Collembolans maintain a core microbiome responding to diverse soil ecosystems
Zhe-Lun Liu, Dong Zhu, Yi-Fei Wang, Yong-Guan Zhu, Min Qiao
Collembolans maintain a core microbiome responding to diverse soil ecosystems
● The unique gut habitat led to a core intestinal microbiome in diverse soil ecosystems.
● The collembolan guts may help eliminate soil pathogens.
● Host-selection carried more weight on community assembly of gut microbiome.
Soil invertebrates are widely distributed in the ecosystem and are essential for soil ecological processes. Invertebrate gut microbiome plays an important role in host health and has been considered as a hidden microbial repository. However, little is known about how gut microbiome in soil invertebrates respond to diverse soil ecosystems. Based on a laboratory microcosm experiment, we characterized the assembling of microbiome of soil collembolans (Folsomia candida) from six representative regions of the soil ecosystem which they inhabit. Results showed that collembolan gut microbial communities differed significantly from their surrounding soil microbial communities. A dominant core gut microbiome was identified in gut habitat. Community analyses indicated that deterministic process dominated in the community assembly of collembolan gut microbiome. The results further demonstrate a dominant contribution of host selection in shaping gut microbiome. It is also worthy to mention that pathogens, such as common agricultural phytopathogenic fungi Fusarium, were involved in core microbiome, indicating that collembolans could act as vectors of pathogens. Our results unravelled the existence of gut core microbiome of collembolans in soil ecosystems and provided new insights for understanding the crucial role of gut microbiome of soil fauna in maintaining microbial biodiversity and stability of soil ecosystems.
gut microbiome / collembolan / core microbiome / community assembly
[1] |
Abarenkov, K., Nilsson, R.H., Larsson, K.H., Alexander, I.J., Eberhardt, U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., Pennanen, T., 2010. The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytologist186, 281–285.
CrossRef
Google scholar
|
[2] |
Agamennone, V., Jakupović, D., Weedon, J.T., Suring, W.J., van Straalen, N.M., Roelofs, D., Röling, W.F.M., 2015. The microbiome of Folsomia candida: An assessment of bacterial diversity in a Wolbachia-containing animal. FEMS Microbiology Ecology91, 1–10.
CrossRef
Google scholar
|
[3] |
Agamennone, V., Le, N.G., van Straalen, N.M., Brouwer, A., Roelofs, D., 2019. Antimicrobial activity and carbohydrate metabolism in the bacterial metagenome of the soil-living invertebrate Folsomia candida. Scientific Reports9, 1–13.
CrossRef
Google scholar
|
[4] |
Agamennone, V., Roelofs, D., van Straalen, N.M., Janssens, T.K.S., 2018. Antimicrobial activity in culturable gut microbial communities of springtails. Journal of Applied Microbiology125, 740–752.
CrossRef
Google scholar
|
[5] |
Almasri, H., Liberti, J., Brunet, J.L., Engel, P., Belzunces, L.P., 2022. Mild chronic exposure to pesticides alters physiological markers of honey bee health without perturbing the core gut microbiota. Scientific Reports12, .
CrossRef
Google scholar
|
[6] |
Anslan, S., Bahram, M., Tedersoo, L., 2018. Seasonal and annual variation in fungal communities associated with epigeic springtails (Collembola spp. ) in boreal forests. Soil Biology & Biochemistry116, 245–252.
CrossRef
Google scholar
|
[7] |
Aptroot, A., Berg, M.P., 2004. Collembola help lichens in competition with algae. Lichenologist (London, England)36, 167–169.
CrossRef
Google scholar
|
[8] |
Bahrndorff, S., de Jonge, N., Hansen, J.K., Lauritzen, J.M.S., Spanggaard, L.H., Sørensen, M.H., Yde, M., Nielsen, J.L., 2018. Diversity and metabolic potential of the microbiota associated with a soil arthropod. Scientific Reports8, 1–8.
CrossRef
Google scholar
|
[9] |
Bandow, C., Karau, N., Römbke, J., 2014. Interactive effects of pyrimethanil, soil moisture and temperature on Folsomia candida and Sinella curviseta (Collembola). Applied Soil Ecology81, 22–29.
CrossRef
Google scholar
|
[10] |
Berg, M., Stenuit, B., Ho, J., Wang, A., Parke, C., Knight, M., Alvarez-Cohen, L., Shapira, M., 2016a. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME Journal10, 1998–2009.
CrossRef
Google scholar
|
[11] |
Berg, M., Zhou, X.Y., Shapira, M., 2016b. Host-specific functional significance of Caenorhabditis gut commensals. Frontiers in Microbiology7, 1–9.
CrossRef
Google scholar
|
[12] |
Bernardet, J.F., Nakagawa, Y., Holmes, B., Subcommittee On The Taxonomy Of Flavobacterium And Cytophaga-Like Bacteria Of The International Committee On Systematics Of Prokaryotes 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. International Journal of Systematic and Evolutionary Microbiology52, 1049–1070.
|
[13] |
Bhattacharyya, A., Pablo, C.H.D., Mavrodi, O.V., Weller, D.M., Thomashow, L.S., Mavrodi, D.V., 2021. Rhizosphere plant-microbe interactions under water stress. Advances in Applied Microbiology115, 65–113.
CrossRef
Google scholar
|
[14] |
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S. II, Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.
CrossRef
Google scholar
|
[15] |
Bourguignon, T., Lo, N., Dietrich, C., Šobotník, J., Sidek, S., Roisin, Y., Brune, A., Evans, T.A., 2018. Rampant host switching shaped the termite gut microbiome. Current Biology28, 649–654.e2.
CrossRef
Google scholar
|
[16] |
Broza, M., Pereira, R.M., Stimac, J.L., 2001. The nonsusceptibility of soil Collembola to insect pathogens and their potential as scavengers of microbial pesticides. Pedobiologia45, 523–534.
CrossRef
Google scholar
|
[17] |
Brune, A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nature Reviews. Microbiology12, 168–180.
|
[18] |
Buch, A.C., Niemeyer, J.C., Correia, M.E.F., Silva-Filho, E.V., 2016. Ecotoxicity of mercury to Folsomia candida and Proisotoma minuta (Collembola: Isotomidae) in tropical soils: baseline for ecological risk assessment. Ecotoxicology and Environmental Safety127, 22–29.
CrossRef
Google scholar
|
[19] |
Burns, A.R., Miller, E., Agarwal, M., Rolig, A.S., Milligan-Myhre, K., Seredick, S., Guillemin, K., Bohannan, B.J.M., 2017. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proceedings of the National Academy of Sciences of the United States of America114, 11181–11186.
CrossRef
Google scholar
|
[20] |
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.
CrossRef
Google scholar
|
[21] |
Callegari, M., Crotti, E., Fusi, M., Marasco, R., Gonella, E., de Noni, I., Romano, D., Borin, S., Tsiamis, G., Cherif, A., Alma, A., Daffonchio, D., 2021. Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. NPJ Biofilms and Microbiomes7, 1–15.
CrossRef
Google scholar
|
[22] |
Chen, B., Du, K., Sun, C., Vimalanathan, A., Liang, X., Li, Y., Wang, B., Lu, X., Li, L., Shao, Y., 2018. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME Journal12, 2252–2262.
CrossRef
Google scholar
|
[23] |
Chen, Y., Lun, A.T.L., Smyth, G.K., 2016. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000 Research 5, 1438
|
[24] |
Claesson, M.J., Jeffery, I.B., Conde, S., Power, S.E., O’connor, E.M., Cusack, S., Harris, H.M.B., Coakley, M., Lakshminarayanan, B., O’sullivan, O., Fitzgerald, G.F., Deane, J., O’connor, M., Harnedy, N., O’connor, K., O’mahony, D., Van Sinderen, D., Wallace, M., Brennan, L., Stanton, C., Marchesi, J.R., Fitzgerald, A.P., Shanahan, F., Hill, C., Paul Ross, R., O’toole, P.W. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature488, 178–184.
|
[25] |
Coleman, D.C., 2013. Soil biota, Soil Systems, and Processes. In: Levin, S.A., ed. Soil Biota, Soil Systems and Processes. Academic Press, New York
|
[26] |
Compant, S., Nowak, J., Coenye, T., Clément, C., Ait Barka, E., 2008. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiology Reviews32, 607–626.
CrossRef
Google scholar
|
[27] |
Crump, B.C., Peterson, B.J., Raymond, P.A., Amon, R.M.W., Rinehart, A., McClelland, J.W., Holmes, R.M., 2009. Circumpolar synchrony in big river bacterioplankton. Proceedings of the National Academy of Sciences of the United States of America106, 21208–21212.
CrossRef
Google scholar
|
[28] |
David, M.R., dos Santos, L.M.B., Vicente, A.C.P., Maciel-de-Freitas, R., 2016. Effects of environment, dietary regime and ageing on the dengue vector microbiota: Evidence of a core microbiota throughout Aedes aegypti lifespan. Memorias do Instituto Oswaldo Cruz111, 577–587.
CrossRef
Google scholar
|
[29] |
Decker, L.E., San Juan, P.A., Warren, M.L., Duckworth, C.E., Gao, C., Fukami, T., 2022. Higher variability in fungi compared to bacteria in the foraging honey bee gut. Microbial Ecology85, 330–334.
|
[30] |
Ding, J., Zhu, D., Chen, Q.L., Zheng, F., Wang, H.T., Zhu, Y.G., 2019a. Effects of long-term fertilization on the associated microbiota of soil collembolan. Soil Biology & Biochemistry130, 141–149.
CrossRef
Google scholar
|
[31] |
Ding, J., Zhu, D., Li, H., Ding, K., Chen, Q.L.L., Lassen, S.B., Ke, X., O’Connor, P., Zhu, Y.G.G., 2019b. The gut microbiota of soil organisms show species-specific responses to liming. Science of the Total Environment659, 715–723.
CrossRef
Google scholar
|
[32] |
Dong, Z.X., Li, H.Y., Chen, Y.F., Wang, F., Deng, X.Y., Lin, L.B., Zhang, Q.L., Li, J.L., Guo, J., 2020. Colonization of the gut microbiota of honey bee (Apis mellifera) workers at different developmental stages. Microbiological Research231, 126370.
CrossRef
Google scholar
|
[33] |
Dormann, C.F., Frueund, J., Bluethgen, N., Gruber, B., 2009. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecology Journal2, 7–24.
CrossRef
Google scholar
|
[34] |
Douglas, G.M., Maffei, V.J., Zaneveld, J.R., Yurgel, S.N., Brown, J.R., Taylor, C.M., Huttenhower, C., Langille, M.G.I., 2020. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology38, 685–688.
CrossRef
Google scholar
|
[35] |
Ellegaard, K.M., Engel, P., 2019. Genomic diversity landscape of the honey bee gut microbiota. Nature Communications10, 446.
CrossRef
Google scholar
|
[36] |
Ferlian, O., Klarner, B., Langeneckert, A.E., Scheu, S., 2015. Trophic niche differentiation and utilisation of food resources in collembolans based on complementary analyses of fatty acids and stable isotopes. Soil Biology & Biochemistry82, 28–35.
CrossRef
Google scholar
|
[37] |
Fountain, M.T., Hopkin, S.P., 2005. Folsomia candida (Collembola): a “standard” soil arthropod. Annual Review of Entomology50, 201–222.
CrossRef
Google scholar
|
[38] |
Gibson, M.K., Forsberg, K.J., Dantas, G., 2015. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME Journal9, 207–216.
CrossRef
Google scholar
|
[39] |
Gotelli, N.J., Hart, E.M., Ellison, A.M., 2015. EcoSimR: Null model analysis for ecological data
|
[40] |
Goyal, A., 2022. How diverse ecosystems remain stable. Nature Ecology & Evolution6, 667–668.
CrossRef
Google scholar
|
[41] |
Hammer, T.J., Janzen, D.H., Hallwachs, W., Jaffe, S.P., Fierer, N., 2017. Caterpillars lack a resident gut microbiome. Proceedings of the National Academy of Sciences of the United States of America114, 9641–9646.
CrossRef
Google scholar
|
[42] |
Hannula, S.E., Zhu, F., Heinen, R., Bezemer, T.M., 2019. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nature Communications10, 1–9.
CrossRef
Google scholar
|
[43] |
Holmstrup, M., Slotsbo, S., Schmidt, S.N., Mayer, P., Damgaard, C., Sørensen, J.G., 2014. Physiological and molecular responses of springtails exposed to phenanthrene and drought. Environmental Pollution184, 370–376.
CrossRef
Google scholar
|
[44] |
Jonas, J.L., Wilson, G.W.T., White, P.M., Joern, A., 2007. Consumption of mycorrhizal and saprophytic fungi by Collembola in grassland soils. Soil Biology & Biochemistry39, 2594–2602.
CrossRef
Google scholar
|
[45] |
Keating, C., Bolton-Warberg, M., Hinchcliffe, J., Davies, R., Whelan, S., Wan, A.H.L., Fitzgerald, R.D., Davies, S.J., Smith, C.J., Ijaz, U.Z., 2022. Drivers of ecological assembly in the hindgut of Atlantic Cod fed a macroalgal supplemented diet. NPJ Biofilms and Microbiomes8, 36.
CrossRef
Google scholar
|
[46] |
Knapp, B.A., Seeber, J., Podmirseg, S.M., Meyer, E., Insam, H., 2008. Application of denaturing gradient gel electrophoresis for analysing the gut microflora of Lumbricus rubellus Hoffmeister under different feeding conditions. Bulletin of Entomological Research98, 271–279.
CrossRef
Google scholar
|
[47] |
Konietschke, F., Placzek, M., Schaarschmidt, F., Hothorn, L.A., 2015. nparcomp: an R software package for nonparametric multiple comparisons and simultaneous confidence intervals. Journal of Statistical Software 64 (2015), Nr. 9 64, 1–17
|
[48] |
Lavy, D., Verhoef, H.A., 1996. Effects of food quality on growth and body composition of the collembolan Orchesella cincta. Physiological Entomology21, 64–70.
CrossRef
Google scholar
|
[49] |
Leinaas, H.P., Fjellberg, A., 1985. Habitat structure and life history strategies of two partly sympatric and closely related, lichen feeding collembolan species. Oikos44, 448–458.
CrossRef
Google scholar
|
[50] |
Li, L., Zhu, D., Yi, X., Su, J., Duan, G., Tang, X., Zhu, Y., 2021. Combined pollution of arsenic and Polymyxin B enhanced arsenic toxicity and enriched ARG abundance in soil and earthworm gut microbiotas. Journal of Environmental Sciences (China)109, 171–180.
CrossRef
Google scholar
|
[51] |
Malcicka, M., Berg, M.P., Ellers, J., 2017. Ecomorphological adaptations in Collembola in relation to feeding strategies and microhabitat. European Journal of Soil Biology78, 82–91.
CrossRef
Google scholar
|
[52] |
McNabb, D.M., Halaj, J., Wise, D.H., 2001. Inferring trophic positions of generalist predators and their linkage to the detrital food web in agroecosystems: a stable isotope analysis. Pedobiologia45, 289–297.
CrossRef
Google scholar
|
[53] |
Meeus, I., Parmentier, L., Billiet, A., Maebe, K., van Nieuwerburgh, F., Deforce, D., Wäckers, F., Vandamme, P., Smagghe, G., 2015. 16S rRNA amplicon sequencing demonstrates that indoor-reared bumblebees (Bombus terrestris) harbor a core subset of bacteria normally associated with the wild host. PLoS One10, e0125152.
CrossRef
Google scholar
|
[54] |
Mills, J.T., Sinha, R.N., 1971. Interactions between a springtail, Hypogastrura tullbergi, and soil-borne fungi. Journal of Economic Entomology64, 398–401.
CrossRef
Google scholar
|
[55] |
Moon, C.D., Young, W., Maclean, P.H., Cookson, A.L., Bermingham, E.N., 2018. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. MicrobiologyOpen7, e00677.
CrossRef
Google scholar
|
[56] |
Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J., Schilling, J.S., Kennedy, P.G., 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology20, 241–248.
CrossRef
Google scholar
|
[57] |
OECD,
|
[58] |
Ohkuma, M., 2003. Termite symbiotic systems: efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology61, 1–9.
CrossRef
Google scholar
|
[59] |
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2013. Community ecology package. R Package Version 2
|
[60] |
Otani, S., Mikaelyan, A., Nobre, T., Hansen, L.H., Koné, N.A., Sørensen, S.J., Aanen, D.K., Boomsma, J.J., Brune, A., Poulsen, M., 2014. Identifying the core microbial community in the gut of fungus-growing termites. Molecular Ecology23, 4631–4644.
CrossRef
Google scholar
|
[61] |
Pathiraja, D., Wee, J., Cho, K., Choi, I.G., 2022. Soil environment reshapes microbiota of laboratory-maintained Collembola during host development. Environmental Microbiology17, 1–14.
CrossRef
Google scholar
|
[62] |
Pfeffer, S.P., Khalili, H., Filser, J., 2010. Food choice and reproductive success of Folsomia candida feeding on copper-contaminated mycelium of the soil fungus Alternaria alternata. Pedobiologia54, 19–23.
CrossRef
Google scholar
|
[63] |
Pitombeira de Figueirêdo, L., Athayde, D.B., Daam, M.A., van Gestel, C.A.M., Guerra, G. da S., Duarte-Neto, P.J., Espíndola, E.L.G., 2020. Impact of temperature on the toxicity of Kraft 36 EC® (a.s. abamectin) and Score 250 EC® (a.s. difenoconazole) to soil organisms under realistic environmental exposure scenarios. Ecotoxicology and Environmental Safety 55194, 110446
|
[64] |
Potapov, A., Beaulieu, F., Birkhofer, K., Bluhm, S.L., Degtyarev, M.I., Devetter, M., Goncharov, A.A., Gongalsky, K.B., Klarner, B., Korobushkin, D.I., Liebke, D.F., Maraun, M., Mc Donnell, R.J., Pollierer, M.M., Schaefer, I., Shrubovych, J., Semenyuk, I.I., Sendra, A., Tuma, J., Tůmová, M., Vassilieva, A.B., Chen, T., Geisen, S., Schmidt, O., Tiunov, A., Scheu, S., 2022. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biological Reviews of the Cambridge Philosophical Society97, 1057–1117.
CrossRef
Google scholar
|
[65] |
Potapov, A., Semenina, E.E., Korotkevich, A.Y., Kuznetsova, N.A., Tiunov, A., 2016. Connecting taxonomy and ecology: Trophic niches of collembolans as related to taxonomic identity and life forms. Soil Biology & Biochemistry101, 20–31.
CrossRef
Google scholar
|
[66] |
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.
CrossRef
Google scholar
|
[67] |
Raggi, P., Lopez, P., Diaz, A., Carrasco, D., Silva, A., Velez, A., Opazo, R., Magne, F., Navarrete, P.A., 2014. Debaryomyces hansenii and Rhodotorula mucilaginosa comprised the yeast core gut microbiota of wild and reared carnivorous salmonids, croaker and yellowtail. Environmental Microbiology16, 2791–2803.
CrossRef
Google scholar
|
[68] |
Samuel, B.S., Rowedder, H., Braendle, C., Félix, M.A., Ruvkun, G. 2016. Caenorhabditis elegans responses to bacteria from its natural habitats. Proceedings of the National Academy of Sciences of the United States of America113, E3941–E3949.
|
[69] |
Shade, A., Handelsman, J., 2012. Beyond the Venn diagram: The hunt for a core microbiome. Environmental Microbiology14, 4–12.
CrossRef
Google scholar
|
[70] |
Smit, C.E., van Gestel, C.A.M., 1997. Influence of temperature on the regulation and toxicity of zinc in Folsomia candida (Collembola). Ecotoxicology and Environmental Safety37, 213–222.
CrossRef
Google scholar
|
[71] |
Smith, C.C.R., Snowberg, L.K., Gregory Caporaso, J., Knight, R., Bolnick, D.I., 2015. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME Journal9, 2515–2526.
CrossRef
Google scholar
|
[72] |
Staaden, S., Milcu, A., Rohlfs, M., Scheu, S., 2011. Olfactory cues associated with fungal grazing intensity and secondary metabolite pathway modulate Collembola foraging behaviour. Soil Biology & Biochemistry43, 1411–1416.
CrossRef
Google scholar
|
[73] |
Stagaman, K., Burns, A.R., Guillemin, K., Bohannan, B.J.M., 2017. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish. ISME Journal11, 1630–1639.
CrossRef
Google scholar
|
[74] |
Stone, L., Roberts, A., 1990. The checkerboard score and species distributions. Oecologia85, 74–79.
CrossRef
Google scholar
|
[75] |
Tinker, K.A., Ottesen, E.A., 2016. The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Applied and Environmental Microbiology82, 6603–6610.
CrossRef
Google scholar
|
[76] |
Torres, D.E., Rojas-Martínez, R.I., Zavaleta-Mejía, E., Guevara-Fefer, P., Márquez-Guzmán, G.J., Pérez-Martínez, C., 2017. Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn. , the causal agent of chrysanthemum white rust. PLoS One12, e0170782.
CrossRef
Google scholar
|
[77] |
Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., Egholm, M., Henrissat, B., Heath, A.C., Knight, R., Gordon, J.I., 2009. A core gut microbiome in obese and lean twins. Nature457, 480–U7.
CrossRef
Google scholar
|
[78] |
Vikram, S., Arneodo, J.D., Calcagno, J., Ortiz, M., Mon, M.L., Etcheverry, C., Cowan, D.A., Talia, P., 2021. Diversity structure of the microbial communities in the guts of four neotropical termite species. PeerJ9, e10959.
CrossRef
Google scholar
|
[79] |
Wang, Y.F., Qiao, M., Zhu, D., & Zhu, Y.G. 2020. Antibiotic resistance in the collembolan gut microbiome accelerated by the nonantibiotic drug carbamazepine. Environmental Science & Technology54( 17), 10754–10762.
|
[80] |
Wang, Y.F., Chen, P., Wang, F.H., Han, W.X., Qiao, M., Dong, W.X., Hu, C.S., Zhu, D., Chu, H.Y., Zhu, Y.G. 2022. The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. Environment International161, 107133.
|
[81] |
Wei, H., Wang, H., Tang, L., Mu, C., Ye, C., Chen, L., Wang, C., 2019. High-throughput sequencing reveals the core gut microbiota of the mud crab (Scylla paramamosain) in different coastal regions of southern China. BMC Genomics20, 20.
CrossRef
Google scholar
|
[82] |
Wolfarth, F., Schrader, S., Oldenburg, E., Weinert, J., 2013. Nematode–collembolan-interaction promotes the degradation of Fusarium biomass and deoxynivalenol according to soil texture. Soil Biology & Biochemistry57, 903–910.
CrossRef
Google scholar
|
[83] |
Wolfarth, F., Schrader, S., Oldenburg, E., Weinert, J., Brunotte, J., 2017. Collembolans and soil nematodes as biological regulators of the plant pathogen Fusarium culmorum. Journal of Plant Diseases and Protection124, 493–498.
CrossRef
Google scholar
|
[84] |
Xiang, Q., Zhu, D., Chen, Q.L., Delgado-Baquerizo, M., Su, J.Q., Qiao, M., Yang, X.R., Zhu, Y.G., 2019. Effects of diet on gut microbiota of soil collembolans. Science of the Total Environment676, 197–205.
CrossRef
Google scholar
|
[85] |
Xiao, F., Zhu, W., Yu, Y., He, Z., Wu, B., Wang, C., Shu, L., Li, X., Yin, H., Wang, J., Juneau, P., Zheng, X., Wu, Y., Li, J., Chen, X., Hou, D., Huang, Z., He, J., Xu, G., Xie, L., Huang, J., Yan, Q., 2021. Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota. NPJ Biofilms and Microbiomes7, 5.
CrossRef
Google scholar
|
[86] |
Yang, J., Yang, Y., Wu, W.M., Zhao, J., Jiang, L., 2014. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology48, 13776–13784.
CrossRef
Google scholar
|
[87] |
Yang, Y., Yang, J., Wu, W.M., Zhao, J., Song, Y.L., Gao, L.C., Yang, R.F., Jiang, L., 2015. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science & Technology49, 12087–12093.
CrossRef
Google scholar
|
[88] |
Zhu, D., Chen, Q.L., An, X.L., Yang, X.R., Christie, P., Ke, X., Wu, L.H., Zhu, Y.G., 2018. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biology & Biochemistry116, 302–310.
CrossRef
Google scholar
|
[89] |
Zhu, D., Ke, X., Wu, L., Christie, P., Luo, Y., 2016. Biological transfer of dietary cadmium in relation to nitrogen transfer and 15N fractionation in a soil collembolan-predatory mite food chain. Soil Biology & Biochemistry101, 207–216.
CrossRef
Google scholar
|
[90] |
Zhu, D., Wang, H., Zheng, F., Yang, X., Christie, P., Zhu, Y., 2019. Collembolans accelerate the dispersal of antibiotic resistance genes in the soil ecosystem. Soil Ecology Letters1, 14–21.
CrossRef
Google scholar
|
[91] |
Zhu, L., 2022. New challenges in the study of the evolution of wild animals and their gut microbiome. Ecology and Evolution12, e8904.
CrossRef
Google scholar
|
/
〈 | 〉 |