Activity-density and spatial distribution of termites on a fine-scale in a tropical rainforest in Xishuangbanna, southwest China

Myo Thant , Xiaobing Lin , Anjana J. Atapattu , Min Cao , Shang-wen Xia , Shengjie Liu , Xiaodong Yang

Soil Ecology Letters ›› 2023, Vol. 5 ›› Issue (1) : 169 -180.

PDF (6588KB)
Soil Ecology Letters ›› 2023, Vol. 5 ›› Issue (1) : 169 -180. DOI: 10.1007/s42832-022-0141-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Activity-density and spatial distribution of termites on a fine-scale in a tropical rainforest in Xishuangbanna, southwest China

Author information +
History +
PDF (6588KB)

Abstract

● Strong associations among soil-wood feeders and fungus growers were observed.

● Weak associations between litter feeders and other feeders were observed.

● TPI and pH had effects on all feeding groups of termites.

● Plant biomass influenced soil-wood feeders and wood feeders.

● Litter mass influenced fungus growers, litter feeders, and soil feeders.

The community composition and activity-density of termites can influence nutrient cycling and other ecological functions. However, the spatial distribution and the activity-density of termites on a fine-scale in tropical forests are still unknown. We checked the spatial distribution patterns of the feeding groups and species of termites and their co-occurrence pattern in a 1-ha (100 m × 100 m) plot, and their correlation with the environmental factors. We used a standard protocol to collect termite assemblages and classified them into five feeding groups based on their preferred diet: fungus growers, litter feeders, soil feeders, soil-wood feeders, and wood feeders. We measured the environmental factors: soil pH, litter mass, aboveground plant biomass, and topographic position index (TPI). Soil-wood feeders showed the highest activity-density, followed by wood feeders, fungus growers, soil feeders, and litter feeders. Soil-wood feeders and fungus growers demonstated a strong correlation while litter feeders showed weak correlations with other feeding groups. Termite feeding groups and most of the termite species displayed a positive association with the high TPI and the low soil pH patches. Our results indicated that the examined environmental factors influenced the termite community assemblages and distribution patterns on a fine-scale in tropical rainforests.

Graphical abstract

Keywords

Competition / Co-occurrence / Feeding groups / Fine-scale / Spatial distribution / Tropical rainforest

Cite this article

Download citation ▾
Myo Thant, Xiaobing Lin, Anjana J. Atapattu, Min Cao, Shang-wen Xia, Shengjie Liu, Xiaodong Yang. Activity-density and spatial distribution of termites on a fine-scale in a tropical rainforest in Xishuangbanna, southwest China. Soil Ecology Letters, 2023, 5(1): 169-180 DOI:10.1007/s42832-022-0141-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe,T., Higashi,M., 2001. Isoptera. In: Levin, S.A., ed. Encyclopedia of Biodiversity. Elsevier, 408– 433.

[2]

Atapattu,A.J., Xia,S.W., Cao,M., Zhang,W., Mishra,S., Yang,X., 2020. Can dominant canopy species leaf litter determine soil nutrient heterogeneity? A case study in a tropical rainforest in southwest China.. Journal of Soil Science and Plant Nutrition 20, 2479– 2489.

[3]

Avitabile,S.C., Nimmo,D.G., Bennett,A.F., Clarke,M.F., 2015. Termites are resistant to the effects of fire at multiple spatial scales. PLoS One 10, 1– 18.

[4]

Betz,O., Srisuka,W., Puthz,V., 2020. Elevational gradients of species richness, community structure, and niche occupation of tropical rove beetles (Coleoptera: Staphylinidae: Steninae) across mountain slopes in Northern Thailand. Evolutionary Ecology 34, 193– 216.

[5]

Bignell,D.E., 2018. Wood-Feeding Termites. In:, Ulyshen, M.D., ed. Saproxylic Insects, Zoological Monographs 1. Springer, Heidelberg, pp. 339– 373.

[6]

Bignell,D.E., Eggelton,P., 2000. Termites in Ecosystems. In: Abe, T., E.D., Bignell, Higashi, M., eds. Termites: Evolution, Sociality, Symbioses, Ecology. Springer Netherlands, Dordrecht, pp. 363– 387.

[7]

Bourguignon,T., Drouet,T., Šobotník,J., Hanus,R., Roisin,Y., 2015. Influence of soil properties on soldierless termite distribution. PLoS One 10, e0135341.

[8]

Cai,B.H., Huang,F.S., 1980. Termite of China. Sciences Press, Beijing, .

[9]

Cancello,E.M., Silva,R.R., Vasconcellos,A., Reis,Y.T., Oliveira,L.M., 2014. Latitudinal variation in termite species richness and abundance along the Brazilian Atlantic forest hotspot. Biotropica 46, 441– 450.

[10]

Cao,M., Zou,X., Warren,M., Zhu,H., 2006. Tropical forests of Xishuangbanna, China. Biotropica 38, 306– 309.

[11]

Chave,J., Réjou-Méchain,M., Búrquez,A., Chidumayo,E., Colgan,M.S., Delitti,W.B.C., Duque,A., Eid,T., Fearnside,P.M., Goodman,R.C., Henry,M., Martínez-Yrízar,A., Mugasha,W.A., Muller-Landau,H.C., Mencuccini,M., Nelson,B.W., Ngomanda,A., Nogueira,E.M., Ortiz-Malavassi,E., Pélissier,R., Ploton,P., Ryan,C.M., Saldarriaga,J.G., Vieilledent,G., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20, 3177– 3190.

[12]

Chen,C., Zou,X., Wu,J., Zhu,X., Jiang,X., Zhang,W., Zeng,H., Liu,W., 2020. Accumulation and spatial homogeneity of nutrients within termite ( Odontotermes yunnanensis) mounds in the Xishuangbanna region, SW China . Catena 105057

[13]

Cheng,S., Kirton,L.G., Panandam,J.M., Siraj,S.S., Ng,K.K.S., Tan,S.G., 2011. Evidence for a higher number of species of Odontotermes (isoptera) than currently known from peninsular Malaysia from mitochondrial DNA phylogenies. PLoS One 6, e20992.

[14]

Chiu,C.I., Yeh,H.T., Li,P.L., Kuo,C.Y., Tsai,M.J., Li,H.F., 2018. Foraging phenology of the fungus-growing termite Odontotermes formosanus (Blattodea: Termitidae). Environmental Entomology 47, 1509– 1516.

[15]

Colwell,R.K., Futuyma,D.J., 1971. On the measurement of niche breadth and overlap. Ecology 52, 567– 576.

[16]

DahlsjöC.A.L., Parr,C.L., Malhi,Y., Meir,P., Eggleton,P., 2015. Describing termite assemblage structure in a Peruvian lowland tropical rain forest: a comparison of two alternative methods. Insectes Sociaux 62, 141– 150.

[17]

DahlsjöC.A.L., Valladares Romero,C.S., Espinosa Iñiguez,C.I., 2020. Termite diversity in Ecuador: A comparison of two primary forest national parks. Journal of Insect Science 20, 4.

[18]

Dambros,C.S., Morais,J.W., Azevedo,R.A., Gotelli,N.J., 2017. Isolation by distance, not rivers, control the distribution of termite species in the Amazonian rain forest. Ecography 40, 1242– 1250.

[19]

Davies,A.B., Eggleton,P., van Rensburg,B.J., Parr,C.L., 2013. Assessing the relative efficiency of termite sampling methods along a rainfall gradient in African Savannas. Biotropica 45, 474– 479.

[20]

De Souza,H.J., Delabie,J.H.C., 2018. Fine-scale spatial distribution of murundus structures in the semi-arid region of Brazil. Austral Ecology 43, 268– 279.

[21]

Donovan,S.E., Eggleton,P., Bignell,D.E., 2001. Gut content analysis and a new feeding group classification of termites. Ecological Entomology 26, 356– 366.

[22]

Donovan,S.E., Griffiths,G.J.K., Homathevi,R., Winder,L., 2007. The spatial pattern of soil-dwelling termites in primary and logged forest in Sabah, Malaysia. Ecological Entomology 32, 1– 10.

[23]

Dosso,K., KonatéS., Aidara,D., Linsenmair,K.E., 2010. Termite diversity and abundance across fire-induced habitat variability in a tropical moist savanna (lamto, central Côte d’Ivoire). Journal of Tropical Ecology 26, 323– 334.

[24]

Dosso,K., Deligne,J., Yéo,K., KonatéS., Linsenmair,K.E., 2013. Changes in the termite assemblage across a sequence of land-use systems in the rural area around Lamto Reserve in central Côte d’Ivoire. Journal of Insect Conservation 17, 1047– 1057.

[25]

Dosso,K., Roisin,Y., Tiho,S., KonatéS., Yéo,K., 2017. Short-term changes in the structure of termite assemblages associated with slash-and-burn agriculture in Côte d’Ivoire. Biotropica 49, 856– 861.

[26]

Eggleton,P., Homathevi,R., Jeeva,D., Jones,D.T., Davies,R.G., Maryati,M., 1997. The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, east Malaysia. Ecotropica (Bonn) 3, 119– 128.

[27]

Eggleton,P., Tayasu,I., 2001. Feeding groups, lifetypes and the global ecology of termites. Ecological Research 16, 941– 960.

[28]

Fajar,A., Himmi,S.K., Latif,A., Tarmadi,D., Kartika,T., Guswenrivo,I., Yusuf,S., Yoshimura,T., 2021. Termite assemblage and damage on tree trunks in fast-growing teak plantations of different age: A case study in West Java, Indonesia. Insects 12, 295.

[29]

Gao,M., Qiao,Z., Hou,H., Jin,G., Wu,D., 2020. Factors that affect the assembly of ground-dwelling beetles at small scales in primary mixed broadleaved-Korean pine forests in north-east China. Soil Ecology Letters 2, 47– 60.

[30]

Gathorne-Hardy,F., Syaukani,Eggleton, P., theGathorne-Hardy, 2001. The effects of altitude and rainfall on the composition of the termites (Isoptera) of the Leuser Ecosystem (Sumatra, Indonesia). Journal of Tropical Ecology 17, 379– 393.

[31]

Grohmann,C., Oldeland,J., Stoyan,D., Linsenmair,K.E., 2010. Multi-scale pattern analysis of a mound-building termite species. Insectes Sociaux 57, 477– 486.

[32]

Harit,A.K., Ramasamy,E.V., Babu,N., Rajasree,M.J., Monsy,P., Bottinelli,N., Cheik,S., Jouquet,P., 2021. Are wood-feeding and fungus-growing termites so different? Comparison of the organization and properties of Microcerotermes pakistanicus and Odontotermes obesus soil constructions in the Western Ghats, India. Insectes Sociaux 68, 207– 216.

[33]

Hemachandra,I.I., Edirisinghe,J.P., Karunaratne,W.A.I.P., Gunatilleke,C.V.S., Fernando,R.H.S.S., 2014. Diversity and distribution of termite assemblages in montane forests in the Knuckles Region, Sri Lanka. International Journal of Tropical Insect Science 34, 41– 52.

[34]

Hesselbarth,M., 2021. shar: An R package to analyze species-habitat associations using point pattern analysis. Journal of Open Source Software 6, 3811.

[35]

Hojo,M., 2019. Distribution pattern of Termitomyces types symbiotic with the fungus-growing termite Odontotermes formosanus on Okinawa Island. Entomological Science 22, 398– 403.

[36]

Hyodo,F., Tayasu,I., Inoue,T., Azuma,J.I., Kudo,T., Abe,T., 2003. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Functional Ecology 17, 186– 193.

[37]

Illian,J., Penttinen,A., Stoyan,H., Stoyan,D., 2007. Statistical analysis and modelling of spatial point patterns, international statistical review. John Wiley & Sons, Ltd, Chichester.

[38]

Jenness,J., 2006. Topographic Position Index (tpi_jen.avx) extension forArcView 3.x, v. 1.2. Jenness Enterprises. Available at: http://www.jennessent.com/arcview/tpi.htm

[39]

Jiménez,J.J., Rossi,J.P., Lavelle,P., 2001. Spatial distribution of earthworms in acid-soil savannas of the eastern plains of Colombia. Applied Soil Ecology 17, 267– 278.

[40]

Jiménez,J.J., Decaëns,T., Amézquita,E., Rao,I., Thomas,R.J., Lavelle,P., 2011. Short-range spatial variability of soil physico-chemical variables related to earthworm clustering in a neotropical gallery forest. Soil Biology & Biochemistry 43, 1071– 1080.

[41]

Jones,D.T., Susilo,F.X., Bignell,D., Hardiwinoto,S., Gillison,A.N., Eggleton,P., 2003. Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. Journal of Applied Ecology 40, 380– 391.

[42]

Jouquet,P., TraoréS., Choosai,C., Hartmann,C., Bignell,D., 2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soil Biology 47, 215– 222.

[43]

Jouquet,P., Guilleux,N., Chintakunta,S., Mendez,M., Subramanian,S., Shanbhag,R.R., 2015. The influence of termites on soil sheeting properties varies depending on the materials on which they feed. European Journal of Soil Biology 69, 74– 78.

[44]

Jouveau,S., Toïgo,M., Giffard,B., Castagneyrol,B., van Halder,I., Vétillard,F., Jactel,H., 2020. Carabid activity-density increases with forest vegetation diversity at different spatial scales. Insect Conservation and Diversity 13, 36– 46.

[45]

KonéN.A., SiluéK.S., KonatéS., Linsenmair,K.E., 2018. Determinants of termite assemblages’ characteristics within natural habitats of a Sudano-Guinean savanna (Comoe national park, Côte d’Ivoire). Insects 9, 189.

[46]

Korb,J., Foster,K.R., 2010. Ecological competition favours cooperation in termite societies. Ecology Letters 13, 754– 760.

[47]

Li,J., Sang,M., Jiang,Y., Wei,J., Shen,Y., Huang,Q., Li,Y., Ni,J., 2021. Polyene-producing Streptomyces spp. from the fungus-growing termite Macrotermes barneyi exhibit high inhibitory activity against the antagonistic fungus Xylaria. Frontiers in Microbiology 12, 1– 15.

[48]

Liu,S., Lin,X., Behm,J.E., Yuan,H., Stiblik,P., Šobotník,J., Gan,J., Xia,S.-W., Yang,X., 2019. Comparative responses of termite functional and taxonomic diversity to land-use change. Ecol. Entomol. 0– 9.

[49]

Long,Y.H., Xie,L., Liu,N., Yan,X., Li,M.H., Fan,M.Z., Wang,Q., 2010. Comparison of gut-associated and nest-associated microbial communities of a fungus-growing termite (Odontotermes yunnanensis). Insect Science 17, 265– 276.

[50]

Martins,R.F., Andrades,R., Nagaoka,S.M., Martins,A.S., Longo,L.L., Ferreira,J.S., Bastos,K.V., Joyeux,J.C., Santos,R.G., 2020. Niche partitioning between sea turtles in waters of a protected tropical island. Regional Studies in Marine Science 39, 101439.

[51]

Mills,A.J., Milewski,A., Fey,M.V., Groengroeft,A., Petersen,A., 2009. Fungus culturing, nutrient mining and geophagy: A geochemical investigation of Macrotermes and Trinervitermes mounds in southern Africa . Journal of Zoology (London, England) 278, 24– 35

[52]

Mills,A.J., Sirami,C., 2018. Nutrient enrichment of ecosystems by fungus-growing versus non-fungus-growing termites. Journal of Tropical Ecology 34, 385– 389.

[53]

Miura,T., Matsumoto,T., 1997. Diet and nest material of the processional termite Hospitalitermes, and cohabitation of Termes (Isoptera, Termitidae) on Borneo Island. Insectes Sociaux 44, 267– 275.

[54]

Mujinya,B.B., Adam,M., Mees,F., Bogaert,J., Vranken,I., Erens,H., Baert,G., Ngongo,M., Van Ranst,E., 2014. Spatial patterns and morphology of termite (Macrotermes falciger) mounds in the Upper Katanga, D. R. Congo. Catena 114, 97– 106.

[55]

Niittynen,P., Heikkinen,R.K., Aalto,J., Guisan,A., Kemppinen,J., Luoto,M., 2020. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nature Climate Change 10, 1143– 1148.

[56]

Nunes,C.A., Quintino,A.V., Constantino,R., Negreiros,D., Reis Júnior,R., Fernandes,G.W., 2017. Patterns of taxonomic and functional diversity of termites along a tropical elevational gradient. Biotropica 49, 186– 194.

[57]

Osborne,B.B., Soper,F.M., Nasto,M.K., Bru,D., Hwang,S., Machmuller,M.B., Lopez,M., Philippot,L., Sullivan,B.W., Asner,G.P., Cleveland,C.C., Townsend,A.R., Porder,S., 2021. Litter inputs drive patterns of soil nitrogen heterogeneity in a diverse tropical forest: Results from a litter manipulation experiment. Soil Biology & Biochemistry 158, 108247.

[58]

Palin,O.F., Eggleton,P., Malhi,Y., Girardin,C.A.J., Rozas-Dávila,A., Parr,C.L., 2011. Termite diversity along an Amazon-Andes Elevation Gradient, Peru. Biotropica 43, 100– 107.

[59]

Pebesma,E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences 30, 683– 691.

[60]

Perner,J., Schueler,S., 2004. Estimating the density of ground-dwelling arthropods with pitfall traps using a nested-cross array. Journal of Animal Ecology 73, 469– 477.

[61]

Pratiknyo,H., Ahmed,I., Budiyanto,B.H., 2018. Diversity and abundance of termites along altitudinal gradient and slopes in Mount Slamet, Central Java, Indonesia. Biodiversitas (Surakarta) 19, 1649– 1658.

[62]

Pratiknyo,H., Setyowati,E.A., theENDANG ARIYANI SETYOWATI, 2020. Short communication: The diversity of termites along the altitudinal gradient in a Karst Area of Southern Gombong, Central Java, Indonesia. Biodiversitas (Surakarta) 21, 1730– 1734.

[63]

RCore Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

[64]

Scholtz,O., Knight,M.E., Eggleton,P., 2021. Spatial structure of rainforest termites: Two matched pioneering cross-continental case studies. Biotropica 53, 1178– 1190.

[65]

Schyra,J., Gbenyedji,J.N.B.K., Korb,J., 2019. A comparison of termite assemblages from West African savannah and forest ecosystems using morphological and molecular markers. PLoS One 14, 1– 20.

[66]

Shanbhag,R.R., Kabbaj,M., Sundararaj,R., Jouquet,P., 2017. Rainfall and soil properties influence termite mound abundance and height: A case study with Odontotermes obesus (Macrotermitinae) mounds in the Indian Western Ghats forests. Applied Soil Ecology 111, 33– 38.

[67]

Slaytor, 2000. Energy metabolism in the termite and its gut microbiota. In: Termites: Evolution, Sociality, Symbioses, Ecology. Springer Netherlands, Dordrecht, pp. 307– 332.

[68]

Šobotník,J., DahlsjöC.A.L., 2017. Isoptera. In: Reference Module in Life Sciences. Elsevier.

[69]

SoilSurvey Staff, 2014. Keys to Soil Taxonomy. United States Department of Agriculture (USDA), Natural Resources Conservation Service, Washington, DC

[70]

St. Clair,A.L., Dolezal,A.G., O’Neal,M.E., Toth,A.L., 2020. Pan traps for tracking honey bee activity-density: A case study in soybeans. Insects 11, 366.

[71]

Sugimoto,A., Bignell,D.E., MacDonald,J.A., 2000. Global Impact of Termites on the Carbon Cycle and Atmospheric Trace Gases. In: Abe, T., E.D., Bignell, Higashi, M., eds. Termites: Evolution, Sociality, Symbioses, Ecology. Springer Netherlands, Dordrecht, 409–435.

[72]

Syaukani,S., Thompson,G.J., Zettel,H., Pribadi,T., 2016. A new species of open-air processional column termite, Hospitalitermes nigriantennalis sp. n. (Termitidae), from Borneo . ZooKeys 554, 27– 36

[73]

Thiele,H.-U., 1977. Carabid Beetles in Their Environments. Springer Heidelberg.

[74]

Valckx,J., Cockx,L., Wauters,J., Van Meirvenne,M., Govers,G., Hermy,M., Muys,B., 2009. Within-field spatial distribution of earthworm populations related to species interactions and soil apparent electrical conductivity. Applied Soil Ecology 41, 315– 328.

[75]

Vasconcellos,A., 2010. Biomass and abundance of termites in three remnant areas of Atlantic Forest in northeastern Brazil. Revista Brasileira de Entomologia 54, 455– 461.

[76]

Vesala,R., Niskanen,T., Liimatainen,K., Boga,H., Pellikka,P., Rikkinen,J., 2017. Diversity of fungus-growing termites (Macrotermes) and their fungal symbionts (Termitomyces) in the semiarid Tsavo Ecosystem, Kenya. Biotropica 49, 402– 412.

[77]

Wiegand,T., Moloney,K.A., 2013. Handbook of Spatial Point-Pattern Analysis in Ecology. Chapman and Hall/CRC.

[78]

Wiens,J.A., 1989. Spatial Scaling in Ecology. Functional Ecology 3, 385.

[79]

Xia,S.W., Chen,J., Schaefer,D., Detto,M., 2015. Scale-dependent soil macronutrient heterogeneity reveals effects of litterfall in a tropical rainforest. Plant and Soil 391, 51– 61.

[80]

Yang,X., Chen,J., 2009. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biology & Biochemistry 41, 910– 918.

[81]

Zaret,T.M., Rand,A.S., 1971. Competition in tropical stream fishes: Support for the competitive exclusion principle. Ecology 52, 336– 342.

[82]

Zhang,J., Ma,K., 2013. spaa: An R package for computing species association and niche overlap. In: Chinese National Committee for Diversity, ed. Advances in Biodiversity Conservation and Research in China. China Meteorological Press, Beijing

[83]

Zhang,L., Meng,L., Guo,C., Gao,M., Liu,D., Zhang,X., 2015. Spatial heterogeneity of soil mite community and its spatial relationship with environmental factors in Maoer Mountains. International Journal of Smart Home 9, 141– 148.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6588KB)

Supplementary files

SEL-00141-OF-TM_suppl_1

SEL-00141-OF-TM_suppl_2

1645

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/