Database and primer selections affect nematode community composition under different vegetations of Changbai Mountain

Yixin Sun, Xiaofang Du, Yingbin Li, Xu Han, Shuai Fang, Stefan Geisen, Qi Li

PDF(3012 KB)
PDF(3012 KB)
Soil Ecology Letters ›› 2023, Vol. 5 ›› Issue (1) : 142-150. DOI: 10.1007/s42832-022-0153-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Database and primer selections affect nematode community composition under different vegetations of Changbai Mountain

Author information +
History +

Highlights

● Different primers will affect nematode annotation at different taxonomic levels.

● Sequencing analysis with different primers cannot be compared directly.

● 3NDf primers with NT database could provide more taxa than other combinations.

Abstract

High-throughput sequencing technology is increasingly used in the study of nematode biodiversity. However, the annotation difference of commonly used primers and reference databases on nematode community is still unclear. We compared two pairs of primers (3NDf/C_1132rmod, NF1F/18Sr2bR) and three databases (NT_v20200604, SILVA138/18s Eukaryota and PR2_v4.5 databases) on the determination of nematode community from four different vegetation types in Changbai Mountain, including mixed broadleaf-conifer forest, dark coniferous forest, betula ermanii Cham and alpine tundra. Our results showed that the selection of different primers and databases influenced the annotation of nematode taxa, but the diversity of nematode community showed consistent pattern among different vegetation types. Our findings emphasize that it is necessary to select appropriate primer and database according to the target taxonomic level. The difference in primers will affect the result of nematode taxa at different classification levels, so sequencing analysis cannot be used for comparison with studies using different primers. In terms of annotation effect in this study, 3NDf/C_1132rmod primers with NT_v20200604 database could provide more information than other combinations at the genus or species levels.

Graphical abstract

Keywords

Soil nematodes / Primer / Database / High-throughput sequencing / Community composition

Cite this article

Download citation ▾
Yixin Sun, Xiaofang Du, Yingbin Li, Xu Han, Shuai Fang, Stefan Geisen, Qi Li. Database and primer selections affect nematode community composition under different vegetations of Changbai Mountain. Soil Ecology Letters, 2023, 5(1): 142‒150 https://doi.org/10.1007/s42832-022-0153-3

References

[1]
Abad, D., Albaina, A., Aguirre, M., Laza-Martínez, A., Uriarte, I., Iriarte, A., Villate, F., Estonba, A., 2016. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy.. Marine Biology 163, 1– 13.
CrossRef Google scholar
[2]
Borthong, J., Omori, R., Sugimoto, C., Suthienkul, O., Nakao, R., Ito, K., 2018. Comparison of database search methods for the detection of Legionella pneumophila in water samples using metagenomic analysis. Frontiers in Microbiology 9, 1272.
CrossRef Google scholar
[3]
Du, X.F., Li, Y.B., Han, X., Ahmad, W., Li, Q., 2020. Using high-throughput sequencing quantitatively to investigate soil nematode community composition in a steppe-forest ecotone. Applied Soil Ecology 152, 103562.
CrossRef Google scholar
[4]
Du, X.F., Liang, W.J., Li, Q., 2021. DNA extraction, amplification and high-throughput sequencing of soil nematode community. Bio-101 e2104085.
[5]
Du, X.F., Liu, H.W., Li, Y.B., Li, B., Han, X., Li, Y.H., Mahamood, M., Li, Q., 2022. Soil community richness and composition jointly influence the multifunctionality of soil along the forest-steppe ecotone. Ecological Indicators 139, 108900.
CrossRef Google scholar
[6]
Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996– 998.
CrossRef Google scholar
[7]
Floyd, R., Abebe, E., Papert, A., Blaxter, M., 2002. Molecular barcodes for soil nematode identification. Molecular Ecology 11, 839– 850.
CrossRef Google scholar
[8]
Gao, D., Moreira-Grez, B., Wang, K., Zhang, W., Xiao, S., Wang, W., Chen, H., Zhao, J., 2021. Effects of ecosystem disturbance on nematode communities in calcareous and red soils: Comparison of taxonomic methods. Soil Biology & Biochemistry 155, 108162.
CrossRef Google scholar
[9]
Geisen, S., Snoek, L.B., ten Hooven, F.C., Duyts, H., Kostenko, O., Bloem, J., Martens, H., Quist, C.W., Helder, J.A., van der Putten, W.H., Kembel, S., 2018. Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion. Methods in Ecology and Evolution 9, 1366– 1378.
CrossRef Google scholar
[10]
Griffiths, B.S., de Groot, G.A., Laros, I., Stone, D., Geisen, S., 2018. The need for standardisation: Exemplified by a description of the diversity, community structure and ecological indices of soil nematodes. Ecological Indicators 87, 43– 46.
CrossRef Google scholar
[11]
Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., Del Campo, J., Dolan, J.R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W.H., Lara, E., Le Bescot, N., Logares, R., Mahe, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A.L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P., Christen, R., 2013. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Research 41, D597– D604.
CrossRef Google scholar
[12]
Guo, Z., Li, Q., Zheng, J., Liu, W., Fan, C., Ma, Y., Yu, G., Han, S., 2007. Leaf and twig litter decomposition of main species in different forests along the north slope of Changbai Mountain, northeast China. Frontiers of Forestry in China 2, 47– 54.
CrossRef Google scholar
[13]
Kouser, Y., Shah, A.A., Rasmann, S., 2021. The functional role and diversity of soil nematodes are stronger at high elevation in the lesser Himalayan Mountain ranges. Ecology and Evolution 11, 13793– 13804.
CrossRef Google scholar
[14]
Li, B., Li, Y.B., Fanin, N., Han, X., Du, X.F., Liu, H.W., Li, Y.H., Li, Q., 2022. Adaptation of soil micro-food web to elemental limitation: evidence from the forest-steppe ecotone. Soil Biology & Biochemistry 170, 108698.
CrossRef Google scholar
[15]
Li, Y.B., Liang, S.W., Du, X.F., Kou, X.C., Lv, X.T., Li, Q., 2021. Mowing did not mitigate the negative effects of nitrogen deposition on soil nematode community in a temperate steppe. Soil Ecology Letters 3, 125– 133.
CrossRef Google scholar
[16]
Mullin, P.G., Harris, T.S., Powers, T.O., 2003. Systematic status of Campydora cobb, 1920 (Nematoda: Campydorina). Nematology 5, 699– 711.
CrossRef Google scholar
[17]
Oostenbrink, M., 1960. Estimating nematode populations by some selected methods. In: Sasser, J.N., Jenkins, W.R., eds. Nematology. The University of North Carolina Press, Chapel Hill, pp. 85– 102
[18]
Peham, T., Steiner, F.M., Schlick-Steiner, B.C., Arthofer, W. 2017. Are we ready to detect nematode diversity by next generation sequencing?. Ecology and Evolution 7, 4147– 4151.
CrossRef Google scholar
[19]
Porazinska, D.L., Giblin-Davis, R.M., Faller, L., Farmerie, W., Kanzaki, N., Morris, K., Powers, T.O., Tucker, A.E., Sung, W., Thomas, W.K., 2009. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecular Ecology Resources 9, 1439– 1450.
CrossRef Google scholar
[20]
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glockner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, D590– D596.
CrossRef Google scholar
[21]
R Core Team, 2019. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2019.
[22]
Rzeznik-Orignac, J., Kalenitchenko, D., Mariette, J., Bodiou, J.Y., Le Bris, N., Derelle, E., 2017. Comparison of meiofaunal diversity by combined morphological and molecular approaches in a shallow Mediterranean sediment. Marine Biology 164, 164.
CrossRef Google scholar
[23]
Schenk, J., Geisen, S., Kleinboelting, N., Traunspurger, W., 2019. Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth. Metabarcoding and Metagenomics 3, e46704.
CrossRef Google scholar
[24]
Schenk, J., Hoss, S., Brinke, M., Kleinbolting, N., Bruchner-Huttemann, H., Traunspurger, W., 2020a. Nematodes as bioindicators of polluted sediments using metabarcoding and microscopic taxonomy. Environment International 143, 105922.
CrossRef Google scholar
[25]
Schenk, J., Kleinbolting, N., Traunspurger, W., 2020b. Comparison of morphological, DNA barcoding, and metabarcoding characterizations of freshwater nematode communities. Ecology and Evolution 10, 2885– 2899.
CrossRef Google scholar
[26]
Shen, C.C., Liang, W.J., Shi, Y., Lin, X.G., Zhang, H.Y., Wu, X., Xie, G., Chain, P., Grogan, P., Chu, H.Y., 2014. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants. Ecology 95, 3190– 3202.
CrossRef Google scholar
[27]
Sun, X., Deharveng, L., Bedos, A., Chang, L., Scheu, S., Wu, D., 2020. Changes in diversity and body size of Onychiurinae (Collembola: Onychiuridae) along an altitudinal gradient in Changbai Mountain, China. Soil Ecology Letters 2, 230– 239.
CrossRef Google scholar
[28]
Swanepoel, P.A., Kapp, C., Malan, A.P., Storey, S.G., Ammann, S.B., 2021. Relating nematode community structure to different kikuyu-ryegrass pasture establishment methods. Journal of Plant Diseases and Protection 128, 1667– 1678.
CrossRef Google scholar
[29]
Townshend, J.L.J.N., 1963. A modification and evaluation of the apparatus for the Oostenbrink Direct Cottonwool Filter Extraction Method. Nematologica 9, 106– 110.
CrossRef Google scholar
[30]
Treonis, A.M., Unangst, S.K., Kepler, R.M., Buyer, J.S., Cavigelli, M.A., Mirsky, S.B., Maul, J.E., 2018. Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches. Scientific Reports 8, 2004.
CrossRef Google scholar
[31]
Wang, L.C., Chen, K.Y., Chang, S.H., Chung, L.Y., Gan, R.C., Cheng, C.J., Tang, P., 2013. Transcriptome profiling of the fifth-stage larvae of Angiostrongylus cantonensis by next-generation sequencing. Parasitology Research 112, 3193– 3202.
CrossRef Google scholar
[32]
Wang, Y.M., Guan, P.T., Chen, J.W., Li, Z.X., Yang, Y.R., Wang, P., 2021. A comparison of soil nematode community structure and environmental factors along fen-bush-forest succession in a peatland, northeastern China. Global Ecology and Conservation 28, e01679.
CrossRef Google scholar
[33]
Xue, C., Hao, Y., Pu, X., Ryan Penton, C., Wang, Q., Zhao, M., Zhang, B., Ran, W., Huang, Q., Shen, Q., Tiedje, J.M., 2018. Effect of LSU and ITS genetic markers and reference databases on analyses of fungal communities. Biology and Fertility of Soils 55, 79– 88.
CrossRef Google scholar
[34]
Zhang, M., Liang, W.J., Zhang, X.K., 2012. Soil nematode abundance and diversity in different forest types at Changbai Mountain, China. Zoological Studies 51, 619– 626.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. U20A2083), the K.C. Wong Education Foundation (Grant No. GJTD-2019-10) and China Postdoctoral Science Foundation (Grant No. 2021T140697).

Compliance and ethics

All authors report no conflicts of interest.

Electronic supplementary material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s42832-022-0153-3 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(3012 KB)

Accesses

Citations

Detail

Sections
Recommended

/