Response of soil macrofauna to urban park reconstruction

Olexander Zhukov , Olga Kunakh , Nadiia Yorkina , Anna Tutova

Soil Ecology Letters ›› 2023, Vol. 5 ›› Issue (2) : 220156

PDF (3448KB)
Soil Ecology Letters ›› 2023, Vol. 5 ›› Issue (2) : 220156 DOI: 10.1007/s42832-022-0156-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Response of soil macrofauna to urban park reconstruction

Author information +
History +
PDF (3448KB)

Abstract

● Soil penetration resistance increases as a result of park reconstruction.

● Soil compaction explains one-third of the variability in soil macrofauna.

● The abundance of the earthworm Aporrectodea rosea increases after reconstruction.

● The abundance of the earthworm A. calliginosa decreases after reconstruction.

This study is based on a park in an industrial city in Ukraine. In 2019, a 2.8 ha area of the park was reconstructed. The park’s reconstruction aimed to create a comfortable environment for visitors and to improve the efficiency of ecosystem services, and thereby enhance the quality of life of citizens. The reconstruction of the park was found to cause changes in the physical properties of soils and the structure of the soil macrofauna community. The increases of soil compaction in the layers at depth 5–20 cm and the soil electrical conductivity were a consequence of technological operations during reconstruction. The park reconstruction activities can also explain 29% of the variation in the soil macrofauna community. Extracting the variation induced by the park reconstruction from the community variation induced by other causes was a major challenge. The specific changes in the community of soil macrofauna following the reconstruction of the park were revealed. The abundance of soil animal species A. rosea, A. trapezoides, H. affinis, H. rufipes, B. affinis was found to increase after the reconstruction. The earthworm A. trapezoides decreased in abundance due to the park reconstruction.

Graphical abstract

Keywords

ecosystem services / soil physical properties / community ordination / urban park management / variation partitioning

Cite this article

Download citation ▾
Olexander Zhukov, Olga Kunakh, Nadiia Yorkina, Anna Tutova. Response of soil macrofauna to urban park reconstruction. Soil Ecology Letters, 2023, 5(2): 220156 DOI:10.1007/s42832-022-0156-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbott, I., 1980. Do earthworms compete for food? Soil Biology & Biochemistry 12, 523–530

[2]

Albers, R.A.W., Bosch, P.R., Blocken, B., van den Dobbelsteen, A.A.J.F., van Hove, L.W.A., Spit, T.J.M., van de Ven, F., van Hooff, T., Rovers, V., 2015. Overview of challenges and achievements in the climate adaptation of cities and in the Climate Proof Cities program. Building and Environment83, 1–10.

[3]

Alberti, M., Palkovacs, E.P., Des Roches, S., De Meester, L., Brans, K.I., Govaert, L., Grimm, N.B., Harris, N.C., Hendry, A.P., Schell, C.J., Szulkin, M., Munshi-South, J., Urban, M.C., Verrelli, B.C., 2020. The complexity of urban eco-evolutionary dynamics. Bioscience70, 772–793.

[4]

Alvarez, C.R., Taboada, M.A., Gutierrez Boem, F.H., Bono, A., Fernandez, P.L., Prystupa, P., 2009. Topsoil properties as affected by tillage systems in the rolling pampa region of Argentina. Soil Science Society of America Journal73, 1242–1250.

[5]

Anderson, J., Ingram, J., 1993. Tropical soil biology and fertility: A handbook of methods. Soil Science157, 265.

[6]

Arantes, L.T., Carvalho, A.C.P., Carvalho, A.P.P., Lorandi, R., Moschini, L.E., Di Lollo, J.A., 2021. Surface runoff associated with climate change and land use and land cover in southeast region of Brazil. Environ Challenges3, 100054.

[7]

Ashford, O.S., Foster, W.A., Turner, B.L., Sayer, E.J., Sutcliffe, L., Tanner, E.V.J., 2013. Litter manipulation and the soil arthropod community in a lowland tropical rainforest. Soil Biology & Biochemistry62, 5–12.

[8]

Bergman, I.E., Vorobeichik, E.L., Ermakov, A.I., 2017. The effect of megalopolis environment on the feeding activity of soil saprophages in urban forests. Eurasian Soil Science50, 106–117.

[9]

Birkhofer, K., Bezemer, T.M., Bloem, J., Bonkowski, M., Christensen, S., Dubois, D., Ekelund, F., Fließbach, A., Gunst, L., Hedlund, K., Mäder, P., Mikola, J., Robin, C., Setälä H., Tatin-Froux, F., Van der Putten, W.H., Scheu, S., 2008. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology & Biochemistry40, 2297–2308.

[10]

Birkhofer, K., Schöning, I., Alt, F., Herold, N., Klarner, B., Maraun, M., Marhan, S., Oelmann, Y., Wubet, T., Yurkov, A., Begerow, D., Berner, D., Buscot, F., Daniel, R., Diekötter, T., Ehnes, R.B., Erdmann, G., Fischer, C., Foesel, B., Groh, J., Gutknecht, J., Kandeler, E., Lang, C., Lohaus, G., Meyer, A., Nacke, H., Näther, A., Overmann, J., Polle, A., Pollierer, M.M., Scheu, S., Schloter, M., Schulze, E.D., Schulze, W., Weinert, J., Weisser, W.W., Wolters, V., Schrumpf, M., 2012. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS One7, e43292.

[11]

Borcard, D., Legendre, P., Drapeau, P., 1992. Partialling out the spatial component of ecological variation. Ecology73, 1045–1055.

[12]

Brussaard, L., 1997. Biodiversity and ecosystem functioning in soil. Ambio26, 563–570.

[13]

Brussaard, L., 2021. Biodiversity and ecosystem functioning in soil: The dark side of nature and the bright side of life. Ambio50, 1286–1288.

[14]

Budakova, V.S., Yorkina, N.V., Telyuk, P.M., Umerova, A.K., Kunakh, O.M., Zhukov, O.V., 2021. Impact of recreational transformation of soil physical properties on micromolluscs in an urban park. Biosystems Diversity29, 78–87.

[15]

Burkart, K., Schneider, A., Breitner, S., Khan, M.H., Krämer, A., Endlicher, W., 2011. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh. Environmental Pollution159, 2035–2043.

[16]

Butt, K.R., 1998. Interactions between selected earthworm species: A preliminary, laboratory-based study. Applied Soil Ecology9, 75–79.

[17]

Cardinale, B.J., Matulich, K.L., Hooper, D.U., Byrnes, J.E., Duffy, E., Gamfeldt, L., Balvanera, P., O’Connor, M.I., Gonzalez, A., 2011. The functional role of producer diversity in ecosystems. American Journal of Botany98, 572–592.

[18]

Chalkia, C., Vavoulidou, E., Csuzdi, C., Emmanouil, C., Dritsoulas, A., Katsileros, A., 2021. Observations on earthworm communities and soils in various natural and man-affected ecosystems. Soil Systems5, 71.

[19]

Chamberlain S, 2020. rnoaa: “NOAA” Weather Data from R. R package version1.2.0.

[20]

Chiesura, A., 2004. The role of urban parks for the sustainable city. Landscape and Urban Planning68, 129–138.

[21]

Cohen, P., Potchter, O., Schnell, I., 2014. A methodological approach to the environmental quantitative assessment of urban parks. Applied Geography (Sevenoaks, England)48, 87–101.

[22]

Collis-George, N., 1959. The physical environment of soil animals. Ecology40, 550–557.

[23]

De Vries, F.T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d’Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V., Bardgett, R.D., 2013. Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences of the United States of America110, 14296–14301.

[24]

Doube, B.M., Styan, C., 1996. The response of Aporrectodea rosea and Aporrectodea trapezoides (Oligochaeta: Lubricidae) to moisture gradients in three soil types in the laboratory. Biology and Fertility of Soils23, 166–172.

[25]

Epstein, E., Grant, W.J., 1973. Soil crust formation as affected by raindrop impact. In: Hadas, A., Swartzendruber, D., Rijtema, P.E., Fuchs, M., Yaron, B., eds. Physical Aspects of Soil Water and Salts in Ecosystems. Ecological studies, vol 4. Springer, Berlin, Heidelberg, pp. 195–201

[26]

Erfanian, M.B., Alatalo, J.M., Ejtehadi, H., 2021. Severe vegetation degradation associated with different disturbance types in a poorly managed urban recreation destination in Iran. Scientific Reports11, 19695.

[27]

Ermakov, A., Vorobeichik, E., 2013. Soil macrofauna of forest ecosystems in a large industrial city. Euroasian Entomological Journal12, 519–528.

[28]

Fierer, N., Strickland, M.S., Liptzin, D., Bradford, M.A., Cleveland, C.C., 2009. Global patterns in belowground communities. Ecology Letters12, 1238–1249.

[29]

Gilarov, M.S., 1965. Zoological methods of the soils diagnostic [Zoologicheskij metod diagnostiki pochv]. Nauka, Moscow (in Russian)

[30]

Goncharenko, I., Kovalenko, O., 2019. Oak forests of the class Quercetea pubescentis in Central-Eastern Ukraine. THAISZIA -. Thaiszia (Kosice)29.

[31]

Goncharenko, I., Semenishchenkov, Y., Tsakalos, J.L., Mucina, L., 2020. Thermophilous oak forests of the steppe and forest-steppe zones of Ukraine and Western Russia. Biologia75, 337–353.

[32]

Hajzeri, A., 2021. The management of urban parks and its contribution to social interactions. Arboricultural Journal43, 187–195.

[33]

Hector, A., Bagchi, R., 2007. Biodiversity and ecosystem multifunctionality. Nature448, 188–190.

[34]

Heemsbergen DA, Berg MP, Loreau M, van HAL, J.R., Faber, J.H., Verhoef, H.A., 2004. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306, 1019–1020.

[35]

Hou, E.Q., Xiang, H.M., Li, J.L., Li, J., Wen, D.Z., 2015. Soil acidification and heavy metals in urban parks as affected by reconstruction intensity in a humid subtropical environment. Pedosphere25, 82–92.

[36]

Isbell, F., Gonzalez, A., Loreau, M., Cowles, J., Díaz, S., Hector, A., Mace, G.M., Wardle, D.A., O’Connor, M.I., Duffy, J.E., Turnbull, L.A., Thompson, P.L., Larigauderie, A., 2017. Linking the influence and dependence of people on biodiversity across scales. Nature546, 65–72.

[37]

Jacot, A.P., 1936. Soil structure and soil biology. Ecology17, 359–379.

[38]

Jégou, D., Brunotte, J., Rogasik, H., Capowiez, Y., Diestel, H., Schrader, S., Cluzeau, D., 2002. Impact of soil compaction on earthworm burrow systems using X-ray computed tomography: preliminary study. European Journal of Soil Biology38, 329–336.

[39]

Johnson, L.R., Handel, S.N. 2015. Restoration treatments in urban park forests drive long-term changes in vegetation trajectories. Ecological Application 26, 940−956.

[40]

Kang, L., Yang, Z., Han, F., 2021. The impact of urban recreation environment on residents’ happiness—Based on a case study in China. Sustainability (Basel)13, 5549.

[41]

Karpachevsky, L.O., (2005) Ecological soil science [Jekologicheskie pochvovoedenie]. GEOS, Moscow (in Russian)

[42]

Koshelev, O., Koshelev, V., Fedushko, M., Zhukov, O., 2021. Annual course of temperature and precipitation as proximal predictors of birds’ responses to climatic changes on the species and community level. Folia Oecologica48, 118–135.

[43]

Kuddus, M.A., Tynan, E., McBryde, E., 2020. Urbanization: a problem for the rich and the poor? Public Health Reviews 41, 1.

[44]

Kunakh, O.M., Lisovets, O.I., Yorkina, N.V., Zhukova, Y.O., 2021a. Phytoindication assessment of the effect of reconstruction on the light regime of an urban park. Biosystems Diversity29, 84–93.

[45]

Kunakh, O.M., Yorkina, N.V., Turovtseva, N.M., Bredikhina, J.L., Balyuk, J.O., Golovnya, A.V. 2021b. Effect of urban park reconstruction on physical soil properties. Ecologia Balkanica13, 57–73.

[46]

Lees, K.J., McKenzie, A., Newell Price, J., Critchley, C.N., Rhymer, C.M., Chambers, B.J., Whittingham, M.J., 2016. The effects of soil compaction mitigation on below-ground fauna: How earthworms respond to mechanical loosening and power harrow cultivation. Agriculture, Ecosystems & Environment232, 273–282.

[47]

Li, Y., 2020. Reconstruction of plant space in the urban park guided by visual experience of tourists – A case study of the Ait park afforestation design in Fuzhou. In: Shoji, H., Koyama, S., Kato, T., Muramatsu, K., Yamanaka, T., Lévy, P., Chen, K., Lokman, A.M., (eds). Proceedings of the 8th International Conference on Kansei Engineering and Emotion Research. Springer, Singapore, pp. 349–358

[48]

Malloch, B., Tatsumi, S., Seibold, S., Cadotte, M.W., MacIvor, J.S., 2020. Urbanization and plant invasion alter the structure of litter microarthropod communities. Journal of Animal Ecology89, 2496–2507.

[49]

Mäntymaa, E., Jokinen, M., Juutinen, A., Lankia, T., Louhi, P., 2021. Providing ecological, cultural and commercial services in an urban park: A travel cost–contingent behavior application in Finland. Landscape and Urban Planning209, 104042.

[50]

McIntyre, N.E., Rango, J., Fagan, W.F., Faeth, S.H., 2001. Ground arthropod community structure in a heterogeneous urban environment. Landscape and Urban Planning52, 257–274.

[51]

Medina, Y., Muñoz, E., Clasing, R., Arumí J.L., 2022. Analysis of the relative importance of the main hydrological processes at different temporal scales in watersheds of south-central Chile. Water (Basel)14, 807.

[52]

Medvedev, V.V., 2009. Soil penetration resistance and penetrographs in studies of tillage technologies. Eurasian Soil Science42, 299–309.

[53]

Mexia, T., Vieira, J., Príncipe, A., Anjos, A., Silva, P., Lopes, N., Freitas, C., Santos-Reis, M., Correia, O., Branquinho, C., Pinho, P., 2018. Ecosystem services: Urban parks under a magnifying glass. Environmental Research160, 469–478.

[54]

Millward, A.A., Paudel, K., Briggs, S.E., 2011. Naturalization as a strategy for improving soil physical characteristics in a forested urban park. Urban Ecosystems14, 261–278.

[55]

Monteith, J.L., 1965. Evaporation and environment. Symposia of the Society for Experimental Biology19, 205–234.

[56]

Moraru, S.S., Ene, A., Badila, A., 2020. Physical and hydro-physical characteristics of soil in the context of climate change. A case study in Danube River Basin. SE Romania. Sustainability (Basel)12, 9174.

[57]

Mordkovich, V.G., 2014. Zoological diagnostics of soils: Imperatives, purposes, and place within soil zoology and pedology. Biology Bulletin Reviews4, 404–411.

[58]

Nawaz, M.F., Bourrié G., Trolard, F., 2013. Soil compaction impact and modelling. A review. Agronomy for Sustainable Development33, 291–309.

[59]

Nielsen, U.N., Ayres, E., Wall, D.H., Bardgett, R.D., 2011. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. European Journal of Soil Science62, 105–116.

[60]

O’Riordan, R., Davies, J., Stevens, C., Quinton, J.N., Boyko, C., 2021. The ecosystem services of urban soils: A review. Geoderma395, 115076.

[61]

Oksanen J., 2017. Vegan: ecological diversity. R Packag Version 24–4 1:11

[62]

Pavao-Zuckerman, M.A., 2008. The nature of urban soils and their role in ecological restoration in cities. Restoration Ecology16, 642–649.

[63]

Pennisi, B.V., van Iersel, M., 2002. 3 ways to measure medium EC. GMPro22, 46–48.

[64]

Pentoś K., Pieczarka, K., Serwata, K., 2021. The relationship between soil electrical parameters and compaction of sandy clay loam soil. Agriculture11, 114.

[65]

Peres-Neto, P.R., Jackson, D.A., 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia129, 169–178.

[66]

Pollierer, M.M., Klarner, B., Ott, D., Digel, C., Ehnes, R.B., Eitzinger, B., Erdmann, G., Brose, U., Maraun, M., Scheu, S., 2021. Diversity and functional structure of soil animal communities suggest soil animal food webs to be buffered against changes in forest land use. Oecologia196, 195–209.

[67]

Power, A.L., Tennant, R.K., Jones, R.T., Tang, Y., Du, J., Worsley, A.T., Love, J., 2018. Monitoring impacts of urbanisation and industrialisation on air quality in the anthropocene using urban pond sediments. Frontiers in Earth Science (Lausanne)6, 131.

[68]

Preti, F., Guastini, E., Penna, D., Dani, A., Cassiani, G., Boaga, J., Deiana, R., Romano, N., Nasta, P., Palladino, M., Errico, A., Giambastiani, Y., Trucchi, P., Tarolli, P., 2018. Conceptualization of water flow pathways in agricultural terraced landscapes. Land Degradation & Development29, 651–662.

[69]

Putchkov, A.V., Brygadyrenko, V.V., Markina, T.Y., 2019. Ground beetles of the tribe Carabini (Coleoptera, Carabidae) in the main megapolises of Ukraine. Vestnik Zoologii53, 3–12.

[70]

R Core Team, 2020. A Language and Environment for Statistical Computing. R A Lang. Environ. Stat. Comput. R Found. Stat. Comput. Vienna, Austria.

[71]

Rebele, F., 1994. Urban ecology and special features of urban ecosystems. Global Ecology and Biogeography Letters4, 173–187.

[72]

Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D., Friedman, S.P., 2003. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone Journal2, 444–475.

[73]

Romzaykina, O.N., Vasenev, V.I., Khakimova, R.R., et al, . 2017. Spatial variability of soil properties in the urban park before and after reconstruction. Soil & Environment36, 155–165.

[74]

Ruiz, S.A., Bickel, S., Or, D., 2021. Global earthworm distribution and activity windows based on soil hydromechanical constraints. Communications Biology4, 612.

[75]

Ruiz, S.A., Or, D., 2018. Biomechanical limits to soil penetration by earthworms: direct measurements of hydroskeletal pressures and peristaltic motions. Journal of the Royal Society, Interface15, 20180127.

[76]

Sadeghi, S.H., Ghaffari, G.A., Rangavar, A., Hazbavi, Z., Singh, V.P., 2020. Spatiotemporal distribution of soil moisture in gully facies. International Soil and Water Conservation Research8, 15–25.

[77]

Sagi, N., Hawlena, D., 2021. Arthropods as the engine of nutrient cycling in arid ecosystems. Insects12, 726.

[78]

Santana Marques, P., Resende Manna, L., Clara Frauendorf, T., Zandonà E., Mazzoni, R., El-Sabaawi, R., 2020. Urbanization can increase the invasive potential of alien species. Journal of Animal Ecology89, 2345–2355.

[79]

Santos, T., Nogueira Mendes, R., Vasco, A., 2016. Recreational activities in urban parks: Spatial interactions among users. Journal of Outdoor Recreation and Tourism15, 1–9.

[80]

Sarah, P., Zhevelev, H.M., Oz, A., 2015. Urban park soil and vegetation: Effects of natural and anthropogenic factors. Pedosphere25, 392–404.

[81]

Schirmer, A.E., Gallemore, C., Liu, T., Magle, S., DiNello, E., Ahmed, H., Gilday, T., 2019. Mapping behaviorally relevant light pollution levels to improve urban habitat planning. Scientific Reports9, 11925.

[82]

Schwarz, N., Moretti, M., Bugalho, M.N., Davies, Z.G., Haase, D., Hack, J., Hof, A., Melero, Y., Pett, T.J., Knapp, S., 2017. Understanding biodiversity-ecosystem service relationships in urban areas: A comprehensive literature review. Ecosystem Services27, 161–171.

[83]

Scott, D.A., Baer, S.G., Blair, J.M., 2017. Recovery and relative influence of root, microbial, and structural properties of soil on physically sequestered carbon stocks in restored grassland. Soil Science Society of America Journal81, 50–60.

[84]

Sekulić J.M., Milenković S.N., Stojanović M.M., Popović F.J., Trakić T.B., 2022. Species richness and community structure of earthworms (Oligochaeta: Lumbricidae) in natural and agricultural ecosystems. Biologia77, 2115–2124.

[85]

Shaheb, M.R., Venkatesh, R., Shearer, S.A., 2021. A review on the effect of soil compaction and its management for sustainable crop production. Journal of Biosystems Engineering46, 417–439.

[86]

Smith, J., Chapman, A., Eggleton, P., 2006. Baseline biodiversity surveys of the soil macrofauna of London’s green spaces. Urban Ecosystems9, 337–349.

[87]

Sofo, A., Mininni, A.N., Ricciuti, P., 2020. Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy (Basel)10, 456.

[88]

Stagoll, K., Lindenmayer, D.B., Knight, E., Fischer, J., Manning, A.D., 2012. Large trees are keystone structures in urban parks. Conservation Letters5, 115–122.

[89]

Stępniewska, M., 2021. The capacity of urban parks for providing regulating and cultural ecosystem services versus their social perception. Land Use Policy111, 105778.

[90]

Suthari, S., Singh, S., Raju, V.S., 2020. An assessment of the aboveground phytomass and carbon levels of the forests of northern Telangana, India, using a geospatial technique. Biodiversity (Nepean)21, 227–237.

[91]

Tarasov, V.V., 2012. Flora of Dnipropetrovsk and Zaporizhia regions. Lira (in Ukranian), Dnipropetrovsk

[92]

Tsiafouli, M.A., Thébault, E., Sgardelis, S.P., de Ruiter, P.C., van der Putten, W.H., Birkhofer, K., Hemerik, L., de Vries, F.T., Bardgett, R.D., Brady, M.V., Bjornlund, L., Jørgensen, H.B., Christensen, S., Hertefeldt, T.D., Hotes, S., Gera Hol, W.H., Frouz, J., Liiri, M., Mortimer, S.R., Setälä H., Tzanopoulos, J., Uteseny, K., Pižl, V., Stary, J., Wolters, V., Hedlund, K., 2015. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology21, 973–985.

[93]

Uvarov, A.V., Ilieva-Makulec, K., Karaban, K., Yakovenko, N.S., Uchmański, J., 2019. Effects of intra- and interspecific interactions in earthworm assemblages: A comparative study. Biology Bulletin of the Russian Academy of Sciences46, 475–482.

[94]

Van den Berg, A.E., Jorgensen, A., Wilson, E.R., 2014. Evaluating restoration in urban green spaces: Does setting type make a difference? Landscape and Urban Planning 127, 173–181

[95]

VandenBygaart, A.J., Fox, C.A., Fallow, D.J., Protz, R., 2000. Estimating earthworm-influenced soil structure by morphometric image analysis. Soil Science Society of America Journal64, 982–988.

[96]

Velasquez, E., Lavelle, P., 2019. Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes. Acta Oecologica100, 103446.

[97]

Verhoef, H.A., Brussaard, L., 1990. Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil animals. Biogeochemistry11, 175.

[98]

Vieira, J., Matos, P., Mexia, T., Silva, P., Lopes, N., Freitas, C., Correia, O., Santos-Reis, M., Branquinho, C., Pinho, P., 2018. Green spaces are not all the same for the provision of air purification and climate regulation services: The case of urban parks. Environmental Research160, 306–313.

[99]

Vitousek, P.M., 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology65, 285–298.

[100]

Vodyanitskii, Y.N., 2015. Organic matter of urban soils: A review. Eurasian Soil Science48, 802–811.

[101]

Volovnik, S., 2008. On connections of Lixinae weevils and different plant organs (Coleoptera: Curculionidae: Lixinae). Kavkazskij Entomologiceskij Bjulleten = Caucasian Entomological Bulletin4, 87–91.

[102]

Vorobeichik, E.L., 1997. On the methods for measuring forest litter thickness to diagnose the technoeenic disturbances of ecosystems. Russian Journal of Ecology28, 230–234.

[103]

Vorobeichik, E.L., 2007. Seasonal changes in the spatial distribution of cellulolytic activity of soil microflora under conditions of atmospheric pollution. Russian Journal of Ecology38, 398–407.

[104]

Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setäläwim, H., van der Puttenand, H., WALL, D.H., 2004. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633

[105]

Warton, D.I., Duursma, R.A., Falster, D.S., Taskinen, S., 2012. smatr 3- an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution3, 257–259.

[106]

Winsome, T., Epstein, L., Hendrix, P.F., Horwath, W.R., 2006. Competitive interactions between native and exotic earthworm species as influenced by habitat quality in a California grassland. Applied Soil Ecology32, 38–53.

[107]

WRB, 2015. World Reference Base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps (World Soil Resources Reports No. 106). World Soil Resources Reports No. 106. FAO, Rome

[108]

Xie, Q., Yue, Y., Sun, Q., Chen, S., Lee, S.B., Kim, S.W., 2019. Assessment of ecosystem service values of urban parks in improving air quality: A case study of Wuhan, China. Sustainability (Basel)11, 6519.

[109]

Yakovenko, V., Zhukov, O., 2021. Zoogenic Structure Aggregation in Steppe and Forest Soils. In: Dmytruk, Y., Dent, D., eds. Soils under Stress. Springer International Publishing, Cham, pp. 111–127

[110]

Yao, Z., Liu, J., Zhao, X., Long, D.F., Wang, L., 2015. Spatial dynamics of aboveground carbon stock in urban green space: a case study of Xi’an, China. Journal of Arid Land7, 350–360.

[111]

Yorkina, N., Tarusova, N., Umerova, A., Telyuk, P., Cherniak, Y., 2021. Spatial organization of the micromollusc community under recreational load. Grassroots J Nat Resour4, 1–22.

[112]

Yu, S., Qiu, J., Chen, X., Luo, X., Yang, X., Wang, F., Xu, G., 2021. Soil mesofauna community changes in response to the environmental gradients of urbanization in Guangzhou City. Frontiers in Ecology and Evolution8, 546433.

[113]

Yunakov, N., Nazarenko, V., Filimonov, R., Volovnik, S., 2018. A survey of the weevils of Ukraine (Coleoptera: Curculionoidea). Zootaxa 4404, 1−494

[114]

Zambrano, L., Aronson, M.F.J., Fernandez, T., 2019. The consequences of landscape fragmentation on socio-ecological patterns in a rapidly developing urban area: A case study of the National Autonomous University of Mexico. Frontiers in Environmental Science7, 152.

[115]

Zhu, J., Zhou, X., Fang, W., Xiong, X., Zhu, B., Ji, C., Fang, J., 2017. Plant debris and its contribution to ecosystem carbon storage in successional Larix gmelinii forests in Northeastern China. Forests8, 191.

[116]

Zhukov, O., Kunah, O., Dubinina, Y., Novikova, V., 2018. The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekologia (Bratislava)37, 301–327.

[117]

Zhukov, O., Kunah, O., Fedushko, M., Babchenko, A., Umerova, A., 2021. Temporal aspect of the terrestrial invertebrate response to moisture dynamic in technosols formed after reclamation at a post-mining site in Ukrainian steppe drylands. Ekologia (Bratislava)40, 178–188.

[118]

Zhukov, O.V., Kunah, O.M., Dubinina, Y.Y., Fedushko, M.P., Kotsun, V.I., Zhukova, Y.O., Potapenko, O.V., 2019. Tree canopy affects soil macrofauna spatial patterns on broad- And meso-scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. Folia Oecologica46, 101–114.

[119]

Ziter, C., 2016. The biodiversity–ecosystem service relationship in urban areas: a quantitative review. Oikos125, 761–768.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3448KB)

Supplementary files

SEL-00156-OF-QZ_suppl_1

SEL-00156-OF-QZ_suppl_2

SEL-00156-OF-QZ_suppl_3

SEL-00156-OF-QZ_suppl_4

SEL-00156-OF-QZ_suppl_5

707

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/