Database and primer selections affect nematode community composition under different vegetations of Changbai Mountain
Yixin Sun, Xiaofang Du, Yingbin Li, Xu Han, Shuai Fang, Stefan Geisen, Qi Li
Database and primer selections affect nematode community composition under different vegetations of Changbai Mountain
● Different primers will affect nematode annotation at different taxonomic levels.
● Sequencing analysis with different primers cannot be compared directly.
● 3NDf primers with NT database could provide more taxa than other combinations.
High-throughput sequencing technology is increasingly used in the study of nematode biodiversity. However, the annotation difference of commonly used primers and reference databases on nematode community is still unclear. We compared two pairs of primers (3NDf/C_1132rmod, NF1F/18Sr2bR) and three databases (NT_v20200604, SILVA138/18s Eukaryota and PR2_v4.5 databases) on the determination of nematode community from four different vegetation types in Changbai Mountain, including mixed broadleaf-conifer forest, dark coniferous forest, betula ermanii Cham and alpine tundra. Our results showed that the selection of different primers and databases influenced the annotation of nematode taxa, but the diversity of nematode community showed consistent pattern among different vegetation types. Our findings emphasize that it is necessary to select appropriate primer and database according to the target taxonomic level. The difference in primers will affect the result of nematode taxa at different classification levels, so sequencing analysis cannot be used for comparison with studies using different primers. In terms of annotation effect in this study, 3NDf/C_1132rmod primers with NT_v20200604 database could provide more information than other combinations at the genus or species levels.
Soil nematodes / Primer / Database / High-throughput sequencing / Community composition
[1] |
Abad, D., Albaina, A., Aguirre, M., Laza-Martínez, A., Uriarte, I., Iriarte, A., Villate, F., Estonba, A., 2016. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy.. Marine Biology 163, 1– 13.
CrossRef
Google scholar
|
[2] |
Borthong, J., Omori, R., Sugimoto, C., Suthienkul, O., Nakao, R., Ito, K., 2018. Comparison of database search methods for the detection of Legionella pneumophila in water samples using metagenomic analysis. Frontiers in Microbiology 9, 1272.
CrossRef
Google scholar
|
[3] |
Du, X.F., Li, Y.B., Han, X., Ahmad, W., Li, Q., 2020. Using high-throughput sequencing quantitatively to investigate soil nematode community composition in a steppe-forest ecotone. Applied Soil Ecology 152, 103562.
CrossRef
Google scholar
|
[4] |
Du, X.F., Liang, W.J., Li, Q., 2021. DNA extraction, amplification and high-throughput sequencing of soil nematode community. Bio-101 e2104085.
|
[5] |
Du, X.F., Liu, H.W., Li, Y.B., Li, B., Han, X., Li, Y.H., Mahamood, M., Li, Q., 2022. Soil community richness and composition jointly influence the multifunctionality of soil along the forest-steppe ecotone. Ecological Indicators 139, 108900.
CrossRef
Google scholar
|
[6] |
Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996– 998.
CrossRef
Google scholar
|
[7] |
Floyd, R., Abebe, E., Papert, A., Blaxter, M., 2002. Molecular barcodes for soil nematode identification. Molecular Ecology 11, 839– 850.
CrossRef
Google scholar
|
[8] |
Gao, D., Moreira-Grez, B., Wang, K., Zhang, W., Xiao, S., Wang, W., Chen, H., Zhao, J., 2021. Effects of ecosystem disturbance on nematode communities in calcareous and red soils: Comparison of taxonomic methods. Soil Biology & Biochemistry 155, 108162.
CrossRef
Google scholar
|
[9] |
Geisen, S., Snoek, L.B., ten Hooven, F.C., Duyts, H., Kostenko, O., Bloem, J., Martens, H., Quist, C.W., Helder, J.A., van der Putten, W.H., Kembel, S., 2018. Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion. Methods in Ecology and Evolution 9, 1366– 1378.
CrossRef
Google scholar
|
[10] |
Griffiths, B.S., de Groot, G.A., Laros, I., Stone, D., Geisen, S., 2018. The need for standardisation: Exemplified by a description of the diversity, community structure and ecological indices of soil nematodes. Ecological Indicators 87, 43– 46.
CrossRef
Google scholar
|
[11] |
Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., Del Campo, J., Dolan, J.R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W.H., Lara, E., Le Bescot, N., Logares, R., Mahe, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A.L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P., Christen, R., 2013. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Research 41, D597– D604.
CrossRef
Google scholar
|
[12] |
Guo, Z., Li, Q., Zheng, J., Liu, W., Fan, C., Ma, Y., Yu, G., Han, S., 2007. Leaf and twig litter decomposition of main species in different forests along the north slope of Changbai Mountain, northeast China. Frontiers of Forestry in China 2, 47– 54.
CrossRef
Google scholar
|
[13] |
Kouser, Y., Shah, A.A., Rasmann, S., 2021. The functional role and diversity of soil nematodes are stronger at high elevation in the lesser Himalayan Mountain ranges. Ecology and Evolution 11, 13793– 13804.
CrossRef
Google scholar
|
[14] |
Li, B., Li, Y.B., Fanin, N., Han, X., Du, X.F., Liu, H.W., Li, Y.H., Li, Q., 2022. Adaptation of soil micro-food web to elemental limitation: evidence from the forest-steppe ecotone. Soil Biology & Biochemistry 170, 108698.
CrossRef
Google scholar
|
[15] |
Li, Y.B., Liang, S.W., Du, X.F., Kou, X.C., Lv, X.T., Li, Q., 2021. Mowing did not mitigate the negative effects of nitrogen deposition on soil nematode community in a temperate steppe. Soil Ecology Letters 3, 125– 133.
CrossRef
Google scholar
|
[16] |
Mullin, P.G., Harris, T.S., Powers, T.O., 2003. Systematic status of Campydora cobb, 1920 (Nematoda: Campydorina). Nematology 5, 699– 711.
CrossRef
Google scholar
|
[17] |
Oostenbrink, M., 1960. Estimating nematode populations by some selected methods. In: Sasser, J.N., Jenkins, W.R., eds. Nematology. The University of North Carolina Press, Chapel Hill, pp. 85– 102
|
[18] |
Peham, T., Steiner, F.M., Schlick-Steiner, B.C., Arthofer, W. 2017. Are we ready to detect nematode diversity by next generation sequencing?. Ecology and Evolution 7, 4147– 4151.
CrossRef
Google scholar
|
[19] |
Porazinska, D.L., Giblin-Davis, R.M., Faller, L., Farmerie, W., Kanzaki, N., Morris, K., Powers, T.O., Tucker, A.E., Sung, W., Thomas, W.K., 2009. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecular Ecology Resources 9, 1439– 1450.
CrossRef
Google scholar
|
[20] |
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glockner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, D590– D596.
CrossRef
Google scholar
|
[21] |
R Core Team, 2019. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2019.
|
[22] |
Rzeznik-Orignac, J., Kalenitchenko, D., Mariette, J., Bodiou, J.Y., Le Bris, N., Derelle, E., 2017. Comparison of meiofaunal diversity by combined morphological and molecular approaches in a shallow Mediterranean sediment. Marine Biology 164, 164.
CrossRef
Google scholar
|
[23] |
Schenk, J., Geisen, S., Kleinboelting, N., Traunspurger, W., 2019. Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth. Metabarcoding and Metagenomics 3, e46704.
CrossRef
Google scholar
|
[24] |
Schenk, J., Hoss, S., Brinke, M., Kleinbolting, N., Bruchner-Huttemann, H., Traunspurger, W., 2020a. Nematodes as bioindicators of polluted sediments using metabarcoding and microscopic taxonomy. Environment International 143, 105922.
CrossRef
Google scholar
|
[25] |
Schenk, J., Kleinbolting, N., Traunspurger, W., 2020b. Comparison of morphological, DNA barcoding, and metabarcoding characterizations of freshwater nematode communities. Ecology and Evolution 10, 2885– 2899.
CrossRef
Google scholar
|
[26] |
Shen, C.C., Liang, W.J., Shi, Y., Lin, X.G., Zhang, H.Y., Wu, X., Xie, G., Chain, P., Grogan, P., Chu, H.Y., 2014. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants. Ecology 95, 3190– 3202.
CrossRef
Google scholar
|
[27] |
Sun, X., Deharveng, L., Bedos, A., Chang, L., Scheu, S., Wu, D., 2020. Changes in diversity and body size of Onychiurinae (Collembola: Onychiuridae) along an altitudinal gradient in Changbai Mountain, China. Soil Ecology Letters 2, 230– 239.
CrossRef
Google scholar
|
[28] |
Swanepoel, P.A., Kapp, C., Malan, A.P., Storey, S.G., Ammann, S.B., 2021. Relating nematode community structure to different kikuyu-ryegrass pasture establishment methods. Journal of Plant Diseases and Protection 128, 1667– 1678.
CrossRef
Google scholar
|
[29] |
Townshend, J.L.J.N., 1963. A modification and evaluation of the apparatus for the Oostenbrink Direct Cottonwool Filter Extraction Method. Nematologica 9, 106– 110.
CrossRef
Google scholar
|
[30] |
Treonis, A.M., Unangst, S.K., Kepler, R.M., Buyer, J.S., Cavigelli, M.A., Mirsky, S.B., Maul, J.E., 2018. Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches. Scientific Reports 8, 2004.
CrossRef
Google scholar
|
[31] |
Wang, L.C., Chen, K.Y., Chang, S.H., Chung, L.Y., Gan, R.C., Cheng, C.J., Tang, P., 2013. Transcriptome profiling of the fifth-stage larvae of Angiostrongylus cantonensis by next-generation sequencing. Parasitology Research 112, 3193– 3202.
CrossRef
Google scholar
|
[32] |
Wang, Y.M., Guan, P.T., Chen, J.W., Li, Z.X., Yang, Y.R., Wang, P., 2021. A comparison of soil nematode community structure and environmental factors along fen-bush-forest succession in a peatland, northeastern China. Global Ecology and Conservation 28, e01679.
CrossRef
Google scholar
|
[33] |
Xue, C., Hao, Y., Pu, X., Ryan Penton, C., Wang, Q., Zhao, M., Zhang, B., Ran, W., Huang, Q., Shen, Q., Tiedje, J.M., 2018. Effect of LSU and ITS genetic markers and reference databases on analyses of fungal communities. Biology and Fertility of Soils 55, 79– 88.
CrossRef
Google scholar
|
[34] |
Zhang, M., Liang, W.J., Zhang, X.K., 2012. Soil nematode abundance and diversity in different forest types at Changbai Mountain, China. Zoological Studies 51, 619– 626.
|
/
〈 | 〉 |