Mechanistic insights toward identification and interaction of plant parasitic nematodes: A review

Bisma Jan, Ali Haider Shah, Mudasir Ahmad Bhat, Arif Tasleem Jan, Ishfaq Ahmad Wani, Ali Asghar Shah

PDF(2070 KB)
PDF(2070 KB)
Soil Ecology Letters ›› 2024, Vol. 6 ›› Issue (1) : 230186. DOI: 10.1007/s42832-023-0186-2
REVIEW
REVIEW

Mechanistic insights toward identification and interaction of plant parasitic nematodes: A review

Author information +
History +

Highlights

● Nematode identification serves as an important parameter to study their behaviour, importance and pathogenicity.

● Application of classical morphometric based identification methods prove to be lacking due to insufficient knowledge on morphological variations among closely related taxa. Molecular approaches such as DNA and protein-based information, microarray, probing, sequence-based methods and others have been used to supplement morphology-based methods for nematode identification.

● Ascarosides and certain protein-based nematode-associated molecular patterns (NAMPs), can be perceived by the host plants, and can initiate a signalling cascade.

● This review primarily emphasizes on an updated account of different classical and modern tools used for the identification of nematodes. Besides we also summarize the mechanism of some important signalling pathways which are involved in the different plant nematode interactions.

Abstract

Nematodes constitute most diverse and least studied group of soil inhabiting invertebrates. They are ecologically and physiologically important, however, wide range of nematodes show harmful impact on the individuals that live within their vicinity. Plant parasitic nematodes (PPNs) are transparent, pseudocoelomate, free living or parasitic microorganisms. PPNs lack morphometric identification methods due to insufficient knowledge on morphological variations among closely related taxa. As such, molecular approaches such as DNA and protein-based information, microarray, probing, sequence-based methods and others have been used to supplement morphology-based methods for their identification. To invade the defense response of different plant species, parasitic nematodes have evolved different molecular strategies. Ascarosides and certain protein-based nematode-associated molecular patterns (NAMPs), can be perceived by the host plants, and can initiate a signaling cascade. To overcome the host confrontation and develop certain nematode feeding sites, some members can inject effectors into the cells of susceptible hosts to reprogram the basal resistance signaling. This review primarily emphasizes on an updated account of different classical and modern tools used for the identification of PPNs. Besides we also summarize the mechanism of some important signaling pathways which are involved in the different plant nematode interactions.

Graphical abstract

Keywords

nematode identification / plant nematode interaction / DNA fingerprinting / nematode-associated molecular patterns / signaling pathways

Cite this article

Download citation ▾
Bisma Jan, Ali Haider Shah, Mudasir Ahmad Bhat, Arif Tasleem Jan, Ishfaq Ahmad Wani, Ali Asghar Shah. Mechanistic insights toward identification and interaction of plant parasitic nematodes: A review. Soil Ecology Letters, 2024, 6(1): 230186 https://doi.org/10.1007/s42832-023-0186-2

References

[1]
Abad, P., Gouzy, J., Aury, J.M., Castagnone-Sereno, P., Danchin, E.G., Deleury, E., Wincker, P., 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology26, 909–915.
CrossRef Google scholar
[2]
Abd Elazim, A.M., Khashaba, E.H., Ibrahim, S.A., 2019. Genetic polymorphism among seven entomopathogenic nematode species (Steinernematidae) revealed by RAPD and SRAP analyses. Egyptian Journal of Biological Pest Control29, 1–7.
CrossRef Google scholar
[3]
Abd-Elgawad, M.M., 2021. Biological control of nematodes infecting eggplant in Egypt. Bulletin of the National Research Center45, 1–9.
CrossRef Google scholar
[4]
Abebe, E., Mekete, T., Thomas, W.K., 2011. A critique of current methods in nematode taxonomy. African Journal of Biotechnology10, 312–323.
[5]
Absmanner, B., Stadler, R., Hammes, U.Z., 2013. Phloem development in nematode-induced feeding sites: the implications of auxin and cytokinin. Frontiers in Plant Science4, 241.
CrossRef Google scholar
[6]
Adams, B.J., 2001. The species delimitation uncertainty principle. Journal of Nematology33, 153.
[7]
Akintayo, A., Tylka, G.L., Singh, A.K., Ganapathysubramanian, B., Singh, A., Sarkar, S., Ganapathysubramanian B, Singh A, Sarkar S., 2018. A deep learning framework to discern and count microscopic nematode eggs. Scientific Reports8, 9145.
CrossRef Google scholar
[8]
Akram, S., Khan, S.A., Javed, N., Ahmad, S., 2020. Integrated management of root knot nematode Meloidogyne graminicola golden and Birchfield Parasitizing on wheat. Pakistan Journal of Zoology52, 1299.
CrossRef Google scholar
[9]
Ali, M.A., Azeem, F., Li, H., Bohlmann, H., 2017. Smart parasitic nematodes use multifaceted strategies to parasitize plants. Frontiers in Plant Science8, 1699.
CrossRef Google scholar
[10]
Ali, M.A., Wieczorek, K., Kreil, D.P., Bohlmann, H., 2014. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots. PLoS One9, e102360.
CrossRef Google scholar
[11]
Bartel, D.P., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297.
CrossRef Google scholar
[12]
Basyoni, M., Rizk, E., 2016. Nematodes ultrastructure: complex systems and processes. Journal of Parasitic Diseases : Official Organ of the Indian Society for Parasitology40, 1130–1140.
CrossRef Google scholar
[13]
Baujard, P., Martiny, B., 1994. Transport of nematodes by wind in the peanut cropping area of Senegal, West Africa. Fundamental and Applied Nematology17, 543–550.
[14]
Bekal, S., Niblack, T.L., Lambert, K.N., 2003. A chorismate mutase from the soybean cyst nematode Heterodera glycine shows polymorphisms that correlate with virulence. Molecular Plant-Microbe Interactions16, 439–446.
CrossRef Google scholar
[15]
Bhatta, H., Goldys, E.M., Learmonth, R.P., 2006. Use of fluorescence spectroscopy to differentiate yeast and bacterial cells. Applied Microbiology and Biotechnology71, 121–126.
CrossRef Google scholar
[16]
Bhattarai, K.K., Xie, Q.G., Mantelin, S., Bishnoi, U., Girke, T., Navarre, D.A., Kaloshian, I., 2008. Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway. Molecular Plant-Microbe Interactions21, 1205–1214.
CrossRef Google scholar
[17]
Bird, A.F., 1959. The attractiveness of roots to the plant parasitic nematodes Meloidogyne javanica and M. hapla. Nematologica4, 322–335.
CrossRef Google scholar
[18]
Bird, A.F., 1964. Serological studies on the plant parasitic nematode, Meloidogyne javanica. Experimental Parasitology15, 350–360.
CrossRef Google scholar
[19]
Bird, D.M., Kaloshian, I., 2003. Are roots special? Nematodes have their say. Physiological and Molecular Plant Pathology62, 115–123.
CrossRef Google scholar
[20]
Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Floyd, R., Abebe, E., 2011. Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences360, 1935–1943.
CrossRef Google scholar
[21]
Blaxter, M.L., De Ley, P., Garey, J.R., Liu, L.X., Scheldeman, P., Vierstraete, A., Vanfleteren, J.R., Mackey, L.Y., Dorris, M., Frisse, L.M., Vida, J.T., Thomas, W.K., 1998. A molecular evolutionary framework for the phylum Nematoda. Nature392, 71–75.
CrossRef Google scholar
[22]
Boerma, H.R., Hussey, R.S., 1992. Breeding plants for resistance to nematodes. Journal of Nematology24, 242.
[23]
Borges, F., Martienssen, R.A., 2015. The expanding world of small RNAs in plants. Nature Reviews. Molecular Cell Biology16, 727–741.
CrossRef Google scholar
[24]
Branch, C., Hwang, C.F., Navarre, D.A., Williamson, V.M., 2004. Salicylic acid is part of the Mi-1-mediated defense response to root-knot nematode in tomato. Molecular Plant-Microbe Interactions17, 351–356.
CrossRef Google scholar
[25]
Brandt, J.P., Ringstad, N., 2015. Toll-like receptor signaling promotes development and function of sensory neurons required for a C. elegans pathogen-avoidance behavior. Current Biology25, 2228–2237.
CrossRef Google scholar
[26]
Bu, Y., Niu, H., Zhang, L., 2013. Phylogenetic analysis of the genus Cylicocyclus (Nematoda: Strongylidae) based on nuclear ribosomal sequence data. Acta Parasitologica58, 167–173.
CrossRef Google scholar
[27]
Cabrera, J., Barcala Rodríguez, M., García Ruiz, A., Río-Machín, A., Medina, C., Jaubert- Possamai, S., Favery, B., Maizel, A., Ruiz-Ferrer, V., Fenoll, C., Escobar, C., 2015. Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs. New Phytologist209, 1625–1640.
[28]
Chitwood, B.G., 1949. ‘Root-knot nematodes’. Part 1. A revision of the genus Meloidogyne Goeldi, 1887. Proceedings of the Helminthological Society of Washington 16, 90–114
[29]
Choe, A., von Reuss, S.H., Kogan, D., Gasser, R.B., Platzer, E.G., Schroeder, F.C., Sternberg, P.W., 2012. Ascaroside signaling is widely conserved among nematodes. Current Biology22, 772–780.
CrossRef Google scholar
[30]
Choi, H.W., Klessig, D.F., 2016. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biology16, 1–10.
CrossRef Google scholar
[31]
Cook, R., Noel, G.R., 2002. Cyst Nematodes: Globodera and Heterodera species. In: Starr, J.L., Cook, R., Bridge, J., eds. Plant Resistance to Parasitic Nematodes. CABI: Wallingford, CT, USA, 71–105, ISBN 9780851994666
[32]
Correa, V.R., Dos Santos, M.F.A., Almeida, M.R.A., Peixoto, J.R., Castagnone-Sereno, P., Carneiro, R.M.D.G., 2013. Species-specific DNA markers for identification of two root-knot nematodes of coffee: Meloidogyne arabicida and M. izalcoensis. European Journal of Plant Pathology137, 305–313.
CrossRef Google scholar
[33]
Cui, H., Tsuda, K., Parker, J.E., 2015. Effector-triggered immunity: from pathogen perception to robust defense. Annual Review of Plant Biology66, 487–511.
CrossRef Google scholar
[34]
Da Cunha, T.G., Visôtto, L.E., Lopes, E.A., Oliveira, C.M.G., God, P.I.V.G., 2018. Diagnostic methods for identification of root-knot nematode species from Brazil. Ciência Rural,48, 1–11.
[35]
Dautova, M., Rosso, M.N., Abad, P., Gommers, F., Bakker, J., Smant, G., 2001. Single pass cDNA sequencing-a powerful tool to analyse gene expression in preparasitic juveniles of the southern root-knot nematode Meloidogyne incognita. Nematology3, 129–139.
CrossRef Google scholar
[36]
Davies, K.G., Spiegel, Y., 2011. Biological control of plant-parasitic nematodes: towards understanding field variation through molecular mechanisms. In Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht. pp. 493–516
[37]
De-Oliveira, C., Monteiro, A.R., Blok, V.C., 2011. Morphological and molecular diagnostics for plant-parasitic nematodes: working together to get the identification done. Tropical Plant Pathology36, 65–73.
[38]
Derycke, S., Vanaverbeke, J., Rigaux, A., Backeljau, T., Moens, T., 2010. Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLoS One5, e13716.
CrossRef Google scholar
[39]
Dodds, P.N., Rathjen, J.P., 2010. Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics11, 539–548.
CrossRef Google scholar
[40]
Doyle, E.A., Lambert, K.N., 2002. Cloning and characterization of an esophageal-gland-specific pectate lyase from the root-knot nematode Meloidogyne javanica. Molecular Plant-Microbe Interactions15, 549–556.
CrossRef Google scholar
[41]
Eisenback, J.D., Hunt, D.J., 2009. General Morphology. In Perry, R.N., Moens, M., Starr, J.L., eds. Root Knot Nematodes. CABI: Wallingford, CT, USA, 18–54, ISBN 9781845934927
[42]
Eisenback, J.D., Hirschmann, H., Triantaphyllou, A.C., 1980. Morphological comparison of Meloidogyne female head structures, perineal patterns, and stylets. Journal of Nematology12, 300.
[43]
Elling, A., 2013. Major emerging problems with minor Meledogyne species. Phytopathology103, 1092–1102.
CrossRef Google scholar
[44]
El-Sagheer, A.M., 2019. Plant Responses to Phytonematodes Infestations. In: Ansari, R.A., Mahmood, I., eds. Plant Health Under Biotic Stress. Springer, Singapore. pp. 161–175
[45]
Esbenshade, P.R., Triantaphyllou, A.C., 1990. Use of enzyme phenotypes for identification of Meloidogyne species. Journal of Nematology17, 6.
[46]
Evans, A.A., Perry, R.N., 2009. Survival Mechanisms. CABI: Wallingford, CT, USA, 201–222
[47]
Floyd, R., Abebe, E., Papert, A., Blaxter, M. 2002. Molecular barcodes for soil nematode identification. Molecular Ecology11, 839–850.
CrossRef Google scholar
[48]
François, C., Kebdani, N., Barker, I., Tomlinson, J., Boonham, N., Castagnone-Sereno, P., 2006. Towards specific diagnosis of plant-parasitic nematodes using DNA oligonucleotide microarray technology: a case study with the quarantine species Meloidogyne chitwoodi. Molecular and Cellular Probes20, 64–69.
CrossRef Google scholar
[49]
Fuller, V.L., Lilley, C.J., Urwin, P.E., 2008. Nematode resistance. New Phytologist180, 27–44.
CrossRef Google scholar
[50]
Gang, S.S., Hallem, E.A., 2016. Mechanisms of host seeking by parasitic nematodes. Molecular and Biochemical Parasitology208, 23–32.
CrossRef Google scholar
[51]
Gebremikael, M.T., Steel, H., Buchan, D., Bert, W., De Neve, S., 2016. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. Scientific Reports6, 1–10.
CrossRef Google scholar
[52]
Ghareeb, R.Y., Hafez, E.E., Ibrahim, D.S., 2020. Current Management Strategies for Phytoparasitic Nematodes. In: Ansari, R.A., Rizvi, R., Mahmood, I., eds. Management of Phytonematodes: Recent Advances and Future Challenges. Springer, Singapore, pp. 339–352
[53]
Gheysen, G., Mitchum, M.G., 2011. How nematodes manipulate plant development pathways for infection. Current Opinion in Plant Biology14, 415–421.
CrossRef Google scholar
[54]
Goellner, M., Smant, G., De Boer, J.M., Baum, T.J., Davis, E.L., 2000. Isolation of beta-1,4-endoglucanase genes from Globodera tabacum and their expression during parasitism. Journal of Nematology32, 154.
[55]
Goggin, F.L., Williamson, V.M., Ullman, D.E., 2001. Variability in the response of Macrosiphum euphorbiae and Myzus persicae (Hemiptera: Aphididae) to the tomato resistance gene Mi. Environmental Entomology30, 101–106.
CrossRef Google scholar
[56]
Goverse, A., Overmars, H., Engelbertink, J., Schots, A., Bakker, J., Helder, J., 2000. Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin. Molecular Plant-Microbe Interactions13, 1121–1129.
CrossRef Google scholar
[57]
Green, C.D., 1975. The vulval cone and associated structures of some cyst nematodes (Genus Heterodera). Nematologica,21, 134–144.
CrossRef Google scholar
[58]
Guo, X., Wang, J., Gardner, M., Fukuda, H., Kondo, Y., Etchells, J.P., Wang, X., Mitchum, M.G., 2017. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation. PLoS Pathogens13, e1006142.
CrossRef Google scholar
[59]
Guo, Y., Ni, J., Denver, R., Wang, X., Clark, S.E., 2011. Mechanisms of molecular mimicry of plant CLE peptide ligands by the parasitic nematode Globodera rostochiensis. Plant Physiology157, 476–484.
CrossRef Google scholar
[60]
Hadziavdic, K., Lekang, K., Lanzen, A., Jonassen, I., Thompson, E.M., Troedsson, C., 2014. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One9, e87624.
CrossRef Google scholar
[61]
Hamamouch, N., Li, C., Seo, P.J., Park, C.M., Davis, E.L., 2011. Expression of Arabidopsis pathogenesis-related genes during nematode infection. Molecular Plant Pathology12, 355–364.
CrossRef Google scholar
[62]
Handoo, Z.A., Skantar, A.M., Hafez, S.L., Kantor, M.R., Hult, M.N., Rogers, S.A., 2020. Molecular and morphological characterization of the alfalfa cyst nematode, from Utah. Journal of Nematology 52, 1–4
[63]
Hebert, P.D., Ratnasingham, S., De Waard, J.R., 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B, Biological Sciences270, S96–S99.
[64]
Hewezi, T., 2015. Cellular signaling pathways and posttranslational modifications mediated by nematode effector proteins. Plant Physiology169, 1018–1026.
CrossRef Google scholar
[65]
Hewezi, T., Baum, T.J., 2015. Manipulation of plant cells by cyst and root-knot nematode effectors. Molecular Plant-Microbe Interactions26, 9–16.
CrossRef Google scholar
[66]
Hewezi, T., Howe, P., Maier, T.R., Baum, T.J., 2008. Arabidopsis small RNAs and their targets during cyst nematode parasitism. Molecular Plant-Microbe Interactions21, 1622–1634.
CrossRef Google scholar
[67]
Hewezi, T., Maier, T.R., Nettleton, D., Baum, T.J., 2012. The Arabidopsis microRNA396- GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiology159, 321–335.
CrossRef Google scholar
[68]
Holbein, J., Grundler, F.M., Siddique, S., 2016. Plant basal resistance to nematodes: an update. Journal of Experimental Botany67, 2049–2061.
CrossRef Google scholar
[69]
Hugenholtz, P., Goebel, B.M., Pace, N.R., 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology180, 4765–4774.
CrossRef Google scholar
[70]
Ivarson, K.C., Sowden, F.J., 1969. Free amino acid composition of the plant root environment under field conditions. Canadian Journal of Soil Science49, 121–127.
CrossRef Google scholar
[71]
Janeway, C.A. Jr, Medzhitov, R., 2002. Innate immune recognition. Annual Review of Immunology20, 197–216.
CrossRef Google scholar
[72]
Jones, J.T., Haegeman, A., Danchin, E.G., Gaur, H.S., Helder, J., Jones, M.G., Kikuchi, T., Manzanilla-López, R., Palomares-Rius, J.E., Wesemael, W.M.L., Perry, R.N., 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology14, 946–961.
CrossRef Google scholar
[73]
Kandoth, P.K., Ithal, N., Recknor, J., Maier, T., Nettleton, D., Baum, T.J., Mitchum, M.G., 2018. The soybean Rhg1 locus for resistance to the soybean cyst nematode Heterodera glycines regulates the expression of a large number of stress-and defense-related genes in degenerating feeding cells. Plant Physiology155, 1960–1975.
CrossRef Google scholar
[74]
Kaplan, F., Srinivasan, J., Mahanti, P., Ajredini, R., Durak, O., Nimalendran, R., Sternberg, P.W., Teal, P.E.A., Schroeder, F.C., Edison, A.S., Alborn, H.T., 2011. Ascaroside expression in Caenorhabditis elegans is strongly dependent on diet and developmental stage. PLoS One6, e17804.
CrossRef Google scholar
[75]
Karssen, G., Van Aelst, A., 2001. Root-knot nematode perineal pattern development: a reconsideration. Nematology3, 95–111.
CrossRef Google scholar
[76]
Klingler, J., 1965. On the orientation of plant nematodes and of some other soil animals. Nematologica11, 4–18.
CrossRef Google scholar
[77]
Krishna, P.B., Eapen, S.J., 2019. Development of a real-time PCR based protocol for quantifying Radopholus similis in field samples. Journal of Spices and Aromatic Crops28, 52–60.
[78]
Lambert, K., Bekal, S., 2002. Introduction to plant-parasitic nematodes. The Plant Health Instructor10, 1094–1218.
[79]
Lee, D.L., ed., 2002. The Biology of Nematodes. CRC Press
[80]
Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., Kim, V.N., 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal23, 4051–4060.
CrossRef Google scholar
[81]
Lehman, P.S., 1994. Dissemination of phytoparasitic nematodes. Nematology Circular, No. 208. Gainesville, Florida, USA
[82]
Long, E.O., Dawid, I.B., 1980. Repeated genes in eukaryotes. Annual Review of Biochemistry49, 727–764.
CrossRef Google scholar
[83]
Macho, A.P., Zipfel, C., 2014. Plant PRRs and the activation of innate immune signaling. Molecular Cell54, 263–272.
CrossRef Google scholar
[84]
Mathews, H.J.P., 1970. Morphology of the nettle cyst nematode Heterodera urticae Cooper, 1955. Nematologica,16, 503–510.
CrossRef Google scholar
[85]
Maggenti, A. 1981.General Nematology. Springer-Verlag, New York, NY
[86]
Manosalva, P., Manohar, M., Von Reuss, S.H., Chen, S., Koch, A., Kaplan, F., Choe, A., Micikas, R.J., Wang, X., Kogel, K.H., Sternberg, P.W., Williamson, V.M., Schroeder, F.C., Klessig, D.F., 2015. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nature Communications6, 1–8.
CrossRef Google scholar
[87]
Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., Zhang, S., 2011. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell23, 1639–1653.
CrossRef Google scholar
[88]
Marek, M., Zouhar, M., Rysanek, P., Havranek, P., 2005. Analysis of ITS sequences of nuclear rDNA and development of a PCR-based assay for the rapid identification of the stem nematode Ditylenchus dipsaci (Nematoda: Anguinidae) in plant tissues. Helminthologia42, 49.
[89]
Mburu, H., Cortada, L., Haukeland, S., Ronno, W., Nyongesa, M., Kinyua, Z., Bargul, J.L., Coyne, D., 2020. Potato cyst nematodes: a new threat to potato production in East Africa. Frontiers in Plant Science11, 670.
CrossRef Google scholar
[90]
McCarter, J.P., Clifton, S.W., Bird, D.M., Waterson, R.H., 2002. Nematode gene sequences, update for June 2002. Journal of nematology,34( 2), 71.
[91]
McCuiston, J.L., Hudson, L.C., Subbotin, S.A., Davis, E.L., Warfield, C.Y., 2007. Conventional and PCR detection of Aphelenchoides fragariae in diverse ornamental host plant species. Journal of Nematology39, 343.
[92]
Medina, C., Da Rocha, M., Magliano, M., Ratpopoulo, A., Revel, B., Marteu, N., et al, . 2017. Characterization of microRNAs from Arabidopsis galls highlights a role for miR159 in the plant response to the root-knot nematode Meloidogyne incognita. New Phytologist216, 882–896.
CrossRef Google scholar
[93]
Mesa-Valle, C.M., Garrido-Cardenas, J.A., Cebrian-Carmona, J., Talavera, M., Manzano-Agugliaro, F., 2020. Global research on plant nematodes. Agronomy (Basel)10, 1148.
CrossRef Google scholar
[94]
Misaghi, I., McClure, M.A., 1974. Antigenic Relationship of Meloidogyne incognita, M. javanica, and M. arenaria. Phytopathology64, 698–701.
CrossRef Google scholar
[95]
Montarry, J., Mimee, B., Danchin, E.G., Koutsovoulos, G.D., Ste-Croix, D.T., Grenier, E., 2021. Recent advances in population genomics of plant-parasitic nematodes. Phytopathology111, 40–48.
CrossRef Google scholar
[96]
Mulvey, R.H., 1972. Identification of Heterodera cysts by terminal and cone top structures. Canadian Journal of Zoology50, 1277–1292.
CrossRef Google scholar
[97]
Murfin, K.E., Dillman, A.R., Foster, J.M., Bulgheresi, S., Slatko, B.E., Sternberg, P.W., Goodrich-Blair, H., 2012. Nematode-bacterium symbioses—cooperation and conflict revealed in the “Omics” age. Biological Bulletin223, 85–102.
CrossRef Google scholar
[98]
Navas, A., López, J.A., Espárrago, G., Camafeita, E., Albar, J.P., 2002. Protein variability in Meloidogyne spp. (Nematoda: Meloidogynidae) revealed by two-dimensional gel electrophoresis and mass spectrometry. Journal of Proteome Research1, 421–427.
CrossRef Google scholar
[99]
Naz, I., Rius, J.E.P., Blok, V., 2013. Species Identification of Root Knot Nematodes in Pakistan By Random Amplified Polymorphic DNA (RAPD-PCR). Sarhad Journal of Agriculture29, 71–78.
[100]
Naz, I., Palomares-Rius, J.E., Blok, V., Ahmad, M., Ali, S., Nombela, G., Williamson, V.M., Muñiz, M., 2003. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Molecular Plant-Microbe Interactions 16, 645–649
[101]
Nzogela, Y.B., 2020. Characterization of Plant-Parasitic Nematodes and Host Resistance in Rice Production in Tanzania. Doctoral dissertation. Ghent University
[102]
Olsen, A.N., Skriver, K., 2003. Ligand mimicry? Plant-parasitic nematode polypeptide with similarity to CLAVATA3.. Trends in Plant Science8, 55–57.
CrossRef Google scholar
[103]
Panda, O., Akagi, A.E., Artyukhin, A.B., Judkins, J.C., Le, H.H., Mahanti, P., Cohen, S.M., Sternberg, P.W., Schroeder, F.C., 2017. Biosynthesis of Modular Ascarosides in C. elegans. Angewandte Chemie129, 4807–4811.
CrossRef Google scholar
[104]
Perry, R.N., 1996. Chemoreception in plant parasitic nematodes. Annual Review of Phytopathology34, 181–199.
CrossRef Google scholar
[105]
Piya, S., Kihm, C., Rice, J.H., Baum, T.J., Hewezi, T., 2017. Cooperative regulatory functions of miR858 and MYB83 during cyst nematode parasitism. Plant Physiology174, 1897–1912.
CrossRef Google scholar
[106]
Pline, M., Dusenbery, D.B., 1987. Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking. Journal of Chemical Ecology13, 873–888.
CrossRef Google scholar
[107]
Popeijus, H., Blok, V., Cardle, L., Bakker, E., Phillips, M., Helder, J., Smant, G., Jones, J., 2000. Analysis of genes expressed in second stage juveniles of the potato cyst nematodes Globodera rostochiensis and G. pallida using the expressed sequence tag approach. Nematology2, 567–574.
CrossRef Google scholar
[108]
Poveda, J., Abril-Urias, P., Escobar, C., 2020. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontiers in Microbiology11, 992.
CrossRef Google scholar
[109]
Powers, T.O., Todd, T.C., Burnell, A.M., Murray, P.C.B., Fleming, C.C., Szalanski, A.L., Adams, B.A., Harris, T.S., 1997. The rDNA internal transcribed spacer region as a taxonomic marker for nematodes. Journal of Nematology29, 441–450.
[110]
Pujol, N., Link, E.M., Liu, L.X., Kurz, C.L., Alloing, G., Tan, M.W., Ray, K.P., Solari, R., Johnson, C.D., Ewbank, J.J., 2001. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Current Biology11, 809–821.
CrossRef Google scholar
[111]
Pulavarty, A., Egan, A., Karpinska, A., Horgan, K., Kakouli-Duarte, T., 2021. Plant Parasitic Nematodes: A review on their behaviour, host interaction, management approaches and their occurrence in two sites in the Republic of Ireland. Plants10, 2352.
CrossRef Google scholar
[112]
Qazi, F., Khalid, A., Poddar, A., Tetienne, J.P., Nadarajah, A., Aburto-Medina, A., Tomljenovic-Hanic, S., 2020. Real-time detection and identification of nematode eggs genus and species through optical imaging. Scientific Reports10, 1–12.
CrossRef Google scholar
[113]
Randig, O., Leroy, F., Castagnone-Sereno, P., 2001. RAPD characterization of single females of the root-knot nematodes, Meloidogyne spp. European Journal of Plant Pathology107, 639–643.
CrossRef Google scholar
[114]
Rasmann, S., Ali, J.G., Helder, J., Van der Putten, W.H., 2012. Ecology and evolution of soil nematode chemotaxis. Journal of Chemical Ecology38, 615–628.
CrossRef Google scholar
[115]
Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., Bartel, D.P., 2002. MicroRNAs in plants. Genes & Development16, 1616–1626.
CrossRef Google scholar
[116]
Rengarajan, S., Hallem, E.A., 2016. Olfactory circuits and behaviors of nematodes. Current Opinion in Neurobiology41, 136–148.
CrossRef Google scholar
[117]
Replogle, A., Wang, J., Paolillo, V., Smeda, J., Kinoshita, A., Durbak, A., Tax, F.E., Wang, X., Sawa, S., Mitchum, M.G., 2013. Synergistic interaction of CLAVATA1, CLAVATA2, and RECEPTOR- LIKE PROTEIN KINASE 2 in cyst nematode parasitism of Arabidopsis. Molecular Plant-Microbe Interactions26, 87–96.
CrossRef Google scholar
[118]
Ricci-Azevedo, R., Roque-Barreira, M.C., Gay, N.J., 2017. Targeting and recognition of toll-like receptors by plant and pathogen lectins. Frontiers in Immunology8, 1820.
CrossRef Google scholar
[119]
Robert-Seilaniantz, A., Grant, M., Jones, J.D., 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology49, 317–343.
CrossRef Google scholar
[120]
Rushton, P.J., Somssich, I.E., Ringler, P., Shen, Q.J., 2010. WRKY transcription factors. Trends in Plant Science15, 247–258.
CrossRef Google scholar
[121]
Sani, Z.R., Haruna, A., 2020. Assessment of soil root-knot nematodes in some selected plant cultivated at nagwamatse farm, Gusau, Zamfara State Nigeria. International Journal for Science for Global Sustainability 6
[122]
Sasser, J.N., Freckman, A.J. 1987. A world perspective on nematology: the role of the society. Vistas on Nematology., 7–14
[123]
Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., White, M.M., 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences,109, 6241–6246.
CrossRef Google scholar
[124]
Schots, A., Hermsen, T., Schouten, S., Gommers, F.J., Egberts, E., 1989. Serological differentiation of the potato-cyst nematodes Globodera pallida and G. rostochiensis: II. reparation and characterization of species specific monoclonal antibodies. Hybridoma8, 401–413.
CrossRef Google scholar
[125]
Semblat, J.P., Wajnberg, E., Dalmasso, A., Abad, P., Castagnone-Sereno, P., 1998. High-resolution DNA fingerprinting of parthenogenetic root-knot nematodes using AFLP analysis. Molecular Ecology7, 119–125.
CrossRef Google scholar
[126]
Siddique, S., Grundler, F.M., 2018. Parasitic nematodes manipulate plant development to establish feeding sites. Current Opinion in Microbiology46, 102–108.
CrossRef Google scholar
[127]
Sidonskaya, E., Schweighofer, A., Shubchynskyy, V., Kammerhofer, N., Hofmann, J., Wieczorek, K., Meskiene, I., 2016. Plant resistance against the parasitic nematode Heterodera schachtii is mediated by MPK3 and MPK6 kinases, which are controlled by the MAPK phosphatase AP2C1 in Arabidopsis. Journal of Experimental Botany67, 107–118.
CrossRef Google scholar
[128]
Singh, V., Aballay, A., 2006. Heat shock and genetic activation of HSF-1 enhance immunity to bacteria. Cell Cycle (Georgetown, Tex.)5, 2443–2446.
CrossRef Google scholar
[129]
Smant, G., Stokkermans, J. P., Yan, Y., De Boer, J. M., Baum, T. J., Wang, X., Hussey, R.S., Gommers, F.J., Henrissat, B., Davis, E.L., Schota, A., Bakker, J. 1998. Endogenous cellulases in animals: isolation of β-1, 4-endoglucanase genes from two species. National Academy of Science, U.S.A.95, 4906–4911.
[130]
Smith, T., Brito, J.A., Han, H., Kaur, R., Cetintas, R., Dickson, D.W., 2015. Identification of the peach root-knot nematode, Meloidogyne floridensis, using mtDNA PCR- RFLP. Nematropica45, 138–143.
[131]
Sommerville, R.I., Davey, K.G., 2002. Diapause in parasitic nematodes. Canadian Journal of Zoology 80, 1817–1840 (review) doi:10.1139/z1817–1840
[132]
Stael, S., Kmiecik, P., Willems, P., Van Der Kelen, K., Coll, N.S., Teige, M., Van Breusegem, N., 2015. Plant innate immunity–sunny side up?. Trends in Plant Science20, 3–11.
CrossRef Google scholar
[133]
Steiner, G., 1925. The Problem of Host Selection and Host Specialization of Certain Plant-Infesting Nemas and Its Application in the Study of Nemic Pests. Phytopathology,15, 499–534.
[134]
Stirling, G.R., Pattison, A.B., 2008. Beyond chemical dependency for managing plant-parasitic nematodes: examples from the banana, pineapple and vegetable industries of tropical and subtropical Australia. Australasian Plant Pathology37, 254–267.
CrossRef Google scholar
[135]
Stone, A.R., 1977. Recent developments and some problems in the taxonomy of cyst nematodes, with a classification of the Heteroderoidea. Nematologica,23, 273–288.
CrossRef Google scholar
[136]
Stone, A.R., 1983. Three Approaches to the Status of a Species Complex, with A Revision of Some Species of Globodera (Nematoda: Heteroderidae). In: Stone, A.R., Platt, H.M., Khalil, L.F., Eds. Concepts in Nematode Systematics, Systematics Association Special Volume. Academic Press: London, UK, 221–223
[137]
Tsuda, K., Katagiri, F., 2012. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology13, 459–465.
CrossRef Google scholar
[138]
Turner, S.J., Subbotin, S.A., 2006. Cyst Nematodes. In: Perry, R.N., Moens, M., Eds. Plant Nematology. CABI: Wallingford, CT, USA, 109–143, ISBN 9781845930561
[139]
Tytgat, T., De Meutter, J., Gheysen, G., Coomans, A., 2000. Sedentary endoparasitic nematodes as a model for other plant parasitic nematodes. Nematology2, 113–121.
CrossRef Google scholar
[140]
Urwin, P.E., Lilley, C.J., Atkinson, H.J., 2002. Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Molecular Plant-Microbe Interactions15, 747–752.
CrossRef Google scholar
[141]
van Megen, H., van den Elsen, S., Holterman, M., Karssen, G., Mooyman, P., Bongers, T., Holovachov, O., Bakker, J., Helder, J., 2009. A phylogenetic tree of nematodes based on about 1200 full- length small subunit ribosomal DNA sequences. Nematology11, 927–950.
CrossRef Google scholar
[142]
Vanholme, B., De Meutter, J., Tytgat, T., Gheysen, G.D., Vanhoutte, I., Gheysen, G.D., 2002. An improved method for whole-mount in situ hybridization of Heterodera schachtii juveniles. Parasitology Research88, 731–733.
CrossRef Google scholar
[143]
Viglierchio, D.R., 1961. Attraction of parasitic nematodes by plant root emanations. Phytopathology5, 136–142.
[144]
Villar-Luna, E., Goméz-Rodriguez, O., Rojas-Martínez, R.I., Zavaleta-Mejía, E., 2016. Presence of Meloidogyne enterolobii on jalapeño pepper (Capsicum annuum L. ) in Sinaloa, Mexico. Helminthologia53, 155–160.
CrossRef Google scholar
[145]
Wang, G., Fiers, M., 2010. CLE peptide signaling during plant development. Protoplasma240, 33–43.
CrossRef Google scholar
[146]
Weiberg, A., Jin, H., 2015. Small RNAs—the secret agents in the plant pathogen interactions. Current Opinion in Plant Biology26, 87–94.
CrossRef Google scholar
[147]
Williamson, V.M., 1999. Plant nematode resistance genes. Current Opinion in Plant Biology2, 327–331.
CrossRef Google scholar
[148]
Williamson, V.M., Hussey, R.S., 1996. Nematode pathogenesis and resistance in plants. Plant Cell8, 1735.
[149]
Williamson, V.M., Kumar, A., 2006. Nematode resistance in plants: the battle underground. Trends in Genetics22, 396–403.
CrossRef Google scholar
[150]
Wubben, M.J. II, Su, H., Rodermel, S.R., Baum, T.J., 2001. Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana. Molecular Plant-Microbe Interactions14, 1206–1212.
CrossRef Google scholar
[151]
Wyss, U., Grundler, F.M.W., 1992. Feeding behavior of sedentary plant parasitic nematodes. Netherlands Journal of Plant Pathology98, 165–173.
CrossRef Google scholar
[152]
Yeates, M.G., 1993. Plant nematodes: methodology, morphology, systematics, biology and ecology. Nematology,11, 319–320.
[153]
Zeppilli, D., Leduc, D., Fontanier, C., Fontaneto, D., Fuchs, S., Gooday, A.J., Goineau, A., Ingels, J., Ivanenko, V.N., Kristensen, R.M., Neves, R.C., Sanchez, N., Sandulli, R., Sarrazin, J., Sørensen, M.V., Tasiemski, A., Vanreusel, A., Autret, M., Bourdonnay, L., Claireaux, M., Coquillé, V., De Wever, L., Rachel, D., Marchant, J., Toomey, L., Fernandes, D., 2018. Characteristics of meiofauna in extreme marine ecosystems: a review. Marine Biodiversity48, 35–71.
CrossRef Google scholar
[154]
Zhao, L., Zhang, X., Wei, Y., Zhou, J., Zhang, W., Qin, P., Chinta, S., Kong, X., Liu, Y., Yu, H., Hu, S., Zou, Z., Butcher, R.A., Sun, J., 2016. Ascarosides coordinate the dispersal of a plant-parasitic nematode with the metamorphosis of its vector beetle. Nature Communications7, 1–8.
CrossRef Google scholar
[155]
Zhao, W., Li, Z., Fan, J., Hu, C., Yang, R., Qi, X., Chen, H., Zhao, F., Wang, S., 2015. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. Journal of Experimental Botany66, 4653–4667.
CrossRef Google scholar
[156]
Zipfel, C., 2014. Plant pattern-recognition receptors. Trends in Immunology35, 345–351.
CrossRef Google scholar
[157]
Zunnke, U., 1991. Observations on the invasion and endoparasitic behavior of the root lesion nematode Pratylenchus penetrans. Journal of Nematology22, 309.

Author contributions

All the authors have contributed equally in drafting the different sections of the manuscript.

Acknowledgements

Authors are highly thankful to Heads, Dept of Botany and Zoology, Baba Ghulam Shah Badshah University, Rajouri, for providing necessary facilities to compile this article. Authors thank Shafkat Wani for his help during the compilation of the manuscript.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(2070 KB)

Accesses

Citations

Detail

Sections
Recommended

/