Responses of soil microbial carbon use efficiency to warming: Review and prospects
Qiufang Zhang, Wenkuan Qin, Jiguang Feng, Biao Zhu
Responses of soil microbial carbon use efficiency to warming: Review and prospects
● This study reviewed the effect of warming on microbial carbon use efficiency (CUE).
● Different measurement method is one of the key reasons for the variation of CUE.
● The warming effect on CUE is complicated by changes in biotic and abiotic factors.
● Future research on CUE should focus on new methods, multi-factor experiments, etc.
Microbial carbon use efficiency (CUE) is an important factor driving soil carbon (C) dynamics. However, microbial CUE could positively, negatively, or neutrally respond to increased temperature, which limits our prediction of soil C storage under future climate warming. Experimental warming affects plant production and microbial communities, which thus can have a significant impact on biogeochemical cycles of terrestrial ecosystems. Here, we reviewed the present research status of methods measuring microbial CUE and the response of microbial CUE to the changes of biotic and abiotic factors induced by warming. Overall, current measurement methods mainly include metabolic flux analysis, calorespirometry, stoichiometric model, 13C and 18O labeling. Differences in added substrate types can lead to an overestimation or underestimation on microbial CUE, particularly when using the 13C labeling method. In addition, changes in the dominant microbial community under warming may also affect CUE. However, there is still uncertainty in CUE characteristics of different microorganisms. Microbial CUE is generally decreased under warming conditions as microbes are subjected to water stress or soil labile organic matter is much more depleted compared to ambient conditions. In contrast, considering that warming increases soil nutrient availability, warming may enhance microbial CUE by alleviating nutrient limitations for microbes. In conclusion, the response of microbial CUE to warming is more complex than expected. The microbial growth and physiological adaptation to environmental stress under warming is one of the main reasons for the inconsistence in microbial CUE response. Finally, we propose five aspects where further research could improve the understanding of microbial CUE in a warmer world, including using new technologies, establishing multi-factor interactive experiments, building a network of experimental research platform for warming, and strengthening studies on response of CUE to warming at different soil depths and on different temporal scales.
Warming / Carbon use efficiency / Substrate quality / Nutrient availability / Stoichiometry
[1] |
Allison, S.D., 2014. Modeling adaptation of carbon use efficiency in microbial communities. Frontiers in Microbiology 5, 571.
CrossRef
Pubmed
Google scholar
|
[2] |
Allison, S.D., Wallenstein, M.D., Bradford, M.A., 2010. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience 3, 336–340.
CrossRef
Google scholar
|
[3] |
Apple, J.K., del Giorgio, P.A., Kemp, W.M., 2006. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquatic Microbial Ecology 43, 243–254.
CrossRef
Google scholar
|
[4] |
Barros, N., Hansen, L.D., Pineiro, V., Pérez-Cruzado, C., Villanueva, M., Proupín, J., ón, J.A., 2016. Factors influencing the calorespirometric ratios of soil microbial metabolism. Soil Biology & Biochemistry 92, 221–229.
CrossRef
Google scholar
|
[5] |
Batjes, N.H., 2016. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 269, 61–68.
CrossRef
Google scholar
|
[6] |
Birch, H., 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil 10, 9–31.
CrossRef
Google scholar
|
[7] |
Bonner, M.T.L., Shoo, L.P., Brackin, R., Schmidt, S., 2018. Relationship between microbial composition and substrate use efficiency in a tropical soil. Geoderma 315, 96–103.
CrossRef
Google scholar
|
[8] |
Canarini, A., Wanek, W., Watzka, M., Sandén, T., Spiegel, H., ek, J., Schnecker, J., 2020. Quantifying microbial growth and carbon use efficiency in dry soil environments via 18O water vapor equilibration. Global Change Biology 26, 5333–5341.
CrossRef
Pubmed
Google scholar
|
[9] |
Chen, J., Elsgaard, L., van Groenigen, K.J., Olesen, J.E., Liang, Z., Jiang, Y., Laerke, P.E., Zhang, Y., Luo, Y., Hungate, B.A., Sinsabaugh, R.L., rgensen, U., 2020. Soil carbon loss with warming: New evidence from carbon-degrading enzymes. Global Change Biology 26, 1944–1952.
CrossRef
Pubmed
Google scholar
|
[10] |
Chen, X., Xia, Y., Rui, Y., Ning, Z., Hu, Y., Tang, H., He, H., Li, H., Kuzyakov, Y., Ge, T., Wu, J., Su, Y., 2020. Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization. Agriculture, Ecosystems & Environment 292, 106816.
CrossRef
Google scholar
|
[11] |
Chen, Y., Feng, J., Yuan, X., Zhu, B., 2020. Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: A meta-analysis. Geoderma 370, 114363.
CrossRef
Google scholar
|
[12] |
Cleveland, C.C., Liptzin, D. 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?. Biogeochemistry 85, 235–252.
CrossRef
Google scholar
|
[13] |
Creamer, C., Jones, D., Baldock, J., Rui, Y., Murphy, D.V., Hoyle, F.C., Farrell, M. 2016. Is the fate of glucose-derived carbon more strongly driven by nutrient availability, soil texture, or microbial biomass size?. Soil Biology & Biochemistry 103, 201–212.
CrossRef
Google scholar
|
[14] |
Cruz-Paredes, C., Tájmel, D., Rousk, J. 2021. Can moisture affect temperature dependences of microbial growth and respiration?. Soil Biology & Biochemistry 156, 108223.
CrossRef
Google scholar
|
[15] |
del Giorgio, P.A., Cole, J.J. 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology, Evolution, and Systematics 29, 503–541.
CrossRef
Google scholar
|
[16] |
Dijkstra, P., Thomas, S.C., Heinrich, P.L., Koch, G.W., Schwartz, E., Hungate, B.A., 2011. Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biology & Biochemistry 43, 2023–2031.
CrossRef
Google scholar
|
[17] |
Domeignoz-Horta, L.A., Pold, G., Liu, X.A., Frey, S.D., Melillo, J.M., DeAngelis, K.M., 2020. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications 11, 3684.
CrossRef
Pubmed
Google scholar
|
[18] |
Dove, N.C., Torn, M.S., Hart, S.C., 2021. Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile. Nature Communications 12, 2089.
CrossRef
Pubmed
Google scholar
|
[19] |
Feng, X., Simpson, A., Wilson, K., Dudley Williams, D., Simpson, M.J., 2008. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geoscience 1, 836–839.
CrossRef
Google scholar
|
[20] |
Fisk, M., Santangelo, S., Minick, K., 2015. Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests. Soil Biology & Biochemistry 81, 212–218.
CrossRef
Google scholar
|
[21] |
Fontaine, S., Mariotti, A., Abbadie, L. 2003. The priming effect of organic matter: a question of microbial competition?. Soil Biology & Biochemistry 35, 837–843.
CrossRef
Google scholar
|
[22] |
Frey, S.D., Gupta, V., Elliott, E.T., Paustian, K., 2001. Protozoan grazing affects estimates of carbon utilization efficiency of the soil microbial community. Soil Biology & Biochemistry 33, 1759–1768.
CrossRef
Google scholar
|
[23] |
Frey, S.D., Lee, J., Melillo, J.M., Six, J., 2013. The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change 3, 395–398.
CrossRef
Google scholar
|
[24] |
Friedlingstein, P., Sullivan, M., Jones, W.M., Andrew, R.M., Hauck, J., Olsen, A., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S., Aragão, L.E.O.C., Arneth, A., Arora, V., Bates, N.R., Becker, M., Benoit-Cattin, A., Bittig, H.C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L.P., Evans, W., Florentie, L., Forster, P.M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R.A., Ilyina, T., Jain, A.K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J.I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.I., Niwa, Y., Brien, K., Ono, T., Palmer, P.I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A.J.P., Sutton, A.J., Tanhua, T., Tans, P.P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A.P., Wanninkhof, R., Watson, A.J., Willis, D., Wiltshire, A.J., Yuan, W., Yue, X., Zaehle, S., 2020. Global carbon budget 2020. Earth System Science Data 12, 3269–3340.
CrossRef
Google scholar
|
[25] |
Fuchslueger, L., Wild, B., Mooshammer, M., Takriti, M., Kienzl, S., Knoltsch, A., Hofhansl, F., Bahn, M., Richter, A., 2019. Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands. Soil Biology & Biochemistry 135, 144–153.
CrossRef
Google scholar
|
[26] |
Geyer, K.M., Dijkstra, P., Sinsabaugh, R., Frey, S.D., 2019. Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biology & Biochemistry 128, 79–88.
CrossRef
Google scholar
|
[27] |
Geyer, K.M., Kyker-Snowman, E., Grandy, A.S., Frey, S.D., 2016. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127, 173–188.
CrossRef
Google scholar
|
[28] |
Guo, X., Feng, J., Shi, Z., Zhou, X., Yuan, M., Tao, X., Hale, L., Yuan, T., Wang, J., Qin, Y., Zhou, A., Fu, Y., Wu, L., He, Z., Van Nostrand, J.D., Ning, D., Liu, X., Luo, Y., Tiedje, J.M., Yang, Y., Zhou, J., 2018. Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change 8, 813–818.
CrossRef
Google scholar
|
[29] |
Hall, E.K., Singer, G.A., Kainz, M.J., Lennon, J.T., 2010. Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off. Functional Ecology 24, 898–908.
CrossRef
Google scholar
|
[30] |
Hansen, L.D., Macfarlane, C., McKinnon, N., Smith, B.N., Criddle, R.S., 2004. Use of calorespirometric ratios, heat per CO2 and heat per O2, to quantify metabolic paths and energetics of growing cells. Thermochimica Acta 422, 55–61.
CrossRef
Google scholar
|
[31] |
Herron, P.M., Stark, J.M., Holt, C., Hooker, T., Cardon, Z.G., 2009. Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas. Soil Biology & Biochemistry 41, 1262–1269.
CrossRef
Google scholar
|
[32] |
Hicks Pries, C.E., Castanha, C., Porras, R.C., Torn, M.S., 2017. The whole-soil carbon flux in response to warming. Science 355, 1420–1423.
CrossRef
Pubmed
Google scholar
|
[33] |
Hou, Y., He, K., Chen, Y., Zhao, J., Hu, H., Zhu, B., 2021. Changes of soil organic matter stability along altitudinal gradients in Tibetan alpine grassland. Plant and Soil 458, 21–40.
CrossRef
Google scholar
|
[34] |
Iovieno, P., th, E., 2008. Effect of drying and rewetting on bacterial growth rates in soil. FEMS Microbiology Ecology 65, 400–407.
CrossRef
Pubmed
Google scholar
|
[35] |
IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, B.R.J., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou B., eds. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. In Press
|
[36] |
Kaiser, C., Franklin, O., Dieckmann, U., Richter, A., 2014. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters 17, 680–690.
CrossRef
Pubmed
Google scholar
|
[37] |
Kallenbach, C.M., Wallenstein, M.D., Schipanksi, M.E., Grandy, A.S., 2019. Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Frontiers in Microbiology 10, 1146.
CrossRef
Pubmed
Google scholar
|
[38] |
Keiblinger, K.M., Hall, E.K., Wanek, W., Szukics, U., Hämmerle, I., Ellersdorfer, G., Böck, S., Strauss, J., Sterflinger, K., Richter, A., Zechmeister-Boltenstern, S., 2010. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology 73, 430–440.
CrossRef
Pubmed
Google scholar
|
[39] |
Kemp, R.B., 2000. “Fire burn and cauldron bubble” (W. Shakespeare): what the calorimetric-respirometric (CR) ratio does for our understanding of cells? Thermochimica Acta 355, 115–124.
CrossRef
Google scholar
|
[40] |
Lee, Z.M., Schmidt, T.M., 2014. Bacterial growth efficiency varies in soils under different land management practices. Soil Biology & Biochemistry 69, 282–290.
CrossRef
Google scholar
|
[41] |
Lehmann, J., Kleber, M., 2015. The contentious nature of soil organic matter. Nature 528, 60–68.
CrossRef
Pubmed
Google scholar
|
[42] |
Lei, J., Guo, X., Zeng, Y., Zhou, J., Gao, Q., Yang, Y., 2021. Temporal changes in global soil respiration since 1987. Nature Communications 12, 403.
CrossRef
Pubmed
Google scholar
|
[43] |
Li, J., Sang, C.P., Yang, J.Y., Qu, L., Xia, Z., Sun, H., Jiang, P., Wang, X., He, H., Wang, C., 2021. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biology & Biochemistry 156, 108207.
CrossRef
Google scholar
|
[44] |
Li, J.Q., Pei, J.M., Dijkstra, F.A., Nie, M., Pendall, E., 2021. Microbial carbon use efficiency, biomass residence time and temperature sensitivity across ecosystems and soil depths. Soil Biology & Biochemistry 154, 108117.
CrossRef
Google scholar
|
[45] |
Lipson, D.A., 2015. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Frontiers in Microbiology 6, 615.
CrossRef
Pubmed
Google scholar
|
[46] |
Liu, X.J.A., Pold, G., Domeignoz-Horta, A.L., Geyer, K.M., Caris, H., Nicolson, H., Kemner, K.M., Frey, S.D., Melillo, J.M., DeAngelis, K.M., 2021. Soil aggregate-mediated microbial responses to long-term warming. Soil Biology & Biochemistry 152, 108055.
CrossRef
Google scholar
|
[47] |
Lu, M., Zhou, X., Yang, Q., Li, H., Luo, Y., Fang, C., Chen, J., Yang, X., Li, B., 2013. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94, 726–738.
CrossRef
Pubmed
Google scholar
|
[48] |
Luo, R., Kuzyakov, Y., Liu, D., Fan, J., Luo, J., Lindsey, S., He, J.S., Ding, W., 2020. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls. Soil Biology & Biochemistry 144, 107764.
CrossRef
Google scholar
|
[49] |
Manzoni, S., Taylor, P., Richter, A., Porporato, A., gren, G.I., 2012. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist 196, 79–91.
CrossRef
Pubmed
Google scholar
|
[50] |
Mehnaz, K.R., Corneo, P.E., Keitel, C., Dijkstra, F.A., 2019. Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil. Soil Biology & Biochemistry 134, 175–186.
CrossRef
Google scholar
|
[51] |
Melillo, J.M., Frey, S.D., DeAngelis, K.M., Werner, W.J., Bernard, M.J., Bowles, F.P., Pold, G., Knorr, M.A., Grandy, A.S., 2017. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105.
CrossRef
Pubmed
Google scholar
|
[52] |
Moore, J.A.M., Anthony, M.A., Pec, G.J., Trocha, L.K., Trzebny, A., Geyer, K.M., van Diepen, L.T.A., Frey, S.D., 2021. Fungal community structure and function shifts with atmospheric nitrogen deposition. Global Change Biology 27, 1349–1364.
CrossRef
Pubmed
Google scholar
|
[53] |
Ofiti, N.O.E., Zosso, C.U., Soong, J.L., Solly, E.F., Torn, M.S., Wiesenberg, G.L.B., Schmidt, M.W.I., 2021. Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter. Soil Biology & Biochemistry 156, 108185.
CrossRef
Google scholar
|
[54] |
Pietikäinen, J., Pettersson, M., th, E., 2005. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiology Ecology 52, 49–58.
CrossRef
Pubmed
Google scholar
|
[55] |
Pold, G., Domeignoz-Horta, L.A., Morrison, E.W., Frey, S.D., Sistla, S.A., DeAngelis, K.M., 2020. Carbon use efficiency and its temperature sensitivity covary in soil bacteria. mBio 11, e02293–e19.
CrossRef
Pubmed
Google scholar
|
[56] |
Qu, L.R., Wang, C., Bai, E., 2020. Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency. Soil Biology & Biochemistry 145, 107802.
CrossRef
Google scholar
|
[57] |
Rawat, M., Arunachalam, K., Arunachalam, A., Alatalo, J.M., Pandey, R., 2020. Predicting litter decomposition rate for temperate forest tree species by the relative contribution of green leaf and litter traits in the Indian Himalayas region. Ecological Indicators 119, 106827.
CrossRef
Google scholar
|
[58] |
Rillig, M.C., Ryo, M., Lehmann, A., Aguilar-Trigueros, C.A., Buchert, S., Wulf, A., Iwasaki, A., Roy, J., Yang, G., 2019. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890.
CrossRef
Pubmed
Google scholar
|
[59] |
Romero-Olivares, A.L., Allison, S.D., Treseder, K.K., 2017. Soil microbes and their response to experimental warming over time: A meta-analysis of field studies. Soil Biology & Biochemistry 107, 32–40.
CrossRef
Google scholar
|
[60] |
Saifuddin, M., Bhatnagar, J.M., Segrè, D., Finzi, A.C., 2019. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nature Communications 10, 3568.
CrossRef
Pubmed
Google scholar
|
[61] |
Schimel, J. 2018. Life in dry soils: effects of drought on soil microbial communities and processes. Annual Review of Ecology, Evolution, and Systematics 49, 409–432.
CrossRef
Google scholar
|
[62] |
Schimel, J., Balser, T.C., Wallenstein, M., 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394.
CrossRef
Pubmed
Google scholar
|
[63] |
Schwartz, E., 2007. Characterization of growing microorganisms in soil by stable isotope probing with H218O. Applied and Environmental Microbiology 73, 2541–2546.
CrossRef
Pubmed
Google scholar
|
[64] |
Shen, R.C., Xu, M., Fang, C.M., Chen, J. K. 2018. Thermal adaptation of soil microbial respiration under global warming: evidence, mechanisms and controversies. Acta Ecologica Sinica 38, 11–19.
|
[65] |
Simon, E., Canarini, A., Martin, V., Séneca, J., Böckle, T., Reinthaler, D., Pötsch, E.M., Piepho, H.P., Bahn, M., Wanek, W., Richter, A., 2020. Microbial growth and carbon use efficiency show seasonal responses in a multifactorial climate change experiment. Communications Biology 3, 584.
CrossRef
Pubmed
Google scholar
|
[66] |
Sinsabaugh, R., Turner, B., Talbot, J., Waring, B.G., Powers, J.S., Kuske, C.R., Moorhead, D.L., Follstad Shah, J.J., 2016. Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs 86, 172–189.
CrossRef
Google scholar
|
[67] |
Sinsabaugh, R.L., Manzoni, S., Moorhead, D.L., Richter, A., 2013. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecology Letters 16, 930–939.
CrossRef
Pubmed
Google scholar
|
[68] |
Six, J., Frey, S.D., Thiet, R.K., Batten, K.M., 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal 70, 555–569.
CrossRef
Google scholar
|
[69] |
Smith, E.M., Prairie, Y.T., 2004. Bacterial metabolism and growth efficiency in lakes: the importance of phosphorus availability. Limnology and Oceanography 49, 137–147.
CrossRef
Google scholar
|
[70] |
Smith, T.P., Clegg, T., Bell, T., Pawar, S., 2021. Systematic variation in the temperature dependence of bacterial carbon use efficiency. Ecology Letters 24, 2123–2133.
CrossRef
Pubmed
Google scholar
|
[71] |
Soares, M., Rousk, J., 2019. Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biology & Biochemistry 131, 195–205.
CrossRef
Google scholar
|
[72] |
Song, J., Wan, S., Piao, S., Knapp, A.K., Classen, A.T., Vicca, S., Ciais, P., Hovenden, M.J., Leuzinger, S., Beier, C., Kardol, P., Xia, J., Liu, Q., Ru, J., Zhou, Z., Luo, Y., Guo, D., Adam Langley, J., Zscheischler, J., Dukes, J.S., Tang, J., Chen, J., Hofmockel, K.S., Kueppers, L.M., Rustad, L., Liu, L., Smith, M.D., Templer, P.H., Quinn Thomas, R., Norby, R.J., Phillips, R.P., Niu, S., Fatichi, S., Wang, Y., Shao, P., Han, H., Wang, D., Lei, L., Wang, J., Li, X., Zhang, Q., Li, X., Su, F., Liu, B., Yang, F., Ma, G., Li, G., Liu, Y., Liu, Y., Yang, Z., Zhang, K., Miao, Y., Hu, M., Yan, C., Zhang, A., Zhong, M., Hui, Y., Li, Y., Zheng, M., 2019. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution 3, 1309–1320.
CrossRef
Pubmed
Google scholar
|
[73] |
Soong, J.L., Phillips, C.L., Ledna, C., Koven, C.D., Torn, M.S., 2020. CMIP5 models predict rapid and deep soil warming over the 21st century. Journal of Geophysical Research-Biogeosciences 125, e2019JG005266.
|
[74] |
Spohn, M., Klaus, K., Wanek, W., Richter, A., 2016a. Microbial carbon use efficiency and biomass turnover times depending on soil depth-implications for carbon cycling. Soil Biology & Biochemistry 96, 74–81.
CrossRef
Google scholar
|
[75] |
Spohn, M., Potsch, E.M., Eichorst, S.A., Woebken, D., Wanek, W., Richter, A., 2016b. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biology & Biochemistry 97, 168–175.
CrossRef
Google scholar
|
[76] |
SternerR.W.,, ElserJ.J.,. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton, NJ, USA, Princeton University Press
|
[77] |
Sun, Y., Wang, C., Chen, H.Y.H., Liu, Q., Ge, B., Tang, B., 2022. A global meta-analysis on the responses of C and N concentrations to warming in terrestrial ecosystems. Catena 208, 105762.
CrossRef
Google scholar
|
[78] |
Tian, J., Zong, N., Hartley, I.P., He, N., Zhang, J., Powlson, D., Zhou, J., Kuzyakov, Y., Zhang, F., Yu, G., Dungait, J.A.J., 2021. Microbial metabolic response to winter warming stabilizes soil carbon. Global Change Biology 27, 2011–2028.
CrossRef
Pubmed
Google scholar
|
[79] |
Tiemann, L.K., Billings, S.A., 2011. Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biology & Biochemistry 43, 1837–1847.
CrossRef
Google scholar
|
[80] |
Ullah, M.R., Carrillo, Y., Dijkstra, F.A., 2021. Drought-induced and seasonal variation in carbon use efficiency is associated with fungi:bacteria ratio and enzyme production in a grassland ecosystem. Soil Biology & Biochemistry 155, 108159.
CrossRef
Google scholar
|
[81] |
van Bodegom, P., 2007. Microbial maintenance: a critical review on its quantification. Microbial Ecology 53, 513–523.
CrossRef
Pubmed
Google scholar
|
[82] |
van Gestel, N., Shi, Z., van Groenigen, K.J., Osenberg, C.W., Andresen, L.C., Dukes, J.S., Hovenden, M.J., Luo, Y., Michelsen, A., Pendall, E., Reich, P.B., Schuur, E.A.G., Hungate, B.A., 2018. Predicting soil carbon loss with warming. Nature 554, E4–E5.
CrossRef
Pubmed
Google scholar
|
[83] |
Vaughn, L.J.S., Torn, M.S., 2019. 14C evidence that millennial and fast-cycling soil carbon are equally sensitive to warming. Nature Climate Change 9, 467–471.
CrossRef
Google scholar
|
[84] |
von Stockar, U., Liu, J., 1999. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth.. BBA-Bioenergetics 1412, 191–211.
CrossRef
Pubmed
Google scholar
|
[85] |
Walker, T.W.N., Janssens, I.A., Weedon, J.T., Sigurdsson, B.D., Richter, A., uelas, J., Leblans, N.I.W., Bahn, M., Bartrons, M., De Jonge, C., Fuchslueger, L., Gargallo-Garriga, A., Gunnarsdóttir, G.E., ón-Jiménez, S., Oddsdóttir, E.S., Ostonen, I., Poeplau, C., Prommer, J., Sardans, J., sson, P., Soong, J.L., Vicca, S., Wallander, H., Ilieva-Makulec, K., Verbruggen, E., 2020. A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nature Ecology & Evolution 4, 101–108.
CrossRef
Pubmed
Google scholar
|
[86] |
Walker, T.W.N., Kaiser, C., Strasser, F., Herbold, C.W., Leblans, N.I.W., Woebken, D., Janssens, I.A., Sigurdsson, B.D., Richter, A., 2018. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nature Climate Change 8, 885–889.
CrossRef
Pubmed
Google scholar
|
[87] |
Wang, C., Morrissey, E.M., Mau, R.L., Hayer, M., eiro, J., Mack, M.C., Marks, J.C., Bell, S.L., Miller, S.N., Schwartz, E., Dijkstra, P., Koch, B.J., Stone, B.W., Purcell, A.M., Blazewicz, S.J., Hofmockel, K.S., Pett-Ridge, J., Hungate, B.A., 2021. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME Journal 15, 2738–2747.
CrossRef
Pubmed
Google scholar
|
[88] |
Wang, N., Quesada, B., Xia, L., Butterbach-Bahl, K., Goodale, C.L., Kiese, R., 2019. Effects of climate warming on carbon fluxes in grasslands- A global meta-analysis. Global Change Biology 25, 1839–1851.
CrossRef
Pubmed
Google scholar
|
[89] |
Widdig, M., Schleuss, P.M., Biederman, L.A., Borer, E.T., Crawley, M.J., Kirkman, K.P., Seabloom, E.W., Wragg, P.D., Spohn, M., 2020. Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions. Soil Biology & Biochemistry 146, 107815.
CrossRef
Google scholar
|
[90] |
Wu, Y.R., He, J., 2013. Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation. Bioresource Technology 139, 5–12.
CrossRef
Pubmed
Google scholar
|
[91] |
Xiao, W., Chen, X., Jing, X., Zhu, B., 2018. A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biology & Biochemistry 123, 21–32.
CrossRef
Google scholar
|
[92] |
Xu, W., Yuan, W., 2017. Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis. Soil Biology & Biochemistry 115, 265–274.
CrossRef
Google scholar
|
[93] |
Xu, W., Yuan, W., Dong, W., Xia, J., Liu, D., Chen, Y., 2013. A meta-analysis of the response of soil moisture to experimental warming. Environmental Research Letters 8, 044027.
CrossRef
Google scholar
|
[94] |
Yue, K., Fornara, D.A., Yang, W., Peng, Y., Li, Z., Wu, F., Peng, C., 2017. Effects of three global change drivers on terrestrial C:N:P stoichiometry: a global synthesis. Global Change Biology 23, 2450–2463.
CrossRef
Pubmed
Google scholar
|
[95] |
Zechmeister-Boltenstern, S., Keiblinger, K.M., Mooshammer, M., uelas, J., Richter, A., Sardans, J., Wanek, W., 2015. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs 85, 133–155.
CrossRef
Google scholar
|
[96] |
Zhai, Z.F., Luo, M., Yang, Y., Liu, Y., Chen, X., Zhang, C., Huang, J., Chen, J., 2022. Trade-off between microbial carbon use efficiency and microbial phosphorus limitation under salinization in a tidal wetland. Catena 209, 105809.
CrossRef
Google scholar
|
[97] |
Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Richter, A., Wanek, W., 2019. Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biology & Biochemistry 128, 45–55.
CrossRef
Pubmed
Google scholar
|
[98] |
Zhran, M., Ge, T., Tong, Y., Deng, Y., Wei, X., Lynn, T.M., Zhu, Z., Wu, J., Gunina, A., 2021. Assessment of depth-dependent microbial carbon use efficiency in long-term fertilized paddy soil using an 18O-H2O approach. Land Degradation & Development 32, 199–207.
CrossRef
Google scholar
|
[99] |
Zhu, B., Chen, Y., 2020. Techniques and methods for field warming manipulation experiments in terrestrial ecosystems. Chinese Journal of Plant Ecology 44, 330–339.
CrossRef
Google scholar
|
/
〈 | 〉 |