Response of soil macrofauna to urban park reconstruction

Olexander Zhukov, Olga Kunakh, Nadiia Yorkina, Anna Tutova

PDF(3448 KB)
PDF(3448 KB)
Soil Ecology Letters ›› 2023, Vol. 5 ›› Issue (2) : 220156. DOI: 10.1007/s42832-022-0156-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Response of soil macrofauna to urban park reconstruction

Author information +
History +

Highlights

● Soil penetration resistance increases as a result of park reconstruction.

● Soil compaction explains one-third of the variability in soil macrofauna.

● The abundance of the earthworm Aporrectodea rosea increases after reconstruction.

● The abundance of the earthworm A. calliginosa decreases after reconstruction.

Abstract

This study is based on a park in an industrial city in Ukraine. In 2019, a 2.8 ha area of the park was reconstructed. The park’s reconstruction aimed to create a comfortable environment for visitors and to improve the efficiency of ecosystem services, and thereby enhance the quality of life of citizens. The reconstruction of the park was found to cause changes in the physical properties of soils and the structure of the soil macrofauna community. The increases of soil compaction in the layers at depth 5–20 cm and the soil electrical conductivity were a consequence of technological operations during reconstruction. The park reconstruction activities can also explain 29% of the variation in the soil macrofauna community. Extracting the variation induced by the park reconstruction from the community variation induced by other causes was a major challenge. The specific changes in the community of soil macrofauna following the reconstruction of the park were revealed. The abundance of soil animal species A. rosea, A. trapezoides, H. affinis, H. rufipes, B. affinis was found to increase after the reconstruction. The earthworm A. trapezoides decreased in abundance due to the park reconstruction.

Graphical abstract

Keywords

ecosystem services / soil physical properties / community ordination / urban park management / variation partitioning

Cite this article

Download citation ▾
Olexander Zhukov, Olga Kunakh, Nadiia Yorkina, Anna Tutova. Response of soil macrofauna to urban park reconstruction. Soil Ecology Letters, 2023, 5(2): 220156 https://doi.org/10.1007/s42832-022-0156-0

References

[1]
Abbott, I., 1980. Do earthworms compete for food? Soil Biology & Biochemistry 12, 523–530
[2]
Albers, R.A.W., Bosch, P.R., Blocken, B., van den Dobbelsteen, A.A.J.F., van Hove, L.W.A., Spit, T.J.M., van de Ven, F., van Hooff, T., Rovers, V., 2015. Overview of challenges and achievements in the climate adaptation of cities and in the Climate Proof Cities program. Building and Environment83, 1–10.
CrossRef Google scholar
[3]
Alberti, M., Palkovacs, E.P., Des Roches, S., De Meester, L., Brans, K.I., Govaert, L., Grimm, N.B., Harris, N.C., Hendry, A.P., Schell, C.J., Szulkin, M., Munshi-South, J., Urban, M.C., Verrelli, B.C., 2020. The complexity of urban eco-evolutionary dynamics. Bioscience70, 772–793.
CrossRef Google scholar
[4]
Alvarez, C.R., Taboada, M.A., Gutierrez Boem, F.H., Bono, A., Fernandez, P.L., Prystupa, P., 2009. Topsoil properties as affected by tillage systems in the rolling pampa region of Argentina. Soil Science Society of America Journal73, 1242–1250.
CrossRef Google scholar
[5]
Anderson, J., Ingram, J., 1993. Tropical soil biology and fertility: A handbook of methods. Soil Science157, 265.
[6]
Arantes, L.T., Carvalho, A.C.P., Carvalho, A.P.P., Lorandi, R., Moschini, L.E., Di Lollo, J.A., 2021. Surface runoff associated with climate change and land use and land cover in southeast region of Brazil. Environ Challenges3, 100054.
CrossRef Google scholar
[7]
Ashford, O.S., Foster, W.A., Turner, B.L., Sayer, E.J., Sutcliffe, L., Tanner, E.V.J., 2013. Litter manipulation and the soil arthropod community in a lowland tropical rainforest. Soil Biology & Biochemistry62, 5–12.
CrossRef Google scholar
[8]
Bergman, I.E., Vorobeichik, E.L., Ermakov, A.I., 2017. The effect of megalopolis environment on the feeding activity of soil saprophages in urban forests. Eurasian Soil Science50, 106–117.
CrossRef Google scholar
[9]
Birkhofer, K., Bezemer, T.M., Bloem, J., Bonkowski, M., Christensen, S., Dubois, D., Ekelund, F., Fließbach, A., Gunst, L., Hedlund, K., Mäder, P., Mikola, J., Robin, C., Setälä, H., Tatin-Froux, F., Van der Putten, W.H., Scheu, S., 2008. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology & Biochemistry40, 2297–2308.
CrossRef Google scholar
[10]
Birkhofer, K., Schöning, I., Alt, F., Herold, N., Klarner, B., Maraun, M., Marhan, S., Oelmann, Y., Wubet, T., Yurkov, A., Begerow, D., Berner, D., Buscot, F., Daniel, R., Diekötter, T., Ehnes, R.B., Erdmann, G., Fischer, C., Foesel, B., Groh, J., Gutknecht, J., Kandeler, E., Lang, C., Lohaus, G., Meyer, A., Nacke, H., Näther, A., Overmann, J., Polle, A., Pollierer, M.M., Scheu, S., Schloter, M., Schulze, E.D., Schulze, W., Weinert, J., Weisser, W.W., Wolters, V., Schrumpf, M., 2012. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS One7, e43292.
CrossRef Google scholar
[11]
Borcard, D., Legendre, P., Drapeau, P., 1992. Partialling out the spatial component of ecological variation. Ecology73, 1045–1055.
CrossRef Google scholar
[12]
Brussaard, L., 1997. Biodiversity and ecosystem functioning in soil. Ambio26, 563–570.
[13]
Brussaard, L., 2021. Biodiversity and ecosystem functioning in soil: The dark side of nature and the bright side of life. Ambio50, 1286–1288.
CrossRef Google scholar
[14]
Budakova, V.S., Yorkina, N.V., Telyuk, P.M., Umerova, A.K., Kunakh, O.M., Zhukov, O.V., 2021. Impact of recreational transformation of soil physical properties on micromolluscs in an urban park. Biosystems Diversity29, 78–87.
CrossRef Google scholar
[15]
Burkart, K., Schneider, A., Breitner, S., Khan, M.H., Krämer, A., Endlicher, W., 2011. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh. Environmental Pollution159, 2035–2043.
CrossRef Google scholar
[16]
Butt, K.R., 1998. Interactions between selected earthworm species: A preliminary, laboratory-based study. Applied Soil Ecology9, 75–79.
CrossRef Google scholar
[17]
Cardinale, B.J., Matulich, K.L., Hooper, D.U., Byrnes, J.E., Duffy, E., Gamfeldt, L., Balvanera, P., O’Connor, M.I., Gonzalez, A., 2011. The functional role of producer diversity in ecosystems. American Journal of Botany98, 572–592.
CrossRef Google scholar
[18]
Chalkia, C., Vavoulidou, E., Csuzdi, C., Emmanouil, C., Dritsoulas, A., Katsileros, A., 2021. Observations on earthworm communities and soils in various natural and man-affected ecosystems. Soil Systems5, 71.
CrossRef Google scholar
[19]
Chamberlain S, 2020. rnoaa: “NOAA” Weather Data from R. R package version1.2.0.
[20]
Chiesura, A., 2004. The role of urban parks for the sustainable city. Landscape and Urban Planning68, 129–138.
CrossRef Google scholar
[21]
Cohen, P., Potchter, O., Schnell, I., 2014. A methodological approach to the environmental quantitative assessment of urban parks. Applied Geography (Sevenoaks, England)48, 87–101.
CrossRef Google scholar
[22]
Collis-George, N., 1959. The physical environment of soil animals. Ecology40, 550–557.
CrossRef Google scholar
[23]
De Vries, F.T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d’Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V., Bardgett, R.D., 2013. Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences of the United States of America110, 14296–14301.
CrossRef Google scholar
[24]
Doube, B.M., Styan, C., 1996. The response of Aporrectodea rosea and Aporrectodea trapezoides (Oligochaeta: Lubricidae) to moisture gradients in three soil types in the laboratory. Biology and Fertility of Soils23, 166–172.
CrossRef Google scholar
[25]
Epstein, E., Grant, W.J., 1973. Soil crust formation as affected by raindrop impact. In: Hadas, A., Swartzendruber, D., Rijtema, P.E., Fuchs, M., Yaron, B., eds. Physical Aspects of Soil Water and Salts in Ecosystems. Ecological studies, vol 4. Springer, Berlin, Heidelberg, pp. 195–201
[26]
Erfanian, M.B., Alatalo, J.M., Ejtehadi, H., 2021. Severe vegetation degradation associated with different disturbance types in a poorly managed urban recreation destination in Iran. Scientific Reports11, 19695.
CrossRef Google scholar
[27]
Ermakov, A., Vorobeichik, E., 2013. Soil macrofauna of forest ecosystems in a large industrial city. Euroasian Entomological Journal12, 519–528.
[28]
Fierer, N., Strickland, M.S., Liptzin, D., Bradford, M.A., Cleveland, C.C., 2009. Global patterns in belowground communities. Ecology Letters12, 1238–1249.
CrossRef Google scholar
[29]
Gilarov, M.S., 1965. Zoological methods of the soils diagnostic [Zoologicheskij metod diagnostiki pochv]. Nauka, Moscow (in Russian)
[30]
Goncharenko, I., Kovalenko, O., 2019. Oak forests of the class Quercetea pubescentis in Central-Eastern Ukraine. THAISZIA -. Thaiszia (Kosice)29.
CrossRef Google scholar
[31]
Goncharenko, I., Semenishchenkov, Y., Tsakalos, J.L., Mucina, L., 2020. Thermophilous oak forests of the steppe and forest-steppe zones of Ukraine and Western Russia. Biologia75, 337–353.
CrossRef Google scholar
[32]
Hajzeri, A., 2021. The management of urban parks and its contribution to social interactions. Arboricultural Journal43, 187–195.
CrossRef Google scholar
[33]
Hector, A., Bagchi, R., 2007. Biodiversity and ecosystem multifunctionality. Nature448, 188–190.
CrossRef Google scholar
[34]
Heemsbergen DA, Berg MP, Loreau M, van HAL, J.R., Faber, J.H., Verhoef, H.A., 2004. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306, 1019–1020.
[35]
Hou, E.Q., Xiang, H.M., Li, J.L., Li, J., Wen, D.Z., 2015. Soil acidification and heavy metals in urban parks as affected by reconstruction intensity in a humid subtropical environment. Pedosphere25, 82–92.
CrossRef Google scholar
[36]
Isbell, F., Gonzalez, A., Loreau, M., Cowles, J., Díaz, S., Hector, A., Mace, G.M., Wardle, D.A., O’Connor, M.I., Duffy, J.E., Turnbull, L.A., Thompson, P.L., Larigauderie, A., 2017. Linking the influence and dependence of people on biodiversity across scales. Nature546, 65–72.
CrossRef Google scholar
[37]
Jacot, A.P., 1936. Soil structure and soil biology. Ecology17, 359–379.
CrossRef Google scholar
[38]
Jégou, D., Brunotte, J., Rogasik, H., Capowiez, Y., Diestel, H., Schrader, S., Cluzeau, D., 2002. Impact of soil compaction on earthworm burrow systems using X-ray computed tomography: preliminary study. European Journal of Soil Biology38, 329–336.
CrossRef Google scholar
[39]
Johnson, L.R., Handel, S.N. 2015. Restoration treatments in urban park forests drive long-term changes in vegetation trajectories. Ecological Application 26, 940−956.
[40]
Kang, L., Yang, Z., Han, F., 2021. The impact of urban recreation environment on residents’ happiness—Based on a case study in China. Sustainability (Basel)13, 5549.
CrossRef Google scholar
[41]
Karpachevsky, L.O., (2005) Ecological soil science [Jekologicheskie pochvovoedenie]. GEOS, Moscow (in Russian)
[42]
Koshelev, O., Koshelev, V., Fedushko, M., Zhukov, O., 2021. Annual course of temperature and precipitation as proximal predictors of birds’ responses to climatic changes on the species and community level. Folia Oecologica48, 118–135.
CrossRef Google scholar
[43]
Kuddus, M.A., Tynan, E., McBryde, E., 2020. Urbanization: a problem for the rich and the poor? Public Health Reviews 41, 1.
[44]
Kunakh, O.M., Lisovets, O.I., Yorkina, N.V., Zhukova, Y.O., 2021a. Phytoindication assessment of the effect of reconstruction on the light regime of an urban park. Biosystems Diversity29, 84–93.
CrossRef Google scholar
[45]
Kunakh, O.M., Yorkina, N.V., Turovtseva, N.M., Bredikhina, J.L., Balyuk, J.O., Golovnya, A.V. 2021b. Effect of urban park reconstruction on physical soil properties. Ecologia Balkanica13, 57–73.
[46]
Lees, K.J., McKenzie, A., Newell Price, J., Critchley, C.N., Rhymer, C.M., Chambers, B.J., Whittingham, M.J., 2016. The effects of soil compaction mitigation on below-ground fauna: How earthworms respond to mechanical loosening and power harrow cultivation. Agriculture, Ecosystems & Environment232, 273–282.
CrossRef Google scholar
[47]
Li, Y., 2020. Reconstruction of plant space in the urban park guided by visual experience of tourists – A case study of the Ait park afforestation design in Fuzhou. In: Shoji, H., Koyama, S., Kato, T., Muramatsu, K., Yamanaka, T., Lévy, P., Chen, K., Lokman, A.M., (eds). Proceedings of the 8th International Conference on Kansei Engineering and Emotion Research. Springer, Singapore, pp. 349–358
[48]
Malloch, B., Tatsumi, S., Seibold, S., Cadotte, M.W., MacIvor, J.S., 2020. Urbanization and plant invasion alter the structure of litter microarthropod communities. Journal of Animal Ecology89, 2496–2507.
CrossRef Google scholar
[49]
Mäntymaa, E., Jokinen, M., Juutinen, A., Lankia, T., Louhi, P., 2021. Providing ecological, cultural and commercial services in an urban park: A travel cost–contingent behavior application in Finland. Landscape and Urban Planning209, 104042.
CrossRef Google scholar
[50]
McIntyre, N.E., Rango, J., Fagan, W.F., Faeth, S.H., 2001. Ground arthropod community structure in a heterogeneous urban environment. Landscape and Urban Planning52, 257–274.
CrossRef Google scholar
[51]
Medina, Y., Muñoz, E., Clasing, R., Arumí, J.L., 2022. Analysis of the relative importance of the main hydrological processes at different temporal scales in watersheds of south-central Chile. Water (Basel)14, 807.
CrossRef Google scholar
[52]
Medvedev, V.V., 2009. Soil penetration resistance and penetrographs in studies of tillage technologies. Eurasian Soil Science42, 299–309.
CrossRef Google scholar
[53]
Mexia, T., Vieira, J., Príncipe, A., Anjos, A., Silva, P., Lopes, N., Freitas, C., Santos-Reis, M., Correia, O., Branquinho, C., Pinho, P., 2018. Ecosystem services: Urban parks under a magnifying glass. Environmental Research160, 469–478.
CrossRef Google scholar
[54]
Millward, A.A., Paudel, K., Briggs, S.E., 2011. Naturalization as a strategy for improving soil physical characteristics in a forested urban park. Urban Ecosystems14, 261–278.
CrossRef Google scholar
[55]
Monteith, J.L., 1965. Evaporation and environment. Symposia of the Society for Experimental Biology19, 205–234.
[56]
Moraru, S.S., Ene, A., Badila, A., 2020. Physical and hydro-physical characteristics of soil in the context of climate change. A case study in Danube River Basin. SE Romania. Sustainability (Basel)12, 9174.
CrossRef Google scholar
[57]
Mordkovich, V.G., 2014. Zoological diagnostics of soils: Imperatives, purposes, and place within soil zoology and pedology. Biology Bulletin Reviews4, 404–411.
CrossRef Google scholar
[58]
Nawaz, M.F., Bourrié, G., Trolard, F., 2013. Soil compaction impact and modelling. A review. Agronomy for Sustainable Development33, 291–309.
CrossRef Google scholar
[59]
Nielsen, U.N., Ayres, E., Wall, D.H., Bardgett, R.D., 2011. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. European Journal of Soil Science62, 105–116.
CrossRef Google scholar
[60]
O’Riordan, R., Davies, J., Stevens, C., Quinton, J.N., Boyko, C., 2021. The ecosystem services of urban soils: A review. Geoderma395, 115076.
CrossRef Google scholar
[61]
Oksanen J., 2017. Vegan: ecological diversity. R Packag Version 24–4 1:11
[62]
Pavao-Zuckerman, M.A., 2008. The nature of urban soils and their role in ecological restoration in cities. Restoration Ecology16, 642–649.
CrossRef Google scholar
[63]
Pennisi, B.V., van Iersel, M., 2002. 3 ways to measure medium EC. GMPro22, 46–48.
[64]
Pentoś, K., Pieczarka, K., Serwata, K., 2021. The relationship between soil electrical parameters and compaction of sandy clay loam soil. Agriculture11, 114.
CrossRef Google scholar
[65]
Peres-Neto, P.R., Jackson, D.A., 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia129, 169–178.
CrossRef Google scholar
[66]
Pollierer, M.M., Klarner, B., Ott, D., Digel, C., Ehnes, R.B., Eitzinger, B., Erdmann, G., Brose, U., Maraun, M., Scheu, S., 2021. Diversity and functional structure of soil animal communities suggest soil animal food webs to be buffered against changes in forest land use. Oecologia196, 195–209.
CrossRef Google scholar
[67]
Power, A.L., Tennant, R.K., Jones, R.T., Tang, Y., Du, J., Worsley, A.T., Love, J., 2018. Monitoring impacts of urbanisation and industrialisation on air quality in the anthropocene using urban pond sediments. Frontiers in Earth Science (Lausanne)6, 131.
CrossRef Google scholar
[68]
Preti, F., Guastini, E., Penna, D., Dani, A., Cassiani, G., Boaga, J., Deiana, R., Romano, N., Nasta, P., Palladino, M., Errico, A., Giambastiani, Y., Trucchi, P., Tarolli, P., 2018. Conceptualization of water flow pathways in agricultural terraced landscapes. Land Degradation & Development29, 651–662.
CrossRef Google scholar
[69]
Putchkov, A.V., Brygadyrenko, V.V., Markina, T.Y., 2019. Ground beetles of the tribe Carabini (Coleoptera, Carabidae) in the main megapolises of Ukraine. Vestnik Zoologii53, 3–12.
CrossRef Google scholar
[70]
R Core Team, 2020. A Language and Environment for Statistical Computing. R A Lang. Environ. Stat. Comput. R Found. Stat. Comput. Vienna, Austria.
[71]
Rebele, F., 1994. Urban ecology and special features of urban ecosystems. Global Ecology and Biogeography Letters4, 173–187.
CrossRef Google scholar
[72]
Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D., Friedman, S.P., 2003. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone Journal2, 444–475.
CrossRef Google scholar
[73]
Romzaykina, O.N., Vasenev, V.I., Khakimova, R.R., et al, . 2017. Spatial variability of soil properties in the urban park before and after reconstruction. Soil & Environment36, 155–165.
CrossRef Google scholar
[74]
Ruiz, S.A., Bickel, S., Or, D., 2021. Global earthworm distribution and activity windows based on soil hydromechanical constraints. Communications Biology4, 612.
CrossRef Google scholar
[75]
Ruiz, S.A., Or, D., 2018. Biomechanical limits to soil penetration by earthworms: direct measurements of hydroskeletal pressures and peristaltic motions. Journal of the Royal Society, Interface15, 20180127.
CrossRef Google scholar
[76]
Sadeghi, S.H., Ghaffari, G.A., Rangavar, A., Hazbavi, Z., Singh, V.P., 2020. Spatiotemporal distribution of soil moisture in gully facies. International Soil and Water Conservation Research8, 15–25.
CrossRef Google scholar
[77]
Sagi, N., Hawlena, D., 2021. Arthropods as the engine of nutrient cycling in arid ecosystems. Insects12, 726.
CrossRef Google scholar
[78]
Santana Marques, P., Resende Manna, L., Clara Frauendorf, T., Zandonà, E., Mazzoni, R., El-Sabaawi, R., 2020. Urbanization can increase the invasive potential of alien species. Journal of Animal Ecology89, 2345–2355.
CrossRef Google scholar
[79]
Santos, T., Nogueira Mendes, R., Vasco, A., 2016. Recreational activities in urban parks: Spatial interactions among users. Journal of Outdoor Recreation and Tourism15, 1–9.
CrossRef Google scholar
[80]
Sarah, P., Zhevelev, H.M., Oz, A., 2015. Urban park soil and vegetation: Effects of natural and anthropogenic factors. Pedosphere25, 392–404.
CrossRef Google scholar
[81]
Schirmer, A.E., Gallemore, C., Liu, T., Magle, S., DiNello, E., Ahmed, H., Gilday, T., 2019. Mapping behaviorally relevant light pollution levels to improve urban habitat planning. Scientific Reports9, 11925.
CrossRef Google scholar
[82]
Schwarz, N., Moretti, M., Bugalho, M.N., Davies, Z.G., Haase, D., Hack, J., Hof, A., Melero, Y., Pett, T.J., Knapp, S., 2017. Understanding biodiversity-ecosystem service relationships in urban areas: A comprehensive literature review. Ecosystem Services27, 161–171.
CrossRef Google scholar
[83]
Scott, D.A., Baer, S.G., Blair, J.M., 2017. Recovery and relative influence of root, microbial, and structural properties of soil on physically sequestered carbon stocks in restored grassland. Soil Science Society of America Journal81, 50–60.
CrossRef Google scholar
[84]
Sekulić, J.M., Milenković, S.N., Stojanović, M.M., Popović, F.J., Trakić, T.B., 2022. Species richness and community structure of earthworms (Oligochaeta: Lumbricidae) in natural and agricultural ecosystems. Biologia77, 2115–2124.
CrossRef Google scholar
[85]
Shaheb, M.R., Venkatesh, R., Shearer, S.A., 2021. A review on the effect of soil compaction and its management for sustainable crop production. Journal of Biosystems Engineering46, 417–439.
CrossRef Google scholar
[86]
Smith, J., Chapman, A., Eggleton, P., 2006. Baseline biodiversity surveys of the soil macrofauna of London’s green spaces. Urban Ecosystems9, 337–349.
CrossRef Google scholar
[87]
Sofo, A., Mininni, A.N., Ricciuti, P., 2020. Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy (Basel)10, 456.
CrossRef Google scholar
[88]
Stagoll, K., Lindenmayer, D.B., Knight, E., Fischer, J., Manning, A.D., 2012. Large trees are keystone structures in urban parks. Conservation Letters5, 115–122.
CrossRef Google scholar
[89]
Stępniewska, M., 2021. The capacity of urban parks for providing regulating and cultural ecosystem services versus their social perception. Land Use Policy111, 105778.
CrossRef Google scholar
[90]
Suthari, S., Singh, S., Raju, V.S., 2020. An assessment of the aboveground phytomass and carbon levels of the forests of northern Telangana, India, using a geospatial technique. Biodiversity (Nepean)21, 227–237.
CrossRef Google scholar
[91]
Tarasov, V.V., 2012. Flora of Dnipropetrovsk and Zaporizhia regions. Lira (in Ukranian), Dnipropetrovsk
[92]
Tsiafouli, M.A., Thébault, E., Sgardelis, S.P., de Ruiter, P.C., van der Putten, W.H., Birkhofer, K., Hemerik, L., de Vries, F.T., Bardgett, R.D., Brady, M.V., Bjornlund, L., Jørgensen, H.B., Christensen, S., Hertefeldt, T.D., Hotes, S., Gera Hol, W.H., Frouz, J., Liiri, M., Mortimer, S.R., Setälä, H., Tzanopoulos, J., Uteseny, K., Pižl, V., Stary, J., Wolters, V., Hedlund, K., 2015. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology21, 973–985.
CrossRef Google scholar
[93]
Uvarov, A.V., Ilieva-Makulec, K., Karaban, K., Yakovenko, N.S., Uchmański, J., 2019. Effects of intra- and interspecific interactions in earthworm assemblages: A comparative study. Biology Bulletin of the Russian Academy of Sciences46, 475–482.
CrossRef Google scholar
[94]
Van den Berg, A.E., Jorgensen, A., Wilson, E.R., 2014. Evaluating restoration in urban green spaces: Does setting type make a difference? Landscape and Urban Planning 127, 173–181
[95]
VandenBygaart, A.J., Fox, C.A., Fallow, D.J., Protz, R., 2000. Estimating earthworm-influenced soil structure by morphometric image analysis. Soil Science Society of America Journal64, 982–988.
CrossRef Google scholar
[96]
Velasquez, E., Lavelle, P., 2019. Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes. Acta Oecologica100, 103446.
CrossRef Google scholar
[97]
Verhoef, H.A., Brussaard, L., 1990. Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil animals. Biogeochemistry11, 175.
CrossRef Google scholar
[98]
Vieira, J., Matos, P., Mexia, T., Silva, P., Lopes, N., Freitas, C., Correia, O., Santos-Reis, M., Branquinho, C., Pinho, P., 2018. Green spaces are not all the same for the provision of air purification and climate regulation services: The case of urban parks. Environmental Research160, 306–313.
CrossRef Google scholar
[99]
Vitousek, P.M., 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology65, 285–298.
CrossRef Google scholar
[100]
Vodyanitskii, Y.N., 2015. Organic matter of urban soils: A review. Eurasian Soil Science48, 802–811.
CrossRef Google scholar
[101]
Volovnik, S., 2008. On connections of Lixinae weevils and different plant organs (Coleoptera: Curculionidae: Lixinae). Kavkazskij Entomologiceskij Bjulleten = Caucasian Entomological Bulletin4, 87–91.
CrossRef Google scholar
[102]
Vorobeichik, E.L., 1997. On the methods for measuring forest litter thickness to diagnose the technoeenic disturbances of ecosystems. Russian Journal of Ecology28, 230–234.
[103]
Vorobeichik, E.L., 2007. Seasonal changes in the spatial distribution of cellulolytic activity of soil microflora under conditions of atmospheric pollution. Russian Journal of Ecology38, 398–407.
CrossRef Google scholar
[104]
Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setäläwim, H., van der Puttenand, H., WALL, D.H., 2004. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633
[105]
Warton, D.I., Duursma, R.A., Falster, D.S., Taskinen, S., 2012. smatr 3- an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution3, 257–259.
CrossRef Google scholar
[106]
Winsome, T., Epstein, L., Hendrix, P.F., Horwath, W.R., 2006. Competitive interactions between native and exotic earthworm species as influenced by habitat quality in a California grassland. Applied Soil Ecology32, 38–53.
CrossRef Google scholar
[107]
WRB, 2015. World Reference Base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps (World Soil Resources Reports No. 106). World Soil Resources Reports No. 106. FAO, Rome
[108]
Xie, Q., Yue, Y., Sun, Q., Chen, S., Lee, S.B., Kim, S.W., 2019. Assessment of ecosystem service values of urban parks in improving air quality: A case study of Wuhan, China. Sustainability (Basel)11, 6519.
CrossRef Google scholar
[109]
Yakovenko, V., Zhukov, O., 2021. Zoogenic Structure Aggregation in Steppe and Forest Soils. In: Dmytruk, Y., Dent, D., eds. Soils under Stress. Springer International Publishing, Cham, pp. 111–127
[110]
Yao, Z., Liu, J., Zhao, X., Long, D.F., Wang, L., 2015. Spatial dynamics of aboveground carbon stock in urban green space: a case study of Xi’an, China. Journal of Arid Land7, 350–360.
CrossRef Google scholar
[111]
Yorkina, N., Tarusova, N., Umerova, A., Telyuk, P., Cherniak, Y., 2021. Spatial organization of the micromollusc community under recreational load. Grassroots J Nat Resour4, 1–22.
CrossRef Google scholar
[112]
Yu, S., Qiu, J., Chen, X., Luo, X., Yang, X., Wang, F., Xu, G., 2021. Soil mesofauna community changes in response to the environmental gradients of urbanization in Guangzhou City. Frontiers in Ecology and Evolution8, 546433.
CrossRef Google scholar
[113]
Yunakov, N., Nazarenko, V., Filimonov, R., Volovnik, S., 2018. A survey of the weevils of Ukraine (Coleoptera: Curculionoidea). Zootaxa 4404, 1−494
[114]
Zambrano, L., Aronson, M.F.J., Fernandez, T., 2019. The consequences of landscape fragmentation on socio-ecological patterns in a rapidly developing urban area: A case study of the National Autonomous University of Mexico. Frontiers in Environmental Science7, 152.
CrossRef Google scholar
[115]
Zhu, J., Zhou, X., Fang, W., Xiong, X., Zhu, B., Ji, C., Fang, J., 2017. Plant debris and its contribution to ecosystem carbon storage in successional Larix gmelinii forests in Northeastern China. Forests8, 191.
CrossRef Google scholar
[116]
Zhukov, O., Kunah, O., Dubinina, Y., Novikova, V., 2018. The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekologia (Bratislava)37, 301–327.
CrossRef Google scholar
[117]
Zhukov, O., Kunah, O., Fedushko, M., Babchenko, A., Umerova, A., 2021. Temporal aspect of the terrestrial invertebrate response to moisture dynamic in technosols formed after reclamation at a post-mining site in Ukrainian steppe drylands. Ekologia (Bratislava)40, 178–188.
CrossRef Google scholar
[118]
Zhukov, O.V., Kunah, O.M., Dubinina, Y.Y., Fedushko, M.P., Kotsun, V.I., Zhukova, Y.O., Potapenko, O.V., 2019. Tree canopy affects soil macrofauna spatial patterns on broad- And meso-scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. Folia Oecologica46, 101–114.
CrossRef Google scholar
[119]
Ziter, C., 2016. The biodiversity–ecosystem service relationship in urban areas: a quantitative review. Oikos125, 761–768.
CrossRef Google scholar

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author contributions

NY, OK – the acquisition of data; OK, OZ, AT – The contributed substantially to the conception and design of the study; NY, OZ, AT – The analysis and interpretation.

Ethical statements

The authors guarantee that all studies presented in the manuscript were conducted in an ethical and responsible manner, and in full compliance with all relevant codes of experimentation and legislation.

Electronic supplementary material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s42832-022-0156-0 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3448 KB)

Accesses

Citations

Detail

Sections
Recommended

/