Diverse organic carbon activates soil microbiome functioning via niche modulation

Thomas Pommier

Soil Ecology Letters ›› 2023, Vol. 5 ›› Issue (4) : 230180

PDF (234KB)
Soil Ecology Letters ›› 2023, Vol. 5 ›› Issue (4) : 230180 DOI: 10.1007/s42832-023-0180-8
COMMENTARY
COMMENTARY

Diverse organic carbon activates soil microbiome functioning via niche modulation

Author information +
History +
PDF (234KB)

Cite this article

Download citation ▾
Thomas Pommier. Diverse organic carbon activates soil microbiome functioning via niche modulation. Soil Ecology Letters, 2023, 5(4): 230180 DOI:10.1007/s42832-023-0180-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Banerjee, S., van der Heijden, M.G.A., 2023. Soil microbiomes and one health. Nature Reviews Microbiology21, 6–20.

[2]

Berendsen, R.L., Pieterse, C.M.J., Bakker, P.A.H.M., 2012. The rhizosphere microbiome and plant health. Trends in Plant Science17, 478–486.

[3]

Berihu, M., Somera, T.S., Malik, A., Medina, S., Piombo, E., Tal, O., Cohen, M., Ginatt, A., Ofek-Lalzar, M., Doron-Faigenboim, A., Mazzola, M., Freilich, S., 2023. A framework for the targeted recruitment of crop-beneficial soil taxa based on network analysis of metagenomics data. Microbiome11, 8.

[4]

Bonanomi, G., Lorito, M., Vinale, F., Woo, S.L., 2018. Organic amendments, beneficial microbes, and soil microbiota: Toward a unified framework for disease suppression. Annual Review of Phytopathology56, 1–20.

[5]

Butler, D., 2013. Fungus threatens top banana. Nature504, 195–196.

[6]

Cha, J.Y., Han, S., Hong, H.J., Cho, H., Kim, D., Kwon, Y., Kwon, S.K., Crusemann, M., Bok Lee, Y., Kim, J.F., Giaever, G., Nislow, C., Moore, B.S., Thomashow, L.S., Weller, D.M., Kwak, Y.S., 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME Journal10, 119–129.

[7]

Fierer, N., 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology15, 579–590.

[8]

Furey, G.N., Tilman, D., 2021. Plant biodiversity and the regeneration of soil fertility. Proceedings of the National Academy of Sciences of the United States of America118, e2111321118.

[9]

Gu, Y., Banerjee, S., Dini-Andreote, F., Xu, Y., Shen, Q., Jousset, A., Wei, Z., 2022. Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations. ISME Journal16, 2448–2456.

[10]

Guo, S., Tao, C., Jousset, A., Xiong, W., Wang, Z., Shen, Z., Wang, B., Xu, Z., Gao, Z., Liu, S., Li, R., Ruan, Y., Shen, Q., Kowalchuk, G.A., Geisen, S., 2022. Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health. ISME Journal16, 1932–1943.

[11]

Hartman, K., van der Heijden, M.G.A., Wittwer, R.A., Banerjee, S., Walser, J.C., Schlaeppi, K., 2018. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome6, 14.

[12]

Hartmann, M., Six, J., 2023. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment4, 4–18.

[13]

Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J.H.M., Piceno, Y.M., DeSantis, T.Z., Andersen, G.L., Bakker, P.A.H.M., Raaijmakers, J.M., 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science332, 1097–1100.

[14]

Patnode, M.L., Beller, Z.W., Han, N.D., Cheng, J., Peters, S.L., Terrapon, N., Henrissat, B., Le Gall, S., Saulnier, L., Hayashi, D.K., Meynier, A., Vinoy, S., Giannone, R.J., Hettich, R.L., Gordon, J.I., 2019. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell179, 59–73.

[15]

Raaijmakers, J.M., Mazzola, M., 2016. Soil immune responses. Science352, 1392–1393.

[16]

Rosskopf, E., Di Gioia, F., Hong, J.C., Pisani, C., Kokalis-Burelle, N., 2020. Organic amendments for pathogen and nematode control. Annual Review of Phytopathology58, 277–311.

[17]

Strange, R.N., Scott, P.R., 2005. Plant disease: a threat to global food security. Annual Review of Phytopathology43, 83–116.

[18]

Tao, C., Wang, Z., Liu, S., Lv, N., Deng, X., Xiong, W., Shen, Z., Zhang, N., Geisen, S., Li, R., Shen, Q., Kowalchuk, G.A., 2023. Additive fungal interactions drive biocontrol of Fusarium wilt disease. New Phytologist238, 1198–1214.

[19]

Tsiafouli, M.A., Thebault, E., Sgardelis, S.P., de Ruiter, P.C., van der Putten, W.H., Birkhofer, K., Hemerik, L., de Vries, F.T., Bardgett, R.D., Brady, M.V., Bjornlund, L., Jorgensen, H.B., Christensen, S., Hertefeldt, T.D., Hotes, S., Gera Hol, W.H., Frouz, J., Liiri, M., Mortimer, S.R., Setala, H., Tzanopoulos, J., Uteseny, K., Pizl, V., Stary, J., Wolters, V., Hedlund, K., 2015. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology21, 973–985.

[20]

Yang, K., Wang, X., Hou, R., Lu, C., Fan, Z., Li, J., Wang, S., Xu, Y., Shen, Q., Friman, V.P., Wei, Z., 2023. Rhizosphere phage communities drive soil suppressiveness to bacterial wilt disease. Microbiome11, 16.

[21]

Yu, R.P., Lambers, H., Callaway, R.M., Wright, A.J., Li, L. 2021. Belowground facilitation and trait matching: two or three to tango?. Trends in Plant Science26, 1227–1235.

[22]

Yuan, X., Hong, S., Xiong, W., Raza, W., Shen, Z., Wang, B., Li, R., Ruan, Y., Shen, Q., Dini-Andreote, F., 2021. Development of fungal-mediated soil suppressiveness against Fusarium wilt disease via plant residue manipulation. Microbiome9, 200.

[23]

Zhalnina, K., Louie, K.B., Hao, Z., Mansoori, N., da Rocha, U.N., Shi, S., Cho, H., Karaoz, U., Loqué, D., Bowen, B.P., Firestone, M.K., Northen, T.R., Brodie, E.L., 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology3, 470–480.

[24]

Zhou, X., Liu, L., Zhao, J., Zhang, J., Cai, Z., Huang, X., 2023. High carbon resource diversity enhances the certainty of successful plant pathogen and disease control. New Phytologist237, 1333–1346.

[25]

Zhou, X., Wang, J., Liu, F., Liang, J., Zhao, P., Tsui, C.K.M., Cai, L., 2022. Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease. Nature Communications13, 7890.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (234KB)

1278

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/