Combined organic-inorganic fertilization builds higher stability of soil and root microbial networks than exclusive mineral or organic fertilization

Luhua Yang, Renhua Sun, Jungai Li, Limei Zhai, Huiling Cui, Bingqian Fan, Hongyuan Wang, Hongbin Liu

PDF(1781 KB)
PDF(1781 KB)
Soil Ecology Letters ›› 2023, Vol. 5 ›› Issue (2) : 220142. DOI: 10.1007/s42832-022-0142-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Combined organic-inorganic fertilization builds higher stability of soil and root microbial networks than exclusive mineral or organic fertilization

Author information +
History +

Highlights

● Fertilization had stronger impact on the root microbiome than on the soil microbiome.

● Organic-inorganic fertilization led to higher microbial network stability than exclusive mineral or organic fertilization.

● The variances of the soil and root microbiome were attributed to the soil organic matter and the total nitrogen respectively.

Abstract

Plant health and performance are highly dependent on the root microbiome. The impact of agricultural management on the soil microbiome has been studied extensively. However, a comprehensive understanding of how soil types and fertilization regimes affect both soil and root microbiome is still lacking, such as how fertilization regimes affect the root microbiomeʼs stability, and whether it follows the same patterns as the soil microbiome. In this study, we carried out a long-term experiment to see how different soil types, plant varieties, and fertilizer regimens affected the soil and root bacterial communities. Our results revealed higher stability of microbial networks under combined organic-inorganic fertilization than those relied solely on inorganic or organic fertilization. The root microbiome variation was predominantly caused by total nitrogen, while the soil microbiome variation was primarily caused by pH and soil organic matter. Bacteroidetes and Firmicutes were major drivers when the soil was amended with organic fertilizer, but Actinobacteria was found to be enriched in the soil when the soil was treated with inorganic fertilizer. Our findings demonstrate how the soil and root microbiome respond to diverse fertilizing regimes, and hence contribute to a better understanding of smart fertilizer as a strategy for sustainable agriculture.

Graphical abstract

Keywords

Fertilization regime / Soil microbiome / Root microbiome / Microbial networks / Network stability

Cite this article

Download citation ▾
Luhua Yang, Renhua Sun, Jungai Li, Limei Zhai, Huiling Cui, Bingqian Fan, Hongyuan Wang, Hongbin Liu. Combined organic-inorganic fertilization builds higher stability of soil and root microbial networks than exclusive mineral or organic fertilization. Soil Ecology Letters, 2023, 5(2): 220142 https://doi.org/10.1007/s42832-022-0142-6

References

[1]
Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A.Y., Gattinger, A., Keller, T., Charles, R., van der Heijden, M.G.A., 2019. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME Journal13, 1722–1736.
CrossRef Pubmed Google scholar
[2]
Barberán, A., Bates, S.T., Casamayor, E.O., Fierer, N., 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME Journal6, 343–351.
CrossRef Pubmed Google scholar
[3]
Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media
[4]
Berendsen, R.L., Pieterse, C.M.J., Bakker, P.A.H.M., 2012. The rhizosphere microbiome and plant health. Trends in Plant Science17, 478–486.
CrossRef Pubmed Google scholar
[5]
Berry, D., Widder, S., 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology5, 219.
CrossRef Pubmed Google scholar
[6]
Cai, F., Pang, G., Li, R.X., Li, R., Gu, X.L., Shen, Q.R., Chen, W., 2017. Bioorganic fertilizer maintains a more stable soil microbiome than chemical fertilizer for monocropping. Biology and Fertility of Soils53, 861–872.
CrossRef Google scholar
[7]
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America108, 4516–4522.
CrossRef Pubmed Google scholar
[8]
Clauset, A., Newman, M.E.J., Moore, C., 2004. Finding community structure in very large networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 70, 066111
Pubmed
[9]
Coyte, K.Z., Schluter, J., Foster, K.R., 2015. The ecology of the microbiome: Networks, competition, and stability. Science350, 663–666.
CrossRef Pubmed Google scholar
[10]
Craine, J.M., Morrow, C., Fierer, N., 2007. Microbial nitrogen limitation increases decomposition. Ecology88, 2105–2113.
CrossRef Pubmed Google scholar
[11]
Cram, J.A., Xia, L.C., Needham, D.M., Sachdeva, R., Sun, F., Fuhrman, J.A., 2015. Cross-depth analysis of marine bacterial networks suggests downward propagation of temporal changes. ISME Journal9, 2573–2586.
CrossRef Pubmed Google scholar
[12]
Csardi, G., Nepusz, T., 2006. The Igraph Software Package for Complex Network Research. InterJournal Complex Systems: 1695
[13]
De Caceres, M., Legendre, P., Moretti, M., 2010. Improving indicator species analysis by combining groups of sites. Oikos119, 1674–1684.
CrossRef Google scholar
[14]
de Vries, F.T., Griffiths, R.I., Bailey, M., Craig, H., Girlanda, M., Gweon, H.S., Hallin, S., Kaisermann, A., Keith, A.M., Kretzschmar, M., Lemanceau, P., Lumini, E., Mason, K.E., Oliver, A., Ostle, N., Prosser, J.I., Thion, C., Thomson, B., Bardgett, R.D., 2018. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications9, 3033.
CrossRef Pubmed Google scholar
[15]
de Vries, F.T., Wallenstein, M.D., 2017. Below-ground connections underlying above-ground food production: a framework for optimising ecological connections in the rhizosphere. Journal of Ecology105, 913–920.
CrossRef Google scholar
[16]
Dubin, K., Callahan, M.K., Ren, B., Khanin, R., Viale, A., Ling, L., No, D., Gobourne, A., Littmann, E., Huttenhower, C., Pamer, E.G., Wolchok, J.D., 2016. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nature Communications7, 10391.
CrossRef Pubmed Google scholar
[17]
Edgar, R.C., 2016a. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. BioRxiv: 074161
[18]
Edgar, R.C., 2016b. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv: 081257
[19]
Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics (Oxford, England) 27, 2194–2200
Pubmed
[20]
Faith, J.J., Guruge, J.L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A.L., Clemente, J.C., Knight, R., Heath, A.C., Leibel, R.L., Rosenbaum, M., Gordon, J.I., 2013. The long-term stability of the human gut microbiota. Science341, 1237439.
CrossRef Pubmed Google scholar
[21]
Fan, K.K., Delgado-Baquerizo, M., Guo, X.S., Wang, D.Z., Zhu, Y.G., Chu, H.Y., 2020. Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment. Soil Biology & Biochemistry141, 141.
CrossRef Google scholar
[22]
Faria, J.C., Jelihovschi, E.G., Allaman, I.B., 2018. R Package TukeyC. Conventional Tukey Test. Version 1.3–3
[23]
Faust, K., Sathirapongsasuti, J.F., Izard, J., Segata, N., Gevers, D., Raes, J., Huttenhower, C., 2012. Microbial co-occurrence relationships in the human microbiome. PLoS Computational Biology8, e1002606.
CrossRef Pubmed Google scholar
[24]
Fellbaum, C.R., Gachomo, E.W., Beesetty, Y., Choudhari, S., Strahan, G.D., Pfeffer, P.E., Kiers, E.T., Bücking, H., 2012. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America109, 2666–2671.
CrossRef Pubmed Google scholar
[25]
Fierer, N., 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology15, 579–590.
CrossRef Pubmed Google scholar
[26]
Fierer, N., Bradford, M.A., Jackson, R.B., 2007. Toward an ecological classification of soil bacteria. Ecology88, 1354–1364.
CrossRef Pubmed Google scholar
[27]
Gai, X.P., Liu, H.B., Liu, J., Zhai, L.M., Yang, B., Wu, S.X., Ren, T.Z., Lei, Q.L., Wang, H.Y., 2018. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain. Agricultural Water Management208, 384–392.
CrossRef Google scholar
[28]
Griffiths, B.S., Philippot, L., 2013. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews37, 112–129.
CrossRef Pubmed Google scholar
[29]
Griffiths, R.I., Whiteley, A.S., O’Donnell, A.G., Bailey, M.J., 2000. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Applied and Environmental Microbiology66, 5488–5491.
CrossRef Pubmed Google scholar
[30]
Grilli, J., Rogers, T., Allesina, S., 2016. Modularity and stability in ecological communities. Nature Communications7, 12031.
CrossRef Pubmed Google scholar
[31]
Guidi, L., Chaffron, S., Bittner, L., Eveillard, D., Larhlimi, A., Roux, S., Darzi, Y., Audic, S., Berline, L., Brum, J., Coelho, L.P., Espinoza, J.C.I., Malviya, S., Sunagawa, S., Dimier, C., Kandels-Lewis, S., Picheral, M., Poulain, J., Searson, S., Stemmann, L., Not, F., Hingamp, P., Speich, S., Follows, M., Karp-Boss, L., Boss, E., Ogata, H., Pesant, S., Weissenbach, J., Wincker, P., Acinas, S.G., Bork, P., de Vargas, C., Iudicone, D., Sullivan, M.B., Raes, J., Karsenti, E., Bowler, C., Gorsky, G., Coordinator, T.O.C., and the Tara Oceans coordinators, 2016. Plankton networks driving carbon export in the oligotrophic ocean. Nature532, 465–470.
CrossRef Pubmed Google scholar
[32]
Guimerà, R., Nunes Amaral, L.A., 2005. Functional cartography of complex metabolic networks. Nature433, 895–900.
CrossRef Pubmed Google scholar
[33]
Hartmann, M., Frey, B., Mayer, J., Mäder, P., Widmer, F., 2015. Distinct soil microbial diversity under long-term organic and conventional farming. ISME Journal9, 1177–1194.
CrossRef Pubmed Google scholar
[34]
Hernandez, D.J., David, A.S., Menges, E.S., Searcy, C.A., Afkhami, M.E., 2021. Environmental stress destabilizes microbial networks. ISME Journal15, 1722–1734.
CrossRef Pubmed Google scholar
[35]
Herren, C.M., McMahon, K.D., 2017. Cohesion: a method for quantifying the connectivity of microbial communities. ISME Journal11, 2426–2438.
CrossRef Pubmed Google scholar
[36]
Hervé, M., 2018. R Package RVAideMemoire. Testing and plotting procedures for biostatistics. Version 0.9–69
[37]
Hobbs, P.R., Sayre, K., Gupta, R., 2008. The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363, 543–555
Pubmed
[38]
Kramer, S., Dibbern, D., Moll, J., Huenninghaus, M., Koller, R., Krueger, D., Marhan, S., Urich, T., Wubet, T., Bonkowski, M., Buscot, F., Lueders, T., Kandeler, E., 2016. Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil. Frontiers in Microbiology7, 1524.
CrossRef Pubmed Google scholar
[39]
Kuntal, B.K., Chandrakar, P., Sadhu, S., Mande, S.S., 2019. ‘NetShift’: a methodology for understanding ‘driver microbes’ from healthy and disease microbiome datasets. ISME Journal13, 442–454.
CrossRef Pubmed Google scholar
[40]
Laitila, A., Kotaviita, E., Peltola, P., Home, S., Wilhelmson, A., 2007. Indigenous microbial community of barley greatly influences grain germination and malt quality. Journal of the Institute of Brewing113, 9–20.
CrossRef Google scholar
[41]
Landi, P., Minoarivelo, O., Brännström, Å., Hui, C., Dieckmann, U., 2018. Complexity and stability of ecological networks: a review of the theory. Population Ecology60, 319–345.
CrossRef Google scholar
[42]
Lapébie, P., Lombard, V., Drula, E., Terrapon, N., Henrissat, B., 2019. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nature Communications10, 2043.
CrossRef Pubmed Google scholar
[43]
Ley, R.E., Turnbaugh, P.J., Klein, S., Gordon, J.I., 2006. Microbial ecology: human gut microbes associated with obesity. Nature444, 1022–1023.
CrossRef Pubmed Google scholar
[44]
Li, B., Song, H., Cao, W., Wang, Y., Chen, J., Guo, J., 2021. Responses of soil organic carbon stock to animal manure application: A new global synthesis integrating the impacts of agricultural managements and environmental conditions. Global Chang Biology27, 5356–5367.
[45]
Ling, N., Zhu, C., Xue, C., Chen, H., Duan, Y.H., Peng, C., Guo, S.W., Shen, Q.R., 2016. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biology & Biochemistry99, 137–149.
CrossRef Google scholar
[46]
Lurgi, M., Thomas, T., Wemheuer, B., Webster, N.S., Montoya, J.M., 2019. Modularity and predicted functions of the global sponge-microbiome network. Nature Communications10, 992.
CrossRef Pubmed Google scholar
[47]
Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker, C.T. Jr, Saxman, P.R., Farris, R.J., Garrity, G.M., Olsen, G.J., Schmidt, T.M., Tiedje, J.M., 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Research29, 173–174.
CrossRef Pubmed Google scholar
[48]
Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal17, 10–12.
CrossRef Google scholar
[49]
McHardy, I.H., Goudarzi, M., Tong, M., Ruegger, P.M., Schwager, E., Weger, J.R., Graeber, T.G., Sonnenburg, J.L., Horvath, S., Huttenhower, C., McGovern, D.P.B., Fornace, A.J. Jr, Borneman, J., Braun, J., 2013. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome1, 17.
CrossRef Pubmed Google scholar
[50]
McMurdie, P.J., Holmes, S., 2013. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One8, e61217.
CrossRef Pubmed Google scholar
[51]
Moreau, D., Bardgett, R.D., Finlay, R.D., Jones, D.L., Philippot, L., 2019. A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology33, 540–552.
CrossRef Google scholar
[52]
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Stevens, M. Henry H., Wagner, H., 2013. R Package ‘vegan’. Community ecology package. Version 2.0–10
[53]
Olesen, J.M., Bascompte, J., Dupont, Y.L., Jordano, P., 2007. The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America104, 19891–19896.
CrossRef Pubmed Google scholar
[54]
Pepe-Ranney, C., Campbell, A.N., Koechli, C.N., Berthrong, S., Buckley, D.H., 2016. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Frontiers in Microbiology7, 703.
CrossRef Pubmed Google scholar
[55]
Phillips, R.P., Finzi, A.C., Bernhardt, E.S., 2011. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters14, 187–194.
CrossRef Pubmed Google scholar
[56]
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.
CrossRef Pubmed Google scholar
[57]
Reinhold-Hurek, B., Bünger, W., Burbano, C.S., Sabale, M., Hurek, T., 2015. Roots shaping their microbiome: global hotspots for microbial activity. Annual Review of Phytopathology53, 403–424.
CrossRef Pubmed Google scholar
[58]
Revelle, W., 2017. R Package psych. Procedures for Psychological, Psychometric, and Personality Research. Version 2.1.6
[59]
Santolini, M., Barabási, A.L., 2018. Predicting perturbation patterns from the topology of biological networks. Proceedings of the National Academy of Sciences of the United States of America115, E6375–E6383.
CrossRef Pubmed Google scholar
[60]
Schlaeppi, K., Bulgarelli, D., 2015. The plant microbiome at work. Molecular Plant-Microbe Interactions28, 212–217.
CrossRef Pubmed Google scholar
[61]
Schmidt, J.E., Kent, A.D., Brisson, V.L., Gaudin, A.C.M., 2019. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome7, 146.
CrossRef Pubmed Google scholar
[62]
Shade, A., Peter, H., Allison, S.D., Baho, D.L., Berga, M., Bürgmann, H., Huber, D.H., Langenheder, S., Lennon, J.T., Martiny, J.B.H., Matulich, K.L., Schmidt, T.M., Handelsman, J., 2012. Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology3, 417.
CrossRef Pubmed Google scholar
[63]
Stouffer, D.B., Bascompte, J., 2011. Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences of the United States of America108, 3648–3652.
CrossRef Pubmed Google scholar
[64]
Sun, A., Jiao, X.Y., Chen, Q., Wu, A.L., Zheng, Y., Lin, Y.X., He, J.Z., Hu, H.W., 2021. Microbial communities in crop phyllosphere and root endosphere are more resistant than soil microbiota to fertilization. Soil Biology & Biochemistry153, 108113.
CrossRef Google scholar
[65]
Sung, J., Kim, S., Cabatbat, J.J.T., Jang, S., Jin, Y.S., Jung, G.Y., Chia, N., Kim, P.J., 2017. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nature Communications8, 15393.
CrossRef Pubmed Google scholar
[66]
Thomas, F., Hehemann, J.H., Rebuffet, E., Czjzek, M., Michel, G., 2011. Environmental and gut bacteroidetes: the food connection. Frontiers in Microbiology2, 93.
CrossRef Pubmed Google scholar
[67]
Wei, W.L., Yan, Y., Cao, J., Christie, P., Zhang, F.S., Fan, M.S., 2016. Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: An integrated analysis of long-term experiments. Agriculture, Ecosystems & Environment 225, 86–92
[68]
Wei, Z., Yang, T., Friman, V.P., Xu, Y., Shen, Q., Jousset, A., 2015. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nature Communications6, 8413.
CrossRef Pubmed Google scholar
[69]
Wu, M.H., Chen, S.Y., Chen, J.W., Xue, K., Chen, S.L., Wang, X.M., Chen, T., Kang, S.C., Rui, J.P., Thies, J.E., Bardgett, R.D., Wang, Y.F., 2021. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proceedings of the National Academy of Sciences of the United States of America118, e2025321118.
CrossRef Pubmed Google scholar
[70]
Yuan, M.M., Guo, X., Wu, L.W., Zhang, Y., Xiao, N.J., Ning, D.L., Shi, Z., Zhou, X.S., Wu, L.Y., Yang, Y.F., Tiedje, J.M., Zhou, J.Z., 2021. Climate warming enhances microbial network complexity and stability. Nature Climate Change11, 343–348.
CrossRef Google scholar
[71]
Zhalnina, K., Louie, K.B., Hao, Z., Mansoori, N., da Rocha, U.N., Shi, S., Cho, H., Karaoz, U., Loqué, D., Bowen, B.P., Firestone, M.K., Northen, T.R., Brodie, E.L., 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology3, 470–480.
CrossRef Pubmed Google scholar
[72]
Zhang, B.G., Zhang, J., Liu, Y., Shi, P., Wei, G.H., 2018. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biology & Biochemistry118, 178–186.
CrossRef Google scholar
[73]
Zhao, J., Ni, T., Li, J., Lu, Q., Fang, Z.Y., Huang, Q.W., Zhang, R.F., Li, R., Shen, B., Shen, Q.R., 2016. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Applied Soil Ecology99, 1–12.
CrossRef Google scholar
[74]
Zhao, Z.B., He, J.Z., Quan, Z., Wu, C.F., Sheng, R., Zhang, L.M., Geisen, S., 2020. Fertilization changes soil microbiome functioning, especially phagotrophic protists. Soil Biology & Biochemistry148, 107863.
CrossRef Google scholar

Statements and declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank the National Field Scientific Research Station for Soil Quality in Changping, Beijing for providing soil samples. This study was supported by the National Key Research and Development Program of China (Grant No. 2021YFD1700900), the National Natural Science Foundation of China (Grant No. 31972519) and the Taishan Industry Leading Talents High-Efficiency Agriculture Innovation Project (Grant No. LJNY202125).

Electronic supplementary material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s42832-022-0142-6 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(1781 KB)

Accesses

Citations

Detail

Sections
Recommended

/