Diverse organic carbon activates soil microbiome functioning via niche modulation

Thomas Pommier

PDF(234 KB)
PDF(234 KB)
Soil Ecology Letters ›› 2023, Vol. 5 ›› Issue (4) : 230180. DOI: 10.1007/s42832-023-0180-8
COMMENTARY
COMMENTARY

Diverse organic carbon activates soil microbiome functioning via niche modulation

Author information +
History +

Cite this article

Download citation ▾
Thomas Pommier. Diverse organic carbon activates soil microbiome functioning via niche modulation. Soil Ecology Letters, 2023, 5(4): 230180 https://doi.org/10.1007/s42832-023-0180-8

References

[1]
Banerjee, S., van der Heijden, M.G.A., 2023. Soil microbiomes and one health. Nature Reviews Microbiology21, 6–20.
CrossRef Google scholar
[2]
Berendsen, R.L., Pieterse, C.M.J., Bakker, P.A.H.M., 2012. The rhizosphere microbiome and plant health. Trends in Plant Science17, 478–486.
CrossRef Google scholar
[3]
Berihu, M., Somera, T.S., Malik, A., Medina, S., Piombo, E., Tal, O., Cohen, M., Ginatt, A., Ofek-Lalzar, M., Doron-Faigenboim, A., Mazzola, M., Freilich, S., 2023. A framework for the targeted recruitment of crop-beneficial soil taxa based on network analysis of metagenomics data. Microbiome11, 8.
CrossRef Google scholar
[4]
Bonanomi, G., Lorito, M., Vinale, F., Woo, S.L., 2018. Organic amendments, beneficial microbes, and soil microbiota: Toward a unified framework for disease suppression. Annual Review of Phytopathology56, 1–20.
CrossRef Google scholar
[5]
Butler, D., 2013. Fungus threatens top banana. Nature504, 195–196.
CrossRef Google scholar
[6]
Cha, J.Y., Han, S., Hong, H.J., Cho, H., Kim, D., Kwon, Y., Kwon, S.K., Crusemann, M., Bok Lee, Y., Kim, J.F., Giaever, G., Nislow, C., Moore, B.S., Thomashow, L.S., Weller, D.M., Kwak, Y.S., 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME Journal10, 119–129.
CrossRef Google scholar
[7]
Fierer, N., 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology15, 579–590.
CrossRef Google scholar
[8]
Furey, G.N., Tilman, D., 2021. Plant biodiversity and the regeneration of soil fertility. Proceedings of the National Academy of Sciences of the United States of America118, e2111321118.
CrossRef Google scholar
[9]
Gu, Y., Banerjee, S., Dini-Andreote, F., Xu, Y., Shen, Q., Jousset, A., Wei, Z., 2022. Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations. ISME Journal16, 2448–2456.
CrossRef Google scholar
[10]
Guo, S., Tao, C., Jousset, A., Xiong, W., Wang, Z., Shen, Z., Wang, B., Xu, Z., Gao, Z., Liu, S., Li, R., Ruan, Y., Shen, Q., Kowalchuk, G.A., Geisen, S., 2022. Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health. ISME Journal16, 1932–1943.
CrossRef Google scholar
[11]
Hartman, K., van der Heijden, M.G.A., Wittwer, R.A., Banerjee, S., Walser, J.C., Schlaeppi, K., 2018. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome6, 14.
CrossRef Google scholar
[12]
Hartmann, M., Six, J., 2023. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment4, 4–18.
CrossRef Google scholar
[13]
Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J.H.M., Piceno, Y.M., DeSantis, T.Z., Andersen, G.L., Bakker, P.A.H.M., Raaijmakers, J.M., 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science332, 1097–1100.
CrossRef Google scholar
[14]
Patnode, M.L., Beller, Z.W., Han, N.D., Cheng, J., Peters, S.L., Terrapon, N., Henrissat, B., Le Gall, S., Saulnier, L., Hayashi, D.K., Meynier, A., Vinoy, S., Giannone, R.J., Hettich, R.L., Gordon, J.I., 2019. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell179, 59–73.
CrossRef Google scholar
[15]
Raaijmakers, J.M., Mazzola, M., 2016. Soil immune responses. Science352, 1392–1393.
CrossRef Google scholar
[16]
Rosskopf, E., Di Gioia, F., Hong, J.C., Pisani, C., Kokalis-Burelle, N., 2020. Organic amendments for pathogen and nematode control. Annual Review of Phytopathology58, 277–311.
CrossRef Google scholar
[17]
Strange, R.N., Scott, P.R., 2005. Plant disease: a threat to global food security. Annual Review of Phytopathology43, 83–116.
CrossRef Google scholar
[18]
Tao, C., Wang, Z., Liu, S., Lv, N., Deng, X., Xiong, W., Shen, Z., Zhang, N., Geisen, S., Li, R., Shen, Q., Kowalchuk, G.A., 2023. Additive fungal interactions drive biocontrol of Fusarium wilt disease. New Phytologist238, 1198–1214.
CrossRef Google scholar
[19]
Tsiafouli, M.A., Thebault, E., Sgardelis, S.P., de Ruiter, P.C., van der Putten, W.H., Birkhofer, K., Hemerik, L., de Vries, F.T., Bardgett, R.D., Brady, M.V., Bjornlund, L., Jorgensen, H.B., Christensen, S., Hertefeldt, T.D., Hotes, S., Gera Hol, W.H., Frouz, J., Liiri, M., Mortimer, S.R., Setala, H., Tzanopoulos, J., Uteseny, K., Pizl, V., Stary, J., Wolters, V., Hedlund, K., 2015. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology21, 973–985.
CrossRef Google scholar
[20]
Yang, K., Wang, X., Hou, R., Lu, C., Fan, Z., Li, J., Wang, S., Xu, Y., Shen, Q., Friman, V.P., Wei, Z., 2023. Rhizosphere phage communities drive soil suppressiveness to bacterial wilt disease. Microbiome11, 16.
CrossRef Google scholar
[21]
Yu, R.P., Lambers, H., Callaway, R.M., Wright, A.J., Li, L. 2021. Belowground facilitation and trait matching: two or three to tango?. Trends in Plant Science26, 1227–1235.
CrossRef Google scholar
[22]
Yuan, X., Hong, S., Xiong, W., Raza, W., Shen, Z., Wang, B., Li, R., Ruan, Y., Shen, Q., Dini-Andreote, F., 2021. Development of fungal-mediated soil suppressiveness against Fusarium wilt disease via plant residue manipulation. Microbiome9, 200.
CrossRef Google scholar
[23]
Zhalnina, K., Louie, K.B., Hao, Z., Mansoori, N., da Rocha, U.N., Shi, S., Cho, H., Karaoz, U., Loqué, D., Bowen, B.P., Firestone, M.K., Northen, T.R., Brodie, E.L., 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology3, 470–480.
CrossRef Google scholar
[24]
Zhou, X., Liu, L., Zhao, J., Zhang, J., Cai, Z., Huang, X., 2023. High carbon resource diversity enhances the certainty of successful plant pathogen and disease control. New Phytologist237, 1333–1346.
CrossRef Google scholar
[25]
Zhou, X., Wang, J., Liu, F., Liang, J., Zhao, P., Tsui, C.K.M., Cai, L., 2022. Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease. Nature Communications13, 7890.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Mindmap
PDF(234 KB)

Accesses

Citations

Detail

Sections
Recommended

/