013. Quantifying community assembly processes and identifying features that impose them. ISME Journal7, 2069–2079.
CrossRef
Google scholar
|
[44] |
Sun, Y., Snow, D., Walia, H., Li, X., 2021. Transmission routes of the microbiome and resistome from manure to soil and lettuce. Environmental Science & Technology55, 11102–11112.
CrossRef
Google scholar
|
[45] |
Team, R.C., 2013. R: A language and environment for statistical computing
|
[46] |
Tkacz, A., Cheema, J., Chandra, G., Grant, A., Poole, P.S., 2015. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME Journal9, 2349–2359.
CrossRef
Google scholar
|
[47] |
Wang, K., Gao, P., Geng, L., Liu, C., Zhang, J., Shu, C., 2022a. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly designed microbial fermentation production line. Microbiome10, 1–16.
CrossRef
Google scholar
|
[48] |
Wang, Y.F., Chen, P., Wang, F.H., Han, W.X., Qiao, M., Dong, W.X., Hu, C.S., Zhu, D., Chu, H.Y., Zhu, Y.G., 2022b. The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. Environment International161, 107133.
CrossRef
Google scholar
|
[49] |
Whitman, T., Neurath, R., Perera, A., Chu-Jacoby, I., Ning, D., Zhou, J., Nico, P., Pett‐Ridge, J., Firestone, M., 2018. Microbial community assembly differs across minerals in a rhizosphere microcosm. Environmental Microbiology20, 4444–4460.
CrossRef
Google scholar
|
[50] |
Wickham, H., 2011. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics3, 180–185.
CrossRef
Google scholar
|
[51] |
Xiang, Q., Zhu, D., Chen, Q.L., Delgado-Baquerizo, M., Su, J.Q., Qiao, M., Yang, X.R., Zhu, Y.G., 2019. Effects of diet on gut microbiota of soil collembolans. Science of the Total Environment676, 197–205.
CrossRef
Google scholar
|
[52] |
Xiong, C., Singh, B.K., He, J.Z., Han, Y.L., Li, P.P., Wan, L.H., Meng, G.Z., Liu, S.Y., Wang, J.T., Wu, C.F., Ge, A.H., Zhang, L.M., 2021. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome9, 1–15.
CrossRef
Google scholar
|
[53] |
Xiong, C., Zhu, Y.G., Wang, J.T., Singh, B., Han, L.L., Shen, J.P., Li, P.P., Wang, G.B., Wu, C.F., Ge, A.H., Zhang, L.M., He, J.Z., 2020. Host selection shapes crop microbiome assembly and network complexity. New Phytologist229, 1091–1104.
CrossRef
Google scholar
|
[54] |
Xu, L., Yi, M., Yi, H., Guo, E., Zhang, A., 2018. Manure and mineral fertilization change enzyme activity and bacterial community in millet rhizosphere soils. World Journal of Microbiology & Biotechnology34, 1–13.
CrossRef
Google scholar
|
[55] |
Zhang, X., Zhang, R., Gao, J., Wang, X., Fan, F., Ma, X., Yin, H., Zhang, C., Feng, K., Deng, Y., 2017. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biology & Biochemistry104, 208–217.
CrossRef
Google scholar
|
[56] |
Zhang, Y., Hao, X., Alexander, T.W., Thomas, B.W., Shi, X., Lupwayi, N.Z., 2018. Long-term and legacy effects of manure application on soil microbial community composition. Biology and Fertility of Soils54, 269–283.
CrossRef
Google scholar
|
[57] |
Zhao, J., Duan, G., Zhu, Y., Zhu, D., 2023. Gut microbiota and transcriptome response of earthworms (Metaphire guillelmi) to polymyxin B exposure. Journal of Environmental Sciences (China)133, 37–47.
CrossRef
Google scholar
|
[58] |
Zhao, X., Shen, J.P., Shu, C.L., Jin, S.S., Di, H.J., Zhang, L.M., He, J.Z., 2022. Attenuation of antibiotic resistance genes in livestock manure through vermicomposting via Protaetia brevitarsis and its fate in a soil-vegetable system. Science of the Total Environment807, 150781.
CrossRef
Google scholar
|
[59] |
Zheng, F., Mou, X., Zhang, J., Zhang, T., Xia, L., Yin, S., Wu, L., Leng, X., An, S., Zhao, D., 2022a. Gradual enhancement of the assemblage stability of the reed rhizosphere microbiome with recovery time. Microorganisms10, 937.
CrossRef
Google scholar
|
[60] |
Zheng, J., Dini-Andreote, F., Luan, L., Geisen, S., Xue, J., Li, H., Sun, B., Jiang, Y., 2022b. Nematode predation and competitive interactions affect microbe-mediated phosphorus dynamics. mBio13, 03293–03221.
CrossRef
Google scholar
|
[61] |
Zhou, J., Deng, Y., Zhang, P., Xue, K., Liang, Y., Van Nostrand, J.D., Yang, Y., He, Z., Wu, L., Stahl, D.A., Hazen, T.C., Tiedje, J.M., Arkin, A.P., 2014. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences of the United States of America111, E836–E845.
CrossRef
Google scholar
|
[62] |
Zhu, D., Delgado-Baquerizo, M., Ding, J., Gillings, M.R., Zhu, Y.G., 2021. Trophic level drives the host microbiome of soil invertebrates at a continental scale. Microbiome9, 1–16.
CrossRef
Google scholar
|
[63] |
Zhu, Y.G., Zhu, D., Rillig, M.C., Yang, Y., Chu, H., Chen, Q.L., Penuelas, J., Cui, H.L., Gillings, M., 2023. Ecosystem microbiome science. mLife2, 2–10.
CrossRef
Google scholar
|
/
〈 | 〉 |