Soil inorganic carbon sequestration through alkalinity regeneration using biologically induced weathering of rock powder and biochar

Muhammad Azeem, Sajjad Raza, Gang Li, Pete Smith, Yong-Guan Zhu

PDF(2037 KB)
PDF(2037 KB)
Soil Ecology Letters ›› 2022, Vol. 4 ›› Issue (4) : 293-306. DOI: 10.1007/s42832-022-0136-4
REVIEW
REVIEW

Soil inorganic carbon sequestration through alkalinity regeneration using biologically induced weathering of rock powder and biochar

Author information +
History +

Highlights

● Soil acidification caused severe losses of soil inorganic carbon stock worldwide.

● SIC losses could be mitigated via alkalinity regeneration approaches.

● Rock/mineral powder can supply substantial basic cations to soil to reduce acidification.

● Microorgnisms could be utilized to enhance weathering of rock/mineral powder.

● Biochar and bone biochar could reduce SIC losses via alkalinity regeneration.

Abstract

Soil inorganic carbon (SIC) accounts for about half of the C reserves worldwide and is considered more stable than soil organic carbon (SOC). However, soil acidification, driven mainly by nitrogen (N) fertilization can accelerate SIC losses, possibly leading to complete loss under continuous and intensive N fertilization. Carbonate-free soils are less fertile, productive, and more prone to erosion. Therefore, minimizing carbonate losses is essential for soil health and climate change mitigation. Rock/mineral residues or powder have been suggested as a cheaper source of amendments to increase soil alkalinity. However, slow mineral dissolution limits its efficient utilization. Soil microorganisms play a vital role in the weathering of rocks and their inoculation with mineral residues can enhance dissolution rates. Biochar is an alternative material for soil amendments, in particular, bone biochar (BBC) contains higher Ca and Mg that can induce even higher alkalinity. This review covers i) the contribution and mechanism of rock residues in alkalinity generation, ii) the role of biochar or BBC to soil alkalinity, and iii) the role of microbial inoculation for accelerating alkalinity generation through enhanced mineral dissolution. We conclude that using rock residues/BBC combined with microbial agents could mitigate soil acidification and SIC losses and also improve agricultural circularity.

Graphical abstract

Keywords

Soil acidity / Climate change / Valorizing of waste / Biological weathering

Cite this article

Download citation ▾
Muhammad Azeem, Sajjad Raza, Gang Li, Pete Smith, Yong-Guan Zhu. Soil inorganic carbon sequestration through alkalinity regeneration using biologically induced weathering of rock powder and biochar. Soil Ecology Letters, 2022, 4(4): 293‒306 https://doi.org/10.1007/s42832-022-0136-4

References

[1]
Adeyemi, A.O., Gadd, G.M., 2005. Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18, 269– 281.
CrossRef Google scholar
[2]
Ahmed, E., Holmström, S.J., 2015. Microbe–mineral interactions: the impact of surface attachment on mineral weathering and element selectivity by microorganisms. Chemical Geology 403, 13– 23.
[3]
Akhtar, M.S., Siddiqui, Z.A., 2008. Arbuscular Mycorrhizal Fungi as Potential Bioprotectants against Plant Pathogens. In: Siddiqui Z.A., Akhtar M.S., Futai K., eds. Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht
[4]
Ali, A.M., Awad, M.Y., Hegab, S.A., Gawad, A.M.A.E., Eissa, M.A. 2021. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. Journal of Plant Nutrition 44, 411– 420.
CrossRef Google scholar
[5]
Amundson, R., Biardeau, L. 2018. Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proceedings of the National Academy of Sciences 115, 11652– 11656.
CrossRef Google scholar
[6]
Anjanadevi, I.P., John, N.S., John, K.S., Jeeva, M.L., Misra, R.S., 2016. Rock inhabiting potassium solubilizing bacteria from Kerala, India: characterization and possibility in chemical K fertilizer substitution. Journal of Basic Microbiology 56, 67- 77.
[7]
Azeem, M., Ali, A., Arockiam Jeyasundar, P.G.S., Bashir, S., Hussain, Q., Wahid, F., Ali, E.F., Abdelrahman, H., Li, R., Antoniadis, V., Rinklebe, J., Shaheen, S.M., Li, G., Zhang, Z. 2021a. Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil. Chemosphere 282, 131016.
CrossRef Google scholar
[8]
Azeem, M., Ali, A., Arockiam Jeyasundar, P.G.S., Li, Y., Abdelrahman, H., Latif, A., Li, R., Basta, N., Li, G., Shaheen, S.M., Rinklebe, J., Zhang, Z. 2021b. Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil. Environmental Pollution 277, 116800.
CrossRef Google scholar
[9]
Azeem, M., Hale, L., Montgomery, J., Crowley, D., McGiffen, M.E. Jr 2020. Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils. PLoS One 15, 0242209.
CrossRef Google scholar
[10]
Azeem, M., Hassan, T.U., Tahir, M.I., Ali, A., Jeyasundar, P.G.S.A., Hussain, Q., Bashir, S., Mehmood, S., Zhang, Z. 2021c. Tea leaves biochar as a carrier of Bacillus cereus improves the soil function and crop productivity. Applied Soil Ecology 157, 103732.
CrossRef Google scholar
[11]
Azeem, M., Hayat, R., Hussain, Q., Tahir, M.I., Imran, M., Abbas, Z., Sajid, M., Latif, A., Irfan, M. 2019. Effects of biochar and NPK on soil microbial biomass and enzyme activity during 2 years of application in the arid region. Arabian Journal of Geosciences 12, 311.
CrossRef Google scholar
[12]
Azeem, M., Shaheen, S.M., Ali, A., Jeyasundar, P.G.S.A., Latif, A., Abdelrahman, H., Li, R., Almazroui, M., Niazi, N.K., Sarmah, A.K., Li, G., Rinklebe, J., Zhu, Y.G., Zhang, Z. 2022. Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review. Journal of Hazardous Materials 427, 128131.
CrossRef Google scholar
[13]
Bach, L.T., Gill, S.J., Rickaby, R.E., Gore, S., Renforth, P. 2019. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems. Frontiers in Climate 1, 7.
CrossRef Google scholar
[14]
Balogh-Brunstad, Z., Keller, C.K., Dickinson, J.T., Stevens, F., Li, C., Bormann, B.T. 2008. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochimica et Cosmochimica Acta 72, 2601– 2618.
CrossRef Google scholar
[15]
Basak, B.B., Biswas, D.R. 2009. Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. mBio 317, 235– 255.
CrossRef Google scholar
[16]
Behnsen, J., Raffatellu, M., 2016. Siderophores: more than stealing iron. mBio 7, e01906- e01916.
CrossRef Google scholar
[17]
Benson, S.M., Cole, D.R. 2008. CO2 sequestration in deep sedimentary formations. Elements 4, 325– 331.
CrossRef Google scholar
[18]
Bethers, S., Day, M.E., Wiersma, G.B., Fernandez, I.J. and Elvir, J.A., 2009. Effects of chronically elevated nitrogen and sulfur deposition on sugar maple saplings: Nutrition, growth and physiology. Forest Ecology and Management 258, 895– 902
[19]
Burford, E.P., Hillier, S., Gadd, G.M. 2006. Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono-and dihydrate in carboniferous limestone microcosms. Geomicrobiology Journal 23, 599– 611.
CrossRef Google scholar
[20]
Cai, Z., Wang, B., Xu, M., Zhang, H., He, X., Zhang, L., Gao, S. 2015. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. Journal of Soils and Sediments 15, 260– 270.
CrossRef Google scholar
[21]
Castro, I.M., Fietto, J.L.R., Vieira, R.X., Trópia, M.J.M., Campos, L.M.M., Paniago, E.B., Brandão, R.L., the Castro IdM 2000. Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy 57, 39– 49.
CrossRef Google scholar
[22]
Chai, R., Ye, X., Ma, C., Wang, Q., Tu, R., Zhang, L., Gao, H. 2019. Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance and Management 14, 20.
CrossRef Google scholar
[23]
Chen, B., Liu, E., Tian, Q., Yan, C., Zhang, Y.J., 2014. Soil nitrogen dynamics and crop residues: A review. Agronomy for Sustainable Development 34, 429– 442
[24]
Conyers, M.K., Heenan, D.P., Poile, G.J., Cullis, B.R., Helyar, K.R. 1996. Influence of dryland agricultural management practices on the acidification of a soil profile. Soil & Tillage Research 37, 127– 141.
CrossRef Google scholar
[25]
Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P.C., Xu, J. 2017. Potential role of biochars in decreasing soil acidification-a critical review. Science of the Total Environment 581, 601– 611.
CrossRef Google scholar
[26]
Dalal, R. C., Harms, B., Krull, E., Wang, W. 2005. Total soil organic matter and its labile pools following mulga (Acacia aneura) clearing for pasture development and cropping 1. Total and labile carbon. Soil Research 43, 13– 20.
CrossRef Google scholar
[27]
de Oliveira, A.K.M., Pina, J.C., Pereira, S.R., Bono, J.A.M., Matias, R., de Freitas Pires, F., de Assis, T.E. 2020. Effect of basalt rock powder associated with different substrates on the initial development of aroeira seedlings (Myracrodruon urundeuva). Research. Social Development 9, e5591210790– e5591210790.
CrossRef Google scholar
[28]
Dippold, M., Biryukov, M., Kuzyakov, Y. 2014. Sorption affects amino acid pathways in soil: implications from position-specific labeling of alanine. Soil Biology & Biochemistry 72, 180– 192.
CrossRef Google scholar
[29]
Dong, X., Singh, B.P., Li, G., Lin, Q., Zhao, X., 2018. Biochar application constrained native soil organic carbon accumulation from wheat residue inputs in a long-term wheat-maize cropping system. Agriculture, Ecosystems & Environment 252, 200-07
[30]
Dong, X., Singh, B.P., Li, G., Lin, Q., Zhao, X. 2019a. Biochar increased field soil inorganic carbon content five years after application. Soil & Tillage Research 186, 36– 41.
CrossRef Google scholar
[31]
Dong, X., Singh, B.P., Li, G., Lin, Q., Zhao, X. 2019b. Biochar has little effect on soil dissolved organic carbon pool 5 years after biochar application under field condition. Soil Use and Management 35, 466– 477.
[32]
Eswaran, H., Reich, P.F., Kimble, J.M., Beinroth, F.H., Padmanabhan, E., Moncharoen, P., 2000. Global Carbon Stocks. In: Lal, R., Kimble, J.M., Eswaran, H., Stewart, B.A., eds. Global Climate Change and Pedogenic Carbonates. Boca Raton: CRC Press, pp. 15– 25
[33]
Etesami, H., Emami, S., Alikhani, H.A. 2017. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects A review. Journal of Soil Science and Plant Nutrition 17, 897– 911.
CrossRef Google scholar
[34]
Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M.Z., Alharby, H., Wu, C., Wang, D., Huang, J. 2017. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science 8, 1147.
CrossRef Google scholar
[35]
Fauriel, S., Laloui, L. 2012. A bio-chemo-hydro-mechanical model for microbially induced calcite precipitation in soils. Computers and Geotechnics 46, 104– 120.
CrossRef Google scholar
[36]
Fernández, J.M., Nieto, M.A., López-de-Sá, E.G., Gascó, G., Méndez, A., Plaza, C. 2014. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Science of the Total Environment 482, 1– 7.
CrossRef Google scholar
[37]
Fidel, R.B., Laird, D.A., Parkin, T.B., 2017. Impact of biochar organic and inorganic carbon on soil CO2 and N2O emissions . Journal of Environmental Quality 46, 505– 513
[38]
Filippi, P., Cattle, S.R., Pringle, M.J., Bishop, T.F. 2020. A two-step modelling approach to map the occurrence and quantity of soil inorganic carbon. Geoderma 371, 114382.
CrossRef Google scholar
[39]
Finlay, R.D., Mahmood, S., Rosenstock, N., Bolou-Bi, E.B., Köhler, S.J., Fahad, Z., Rosling, A., Wallander, H., Belyazid, S., Bishop, K., Lian, B. 2020. Reviews and syntheses: Biological weathering and its consequences at different spatial levels–from nanoscale to global scale. Biogeosciences 17, 1507– 1533.
CrossRef Google scholar
[40]
Gadd, G.M., 2017. Fungi, rocks, and minerals. Elements: An International Magazine of Mineralogy, Geochemistry. Petrology 13, 171– 176
[41]
Ge, S., Zhu, Z., Jiang, Y. 2018. Long-term impact of fertilization on soil pH and fertility in an apple production system. Journal of Soil Science and Plant Nutrition 18, 282– 293.
CrossRef Google scholar
[42]
Ghosh, D., Maiti, S.K. 2021. Eco-restoration of coal mine spoil: Biochar application and carbon sequestration for achieving UN sustainable development goals 13 and 15. Land 10, 1112.
[43]
Guo, J.H., Liu, X.J., Zhang, Y., Shen, J.L., Han, W.X., Zhang, W.F., Christie, P., Goulding, K., Vitousek, P.M., Zhang, F. 2010. Significant acidification in major Chinese croplands. Science 327, 1008– 1010.
CrossRef Google scholar
[44]
Guo, W., Nazim, H., Liang, Z., Yang, D. 2016. Magnesium deficiency in plants: An urgent problem. Crop Journal 4, 83– 91.
CrossRef Google scholar
[45]
Gupta, M., Bisht, S., Singh, B., Gulati, A., Tewari, R. 2011. Enhanced biomass and steviol glycosides in Stevia rebaudiana treated with phosphate-solubilizing bacteria and rock phosphate. Plant Growth Regulation 65, 449– 457.
CrossRef Google scholar
[46]
Haddaway, N.R., Hedlund, K., Jackson, L.E., Kätterer, T., Lugato, E., Thomsen, I.K., Jørgensen, H.B., Isberg, P.E. 2017. How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence 6, 30.
CrossRef Google scholar
[47]
Hagvall, K., Persson, P., Karlsson, T. 2015. Speciation of aluminum in soils and stream waters: the importance of organic matter. Chemical Geology 417, 32– 43.
CrossRef Google scholar
[48]
Haldar, S.K., 2020. Introduction to Mineralogy and Petrology. New York: Elsevier
[49]
Hale, L., Luth, M., Crowley, D. 2015. Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biology & Biochemistry 81, 228– 235.
CrossRef Google scholar
[50]
Hale, S.E., Alling, V., Martinsen, V., Mulder, J., Breedveld, G., Cornelissen, G. 2013. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91, 1612– 1619.
CrossRef Google scholar
[51]
Hangx, S.J.T., Spiers, C.J. 2009. Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability. International Journal of Greenhouse Gas Control 3, 757– 767.
CrossRef Google scholar
[52]
Haque, F., 2019. Sequestration of CO2 in agricultural soils via application of carbon capturing soil amendment . Dissertation for the Doctoral Degree. Guelph: University of Guelph
[53]
Haque, F., Chiang, Y.W., Santos, R.M. 2019. Alkaline mineral soil amendment: a climate change ‘stabilization wedge’?. Energies 12, 2299.
CrossRef Google scholar
[54]
Haque, F., Santos, R.M., Chiang, Y.W. 2020. Optimizing inorganic carbon sequestration and crop yield with wollastonite soil amendment in a microplot study. Frontiers in Plant Science 11, 1012.
CrossRef Google scholar
[55]
Harley, A.D., Gilkes, R.J. 2000. Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overview. Nutrient Cycling in Agroecosystems 56, 11– 36.
CrossRef Google scholar
[56]
Hosseini, S.A., Réthoré, E., Pluchon, S., Ali, N., Billiot, B., Yvin, J.C. 2019. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. International Journal of Molecular Sciences 20, 3777.
CrossRef Google scholar
[57]
Hu, R., Li, F., Yu, H., Yang, J. 2020. Weathering of basalts by Aspergillus sp. FS-4 strain: glass compositions are prone to weathering. Geomicrobiology Journal 37, 101– 109.
CrossRef Google scholar
[58]
Huang, P., Zhang, J., Xin, X., Zhu, A., Zhang, C., Ma, D., Zhu, Q., Yang, S., Wu, S. 2015. Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain. Journal of Integrative Agriculture 14, 148– 157.
CrossRef Google scholar
[59]
Imran, M., Shahzad, S.M., Arif, M.S., Yasmeen, T., Ali, B., Tanveer, A., 2020. Inoculation of potassium solubilizing bacteria with different potassium fertilization sources mediates maize growth and productivity. Pakistan Journal of Agricultural Sciences 57, 1045– 1055
[60]
IPCC, 2007. Climate Change 2007: Synthesis Report. Geneva: IPCC 337
[61]
Jeffery, S., Verheijen, F.G., Kammann, C., Abalos, D. 2016. Biochar effects on methane emissions from soils: a meta-analysis. Soil Biology & Biochemistry 101, 251– 258.
CrossRef Google scholar
[62]
Jones, J.M., Guinel, F.C., Antunes, P.M. 2020. Carbonatites as rock fertilizers: A review. Rhizosphere 13, 100188.
CrossRef Google scholar
[63]
Kelemen, P.B., Matter, J. 2008. In situ carbonation of peridotite for CO2 storage. Proceedings of the National Academy of Sciences of the United States of America 105, 17295– 17300.
CrossRef Google scholar
[64]
Kim, J.H., Jobbágy, E.G., Richter, D.D., Trumbore, S.E., Jackson, R.B. 2020. Agricultural acceleration of soil carbonate weathering. Global Change Biology 26, 5988– 6002.
CrossRef Google scholar
[65]
Koron, D., Lavrič, L., Someus, E., 2017. Comparison of animal bone biochar and plant based biochar in strawberry production. VIII International Symposium on Mineral Nutrition of Fruit Crops 1217
[66]
Lal, R. 2016. Soil health and carbon management. Food and Energy Security 5, 212– 222.
CrossRef Google scholar
[67]
Lal R. 2020. Soil organic matter and water retention. Agronomy Journal 112, 3265– 3277.
CrossRef Google scholar
[68]
Lal, R., Monger, C., Nave, L., Smith, P. 2021a. The role of soil in regulation of climate. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 376, 2021084.
CrossRef Google scholar
[69]
Lal R, Monger C, Nave L, Smith P. 2021b. The role of soil in regulation of climate. Philosophical Transactions B 376, 20210084.
CrossRef Google scholar
[70]
Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D. 2011. Biochar effects on soil biota–a review. Soil Biology & Biochemistry 43, 1812– 1836.
CrossRef Google scholar
[71]
Li, Z., Liu, L., Chen, J., Teng, H.H. 2016. Cellular dissolution at hypha-and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology 44, 319– 322.
CrossRef Google scholar
[72]
Liu, X., Shi, Y., Zhang, Q., Li, G. 2021. Effects of biochar on nitrification and denitrification-mediated N2O emissions and the associated microbial community in an agricultural soil. Environmental Science and Pollution Research International 28, 6649– 6663.
CrossRef Google scholar
[73]
Lu, T., Wang, X., Du, Z., Wu, L., 2021. Impacts of continuous biochar application on major carbon fractions in soil profile of North China Plain’s cropland: In comparison with straw incorporation. Agriculture, Ecosystems Environment 315, 107445
[74]
Lucas, R.W., Klaminder, J., Futter, M.N., Bishop, K.H., Egnell, G., Laudon, H., Högberg, P. 2011. A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. Forest Ecology and Management 262, 95– 104.
CrossRef Google scholar
[75]
Luo, Y., Zang, H., Yu, Z., Chen, Z., Gunina, A., Kuzyakov, Y., Xu, J., Zhang, K., Brookes, P.C. 2017. Priming effects in biochar enriched soils using a three-source-partitioning approach: 14C labelling and 13C natural abundance. Soil Biology & Biochemistry 106, 28– 35.
CrossRef Google scholar
[76]
Matter, J.M., Stute, M., Snæbjörnsdottir, S.Ó., Oelkers, E.H., Gislason, S.R., Aradottir, E.S., Sigfusson, B., Gunnarsson, I., Sigurdardottir, H., Gunnlaugsson, E., Axelsson, G., Alfredsson, H.A., Wolff-Boenisch, D., Mesfin, K., Taya, D.F.R., Hall, J., Dideriksen, K., Broecker, W.S. 2016. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352, 1312– 1314.
CrossRef Google scholar
[77]
Merante, P., Dibari, C., Ferrise, R., Sánchez, B., Iglesias, A., Lesschen, J.P., Kuikman, P., Yeluripati, J., Smith, P., Bindi, M. 2017. Adopting soil organic carbon management practices in soils of varying quality: Implications and perspectives in Europe. Soil & Tillage Research 165, 95– 106.
CrossRef Google scholar
[78]
Mkhonza, N.P., Buthelezi-Dube, N.N., Muchaonyerwa, P. 2020. Effects of lime application on nitrogen and phosphorus availability in humic soils. Scientific Reports 10, 8634.
CrossRef Google scholar
[79]
Monger, H.C., Kraimer, R.A., Khresat, S., Cole, D.R., Wang, X., Wang, J. 2015. Sequestration of inorganic carbon in soil and groundwater. Geology 43, 375– 378.
CrossRef Google scholar
[80]
Ng, J.F., Ahmed, O.H., Jalloh, M.B., Omar, L., Kwan, Y.M., Musah, A.A., Poong, K.H. 2022. Soil nutrient retention and ph buffering capacity are enhanced by calciprill and sodium silicate. Agronomy (Basel) 12, 219.
CrossRef Google scholar
[81]
Oelkers, E.H., Declercq, J., Saldi, G.D., Gislason, S.R., Schott, J.J.C.G., 2018. Olivine dissolution rates. Critical Review 500, 1– 19
[82]
Olsson-Francis, K., Pearson, V., Boardman, C., Schofield, P., Oliver, A., Summers, S. 2015. A culture-independent and culture-dependent study of the bacteria community from the bedrock soil interface. Advances in Microbiology 5, 842– 857.
CrossRef Google scholar
[83]
Palansooriya, K.N., Wong, J.T.F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S.X., Bolan, N., Wang, H., Ok, Y.S. 2019. Response of microbial communities to biochar-amended soils: a critical review. Biochar 1, 3– 22.
CrossRef Google scholar
[84]
Palviainen, M., Berninger, F., Bruckman, V.J., Köster, K., de Assumpção, C.R.M., Aaltonen, H., Makita, N., Mishra, A., Kulmala, L., Adamczyk, B., Zhou, X., Heinonsalo, J., Köster, E., Pumpanen, J. 2018. Effects of biochar on carbon and nitrogen fluxes in boreal forest soil. Plant and Soil 425, 71– 85.
CrossRef Google scholar
[85]
Pan, S.Y., Dong, C.D., Su, J.F., Wang, P.Y., Chen, C.W., Chang, J.S., Kim, H., Huang, C.P., Hung, C.M. 2021. The role of biochar in regulating the carbon, phosphorus, and nitrogen cycles exemplified by soil systems. Sustainability 13, 5612.
CrossRef Google scholar
[86]
Parmar, K., Mehta, B., Kunt, M., 2016. Isolation, characterization and identification of potassium solubilizing bacteria from rhizosphere soil of maize ( Zea mays) . International Journal of Science, Environment and Technology 5, 3030– 3037
[87]
Parrello, D., Zegeye, A., Mustin, C., Billard, P. 2016. Siderophore-mediated iron dissolution from nontronites is controlled by mineral cristallochemistry. Frontiers in Microbiology 7, 423– 423.
CrossRef Google scholar
[88]
Perez, A., Rossano, S., Trcera, N., Verney-Carron, A., Huguenot, D., van Hullebusch, E.D., Catillon, G., Razafitianamaharavo, A., Guyot, F. 2015. Impact of iron chelators on short-term dissolution of basaltic glass. Geochimica et Cosmochimica Acta 162, 83– 98.
CrossRef Google scholar
[89]
Pramanik, P., Goswami, A.J., Ghosh, S., Kalita, C. 2019. An indigenous strain of potassium-solubilizing bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste-treated soil of North-east India. Journal of Applied Microbiology 126, 215– 222.
CrossRef Google scholar
[90]
Qian, L., Chen, L., Joseph, S., Pan, G., Li, L., Zheng, J., Zhang, X., Zheng, J., Yu, X., Wang, J. 2014. Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Management 5, 145– 154.
CrossRef Google scholar
[91]
Ramos, C.G., Hower, J.C., Blanco, E., Oliveira, M.L.S., Theodoro, S.H. 2022. Possibilities of using silicate rock powder: An overview. Geoscience Frontiers 13, 101185.
CrossRef Google scholar
[92]
Ranalli, G., Zanardini, E., Sorlini, C., 2009. Biodeterioration–Including Cultural Heritagle. New York: Elsevier
[93]
Raza, S., Miao, N., Wang, P., Ju, X., Chen, Z., Zhou, J., Kuzyakov, Y. 2020. Dramatic loss of inorganic carbon by nitrogen‐induced soil acidification in Chinese croplands. Global Change Biology 26, 3738– 3751.
CrossRef Google scholar
[94]
Raza, S., Zamanian, K., Ullah, S., Kuzyakov, Y., Virto, I., Zhou, J. 2021. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation. Journal of Cleaner Production 315, 128036.
CrossRef Google scholar
[95]
Ribeiro, I.D.A., Volpiano, C.G., Vargas, L.K., Granada, C.E., Lisboa, B.B., Passaglia, L.M.P. 2020. Use of mineral weathering bacteria to enhance nutrient availability in crops: A review. Frontiers in Plant Science 11, 11.
CrossRef Google scholar
[96]
Rodríguez-Vila, A., Asensio, V., Forján, R., Covelo, E.F., 2016. Carbon fractionation in a mine soil amended with compost and biochar and vegetated with Brassica juncea L . Journal of Geochemical Exploration 169, 137– 143
[97]
Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R.,Fierer, N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal 4, 1340– 1351.
CrossRef Google scholar
[98]
Rowley, M.C., Grand, S., Adatte, T., Verrecchia, E.P. 2020. A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland. Geoderma 361, 114065.
CrossRef Google scholar
[99]
Ruddiman, W.F. 2003. The anthropogenic greenhouse era began thousands of years ago. Climatic Change 61, 261– 293.
CrossRef Google scholar
[100]
Samuels, T., Bryce, C., Landenmark, H., Marie-Loudon, C., Nicholson, N., Stevens, A.H., Cockell, C., 2020. Microbial Weathering of Minerals and Rocks in Natural Environments. Malden: John Wiley & Sons Inc. pp. 59– 79
[101]
Samuels, T., Pybus, D., Wilkinson, M., Cockell, C.S. 2019. Evidence for in vitro and in situ pyrite weathering by microbial communities inhabiting weathered shale. Geomicrobiology Journal 36, 600– 611.
CrossRef Google scholar
[102]
Sanderman, J. 2012. Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agriculture, Ecosystems & Environment 155, 70– 77.
CrossRef Google scholar
[103]
Sarikhani, M., Oustan, S., Ebrahimi, M., Aliasgharzad, N., 2018. Isolation and identification of potassium-releasing bacteria in soil and assessment of their ability to release potassium for plants. European Journal of Soil Science 69, 1078– 1086
[104]
Sheng, X.F., He, L.Y., 2006. Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat . Canadian Journal of Microbiology 52, 66– 72
[105]
Shi, R.Y., Ni, N., Nkoh, J.N., Li, J.Y., Xu, R.K., Qian, W. 2019. Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification. Chemosphere 234, 43– 51.
CrossRef Google scholar
[106]
Shi, S., Zhang, Q., Lou, Y., Du, Z., Wang, Q., Hu, N., Wang, Y., Gunina, A., Song, J. 2021. Soil organic and inorganic carbon sequestration by consecutive biochar application: Results from a decade field experiment. Soil Use and Management 37, 95– 103.
CrossRef Google scholar
[107]
Siebers, N., 2013. Bone Char Effects on Phosphorus and Cadmium in the Soil-plant-system. https://www.citalivres.com/pdf/bone-char-effects-on-phosphorus-and-cadmium-in-the-soil-plant-system
[108]
Siebers, N., Godlinski, F., Leinweber, P., 2014. Bone char as phosphorus fertilizer involved in cadmium immobilization in lettuce, wheat, and potato cropping. Journal of Plant Nutrition 177, 75– 83
[109]
Siebers, N., Leinweber, P. 2013. Bone char: a clean and renewable phosphorus fertilizer with cadmium immobilization capability. Journal of Environmental Quality 42, 405– 411.
CrossRef Google scholar
[110]
Singh, G., Biswas, D.R., Marwaha, T.S., 2010. Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize ( Zea mays) and wheat ( Triticum aestivum L.): a hydroponics study under phytotron growth chamber . Journal of Plant Nutrition 33, 1236– 1251
[111]
Smits, M., 2006. Mineral Tunnelling by Fungi. In: Gadd, G.M., ed. Fungi in Biogeochemical Cycles. Cambridge: Cambridge University Press
[112]
Snæbjörnsdóttir, S.Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S.R., Oelkers, E.H. 2020. Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment 1, 90– 102.
CrossRef Google scholar
[113]
Sommer, M., Kaczorek, D., Kuzyakov, Y., Breuer, J. 2006. Silicon pools and fluxes in soils and landscapes—a review. Journal of Plant Nutrition and Soil Science 169, 310– 329.
CrossRef Google scholar
[114]
Song, X.D., Yang, F., Wu, H.Y., Zhang, J., Li, D.C., Liu, F., Zhao, Y.G., Yang, J.L., Ju, B., Cai, C.F., 2021. Significant loss of soil inorganic carbon at the continental scale. National Science Review
[115]
Sun, H., Lu, H., Chu, L., Shao, H., Shi, W. 2017. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Science of the Total Environment 575, 820– 825.
CrossRef Google scholar
[116]
Tutolo, B.M., Awolayo, A., Brown, C. 2021. Alkalinity generation constraints on basalt carbonation for carbon dioxide removal at the gigaton-per-year scale. Environmental Science & Technology 55, 11906– 11915.
CrossRef Google scholar
[117]
Van Zwieten, L., Kammann, C., Cayuela, M.L., Singh, B.P., Joseph, S., Kimber, S., Donne, S., Clough, T., Spokas, K.A., 2015. Biochar Effects on Nitrous Oxide and Methane Emissions from Soil. In: Lehmann, J., Joseph S., eds. Biochar for Environmental Management: Science, Technology and Implementation. London: Taylor & Francis Group
[118]
Vega-Muñoz, I., Duran-Flores, D., Fernández-Fernández, Á.D., Heyman, J., Ritter, A., Stael, S., 2020. Breaking bad news: Dynamic molecular mechanisms of wound response in plants. Frontiers in Plant Science 11, http://doi.org/10.3389/fpls.2020.610445
[119]
Wang, T., Camps-Arbestain, M., Hedley, M., Singh, B.P., Calvelo-Pereira, R., Wang, C.J.Sr., 2014. Determination of carbonate-C in biochars. Soil Research 52, 495– 504
[120]
Wang, Z., Zong, H., Zheng, H., Liu, G., Chen, L., Xing, B. 2015. Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere 138, 576– 583.
CrossRef Google scholar
[121]
Wei, Z., Liang, X., Pendlowski, H., Hillier, S., Suntornvongsagul, K., Sihanonth, P., Gadd, G.M.J.Em., 2013. Fungal biotransformation of zinc silicate and sulfide mineral ores. Environmental Microbiology 15, 2173– 2186.
[122]
Wild, B., Imfeld, G., Daval, D., 2021. Direct measurement of fungal contribution to silicate weathering rates in soil. Geology 49, 1055– 1058
[123]
Wolf-Gladrow, D.A., Zeebe, R.E., Klaas, C., Körtzinger, A., Dickson, A.G.J.M.C., 2007. Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. Marine Chemistry 106, 287– 300
[124]
Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., Joseph, S. 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1, 56.
CrossRef Google scholar
[125]
Wu, D., Senbayram, M., Zang, H., Ugurlar, F., Aydemir, S., Brüggemann, N., Kuzyakov, Y., Bol, R., Blagodatskaya, E., 2018. Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Applied Soil Ecology 129, 121– 127
[126]
Xiao, K., Xu, J., Tang, C., Zhang, J., Brookes, C.B., 2013. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments. Soil Biology and Biochemistry 67, 70– 84
[127]
Xiao, L., Lian, B., Hao, J., Liu, C., Wang, S.J, 2015. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values . Scientific Reports 5, 1– 10
[128]
Xu, J., Tang, C., Chen, Z.L., 2006. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biology and Biochemistry 38, 709– 719
[129]
Yuan, J.H., Xu, R.K., Zhang, H.J., 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology 102, 3488– 3497
[130]
Yuan, Y., Chen, H., Yuan, W., Williams, D., Walker, J.T., Shi, W.J., 2017. Is biochar-manure co-compost a better solution for soil health improvement and N2O emissions mitigation? Soil Biology and Biochemistry 113, 14– 25
[131]
Zamanian, K., Zarebanadkouki, M., Kuzyakov, Y. 2018. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment. Change Biology 24, 2810– 2817.
CrossRef Google scholar
[132]
Zamanian, K., Zhou, J., Kuzyakov, Y. 2021. Soil carbonates: The unaccounted, irrecoverable carbon source. Geoderma 384, 114817.
CrossRef Google scholar
[133]
Zavarzina, D.G., Chistyakova, N.I., Shapkin, A.V., Savenko, A.V., Zhilina, T.N., Kevbrin, V.V., Alekseeva, T.V., Mardanov, A.V., Gavrilov, S.N., Bychkov, A.Y., 2016. Oxidative biotransformation of biotite and glauconite by alkaliphilic anaerobes: the effect of Fe oxidation on the weathering of phyllosilicates. Chemical Geology 439, 98– 109
[134]
Zhang, C., Kong, F., 2014. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology 82, 18– 25
[135]
Zhao, W., Zhang, R., Huang, C., Wang, B., Cao, H., Koopal, L.K., Tan, W., 2016a. Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau. CATENA 139, 191– 198
[136]
Zhao, X., Zhao, C., Wang, J., Stahr, K., Kuzyakov, Y., 2016b. CaCO3 recrystallization in saline and alkaline soils . Geoderma 282, 1– 8

Acknowledgements

The research funds were supported by the Chinese Academy of Sciences under President’s International Fellowship for Postdoctoral Researchers Program (PIFI) (Grant No. 2021PE0052).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2037 KB)

Accesses

Citations

Detail

Sections
Recommended

/