Different responses of soil fauna gut and plant rhizosphere microbiomes to manure applications

Shuai Du , Xiang Zhao , Yue Zhang , Changlong Shu , Ju-Pei Shen

Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (2) : 230196

PDF (10055KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (2) : 230196 DOI: 10.1007/s42832-023-0196-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Different responses of soil fauna gut and plant rhizosphere microbiomes to manure applications

Author information +
History +
PDF (10055KB)

Abstract

● Microbial attributes were compared between soil fauna gut and plant rhizosphere.

● Manure applications decreased or increased gut or rhizosphere bacterial diversity.

● Stochastic or deterministic processes drove gut or rhizosphere bacterial assembly.

● Manure applications increased bacterial network complexity of gut and rhizosphere.

Diverse microbes inhabit animals and plants, helping their hosts perform multiple functions in agricultural ecosystems. However, the responses of soil fauna gut and plant rhizosphere microbiomes to livestock manure applications are still not well understood. Here we fed Protaetia brevitarsis larvae (PBL) with chicken manure and collected their frass. The frass and manure were applied as fertilizers to lettuce pots. We then compared the changes of microbial diversity, community assembly, and potential functions between the gut group (i.e., all PBL gut and frass samples) and the rhizosphere group (i.e., all rhizosphere soil samples). We revealed that manure applications (i.e., feeding or fertilization) decreased bacterial diversity in the gut group but increased that in the rhizosphere group. Particularly, the proportions of Bacilli in the gut group and Gammaproteobacteria in the rhizosphere group were increased (up to a maximum of 33.8% and 20.4%, respectively) after manure applications. Stochastic and deterministic processes dominated community assembly in the gut and rhizosphere microbiomes, respectively. Manure applications increased the microbial co-occurrence network complexity of both the gut and rhizosphere groups. Moreover, the proportions of functional taxa associated with human/animal pathogens in the gut group and carbon/nitrogen cycling in the rhizosphere group were enhanced (up to 2.6-fold and 24.6-fold, respectively). Our findings illustrate the different responses of microbial diversity, community assembly, and potential functions in soil fauna gut and plant rhizosphere to manure applications. The results could enhance our knowledge on the reasonable utilization of animal and plant microbiomes in agricultural management.

Graphical abstract

Keywords

soil fauna gut / plant rhizosphere / manure applications / community assembly / microbial functions

Cite this article

Download citation ▾
Shuai Du, Xiang Zhao, Yue Zhang, Changlong Shu, Ju-Pei Shen. Different responses of soil fauna gut and plant rhizosphere microbiomes to manure applications. Soil Ecology Letters, 2024, 6(2): 230196 DOI:10.1007/s42832-023-0196-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media3, 361–362.

[2]

Bhunia, S., Bhowmik, A., Mallick, R., Mukherjee, J., 2021. Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: A review. Agronomy (Basel)11, 823.

[3]

Blakemore, R., Hochkirch, A., 2017. Restore earthworms to rebuild topsoil. Nature545, 30.

[4]

Bonkowski, M., Villenave, C., Griffiths, B., 2009. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant and Soil321, 213–233.

[5]

Bradford, M., Jones, T.H., Bardgett, R.D., Black, H.I., Boag, B., Bonkowski, M., Cook, R., Eggers, T., Gange, A., Grayston, S., Kandeler, E., McCaig, A.E., Newington, J.E., Prosser, J.I., Setälä H., Staddon, P.L., Tordoff, G.M., Tscherko, D., Lawton, J.H., 2002. Impacts of soil faunal community composition on model grassland ecosystems. Science298, 615–618.

[6]

Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F.O., Amann, R., Eickhorst, T., Schulze-Lefert, P., 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature488, 91–95.

[7]

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Tumbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods7, 335–336.

[8]

Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America108, 4516–4522.

[9]

Cazemier, A.E., Verdoes, J.C., Reubsaet, F.A., Hackstein, J.H., van der Drift, C., Op den Camp, H.J., 2003. Promicromonospora pachnodae sp. nov., a member of the (hemi) cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie van Leeuwenhoek83, 135–148.

[10]

Coleman, D.C., Wall, D.H., 2015. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. Soil Microbiology Ecology and Biochemistry4, 111–149.

[11]

Csardi, G., Nepusz, T., 2006. The igraph software package for complex network research. InterJournal Complex Systems1695, 1–9.

[12]

Deng, Y., Jiang, Y.H., Yang, Y.F., He, Z.L., Luo, F., Zhou, J.Z., 2012. Molecular ecological network analyses. BMC Bioinformatics13, 1–20.

[13]

Du, S., Zhang, Y., Shen, J.P., Hu, H.W., Zhang, J., Shu, C., He, J.Z., 2022. Alteration of manure antibiotic resistance genes via soil fauna is associated with the intestinal microbiome. mSystems7, 00529–00522.

[14]

Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England)26, 2460–2461.

[15]

Edgar, R.C., 2016. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv, 081257

[16]

Enebe, M.C., Babalola, O.O., 2021. Soil fertilization affects the abundance and distribution of carbon and nitrogen cycling genes in the maize rhizosphere. AMB Express11, 1–10.

[17]

Engel, P., Moran, N.A., 2013. The gut microbiota of insects−diversity in structure and function. FEMS Microbiology Reviews37, 699–735.

[18]

Fassarella, M., Blaak, E.E., Penders, J., Nauta, A., Smidt, H., Zoetendal, E.G., 2021. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut70, 595–605.

[19]

Fitzpatrick, C.R., Salas-González, I., Conway, J.M., Finkel, O.M., Gilbert, S., Russ, D., Teixeira, P.J.P.L., Dangl, J.L., 2020. The plant microbiome: from ecology to reductionism and beyond. Annual Review of Microbiology74, 81–100.

[20]

Hacquard, S., Garrido-Oter, R., González, A., Spaepen, S., Ackermann, G., Lebeis, S., McHardy, A.C., Dangl, J.L., Knight, R., Ley, R., Schulze-Lefert, P., 2015. Microbiota and host nutrition across plant and animal kingdoms. Cell Host & Microbe17, 603–616.

[21]

Hamilton, N.E., Ferry, M., 2018. ggtern: Ternary diagrams using ggplot2. Journal of Statistical Software87, 1–17.

[22]

Hannula, S.E., Zhu, F., Heinen, R., Bezemer, T.M., 2019. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nature Communications10, 1254.

[23]

Huang, S.W., Zhang, H.Y., Marshall, S., Jackson, T.A., 2010. The scarab gut: A potential bioreactor for bio-fuel production. Insect Science17, 175–183.

[24]

Jiao, S., Yang, Y., Xu, Y., Zhang, J., Lu, Y., 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME Journal14, 202–216.

[25]

Kardol, P., Cregger, M.A., Campany, C.E., Classen, A.T., 2010. Soil ecosystem functioning under climate change: plant species and community effects. Ecology91, 767–781.

[26]

Kolde, R., 2012. Pheatmap: pretty heatmaps. R package version1, 747.

[27]

Langfelder, P., Horvath, S., 2012. Fast R functions for robust correlations and hierarchical clustering. Journal of Statistical Software46, 1–17.

[28]

Lavelle, P., 1996. Diversity of soil fauna and ecosystem function. Biology International33, 1–16.

[29]

Li, H.Z., Zhu, D., Lindhardt, J.H., Lin, S.M., Ke, X., Cui, L., 2021. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environmental Science & Technology55, 4658–4668.

[30]

Ling, N., Wang, T., Kuzyakov, Y., 2022. Rhizosphere bacteriome structure and functions. Nature Communications13, 1–13.

[31]

Liu, D., Lian, B., Wu, C., Guo, P., 2018. A comparative study of gut microbiota profiles of earthworms fed in three different substrates. Symbiosis74, 21–29.

[32]

Louca, S., Parfrey, L.W., Doebeli, M., 2016. Decoupling function and taxonomy in the global ocean microbiome. Science353, 1272–1277.

[33]

Luo, F., Zhong, J., Yang, Y., Scheuermann, R.H., Zhou, J., 2006. Application of random matrix theory to biological networks. Physics Letters. [Part A]357, 420–423.

[34]

Mallott, E.K., Amato, K.R., 2021. Host specificity of the gut microbiome. Nature Reviews. Microbiology19, 639–653.

[35]

Mendes, L.W., Kuramae, E.E., Navarrete, A.A., Van Veen, J.A., Tsai, S.M., 2014. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME Journal8, 1577–1587.

[36]

Mendes, R., Raaijmakers, J.M., 2015. Cross-kingdom similarities in microbiome functions. ISME Journal9, 1905–1907.

[37]

Müller, D.B., Vogel, C., Bai, Y., Vorholt, J.A., 2016. The plant microbiota: systems-level insights and perspectives. Annual Review of Genetics50, 211–234.

[38]

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Simpson, G., Solymos, P., Henry, M., Stevens, M., 2015. Vegan: community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. R package ver, 2.3–1

[39]

Pickard, J.M., Zeng, M.Y., Caruso, R., Núñez, G., 2017. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews279, 70–89.

[40]

Ramírez-Puebla, S.T., Servín-Garcidueñas, L.E., Jiménez-Marín, B., Bolaños, L.M., Rosenblueth, M., Martínez, J., Rogel, M.A., Ormeño-Orrillo, E., Martínez-Romero, E., 2013. Gut and root microbiota commonalities. Applied and Environmental Microbiology79, 2–9.

[41]

Schreiter, S., Ding, G.C., Heuer, H., Neumann, G., Sandmann, M., Grosch, R., Kropf, S., Smalla, K., 2014. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Frontiers in Microbiology5, 144.

[42]

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. Genome Biology12, 1–18.

[43]

Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., Rockhold, M.L., Konopka, A., 2013. Quantifying community assembly processes and identifying features that impose them. ISME Journal7, 2069–2079.

[44]

Sun, Y., Snow, D., Walia, H., Li, X., 2021. Transmission routes of the microbiome and resistome from manure to soil and lettuce. Environmental Science & Technology55, 11102–11112.

[45]

Team, R.C., 2013. R: A language and environment for statistical computing

[46]

Tkacz, A., Cheema, J., Chandra, G., Grant, A., Poole, P.S., 2015. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME Journal9, 2349–2359.

[47]

Wang, K., Gao, P., Geng, L., Liu, C., Zhang, J., Shu, C., 2022a. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly designed microbial fermentation production line. Microbiome10, 1–16.

[48]

Wang, Y.F., Chen, P., Wang, F.H., Han, W.X., Qiao, M., Dong, W.X., Hu, C.S., Zhu, D., Chu, H.Y., Zhu, Y.G., 2022b. The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. Environment International161, 107133.

[49]

Whitman, T., Neurath, R., Perera, A., Chu-Jacoby, I., Ning, D., Zhou, J., Nico, P., Pett‐Ridge, J., Firestone, M., 2018. Microbial community assembly differs across minerals in a rhizosphere microcosm. Environmental Microbiology20, 4444–4460.

[50]

Wickham, H., 2011. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics3, 180–185.

[51]

Xiang, Q., Zhu, D., Chen, Q.L., Delgado-Baquerizo, M., Su, J.Q., Qiao, M., Yang, X.R., Zhu, Y.G., 2019. Effects of diet on gut microbiota of soil collembolans. Science of the Total Environment676, 197–205.

[52]

Xiong, C., Singh, B.K., He, J.Z., Han, Y.L., Li, P.P., Wan, L.H., Meng, G.Z., Liu, S.Y., Wang, J.T., Wu, C.F., Ge, A.H., Zhang, L.M., 2021. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome9, 1–15.

[53]

Xiong, C., Zhu, Y.G., Wang, J.T., Singh, B., Han, L.L., Shen, J.P., Li, P.P., Wang, G.B., Wu, C.F., Ge, A.H., Zhang, L.M., He, J.Z., 2020. Host selection shapes crop microbiome assembly and network complexity. New Phytologist229, 1091–1104.

[54]

Xu, L., Yi, M., Yi, H., Guo, E., Zhang, A., 2018. Manure and mineral fertilization change enzyme activity and bacterial community in millet rhizosphere soils. World Journal of Microbiology & Biotechnology34, 1–13.

[55]

Zhang, X., Zhang, R., Gao, J., Wang, X., Fan, F., Ma, X., Yin, H., Zhang, C., Feng, K., Deng, Y., 2017. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biology & Biochemistry104, 208–217.

[56]

Zhang, Y., Hao, X., Alexander, T.W., Thomas, B.W., Shi, X., Lupwayi, N.Z., 2018. Long-term and legacy effects of manure application on soil microbial community composition. Biology and Fertility of Soils54, 269–283.

[57]

Zhao, J., Duan, G., Zhu, Y., Zhu, D., 2023. Gut microbiota and transcriptome response of earthworms (Metaphire guillelmi) to polymyxin B exposure. Journal of Environmental Sciences (China)133, 37–47.

[58]

Zhao, X., Shen, J.P., Shu, C.L., Jin, S.S., Di, H.J., Zhang, L.M., He, J.Z., 2022. Attenuation of antibiotic resistance genes in livestock manure through vermicomposting via Protaetia brevitarsis and its fate in a soil-vegetable system. Science of the Total Environment807, 150781.

[59]

Zheng, F., Mou, X., Zhang, J., Zhang, T., Xia, L., Yin, S., Wu, L., Leng, X., An, S., Zhao, D., 2022a. Gradual enhancement of the assemblage stability of the reed rhizosphere microbiome with recovery time. Microorganisms10, 937.

[60]

Zheng, J., Dini-Andreote, F., Luan, L., Geisen, S., Xue, J., Li, H., Sun, B., Jiang, Y., 2022b. Nematode predation and competitive interactions affect microbe-mediated phosphorus dynamics. mBio13, 03293–03221.

[61]

Zhou, J., Deng, Y., Zhang, P., Xue, K., Liang, Y., Van Nostrand, J.D., Yang, Y., He, Z., Wu, L., Stahl, D.A., Hazen, T.C., Tiedje, J.M., Arkin, A.P., 2014. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences of the United States of America111, E836–E845.

[62]

Zhu, D., Delgado-Baquerizo, M., Ding, J., Gillings, M.R., Zhu, Y.G., 2021. Trophic level drives the host microbiome of soil invertebrates at a continental scale. Microbiome9, 1–16.

[63]

Zhu, Y.G., Zhu, D., Rillig, M.C., Yang, Y., Chu, H., Chen, Q.L., Penuelas, J., Cui, H.L., Gillings, M., 2023. Ecosystem microbiome science. mLife2, 2–10.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (10055KB)

Supplementary files

SEL-00196-OF-SD_suppl_1

761

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/