Microfluidic hotspots in bacteria research: A review of soil and related advances

Hengyi Dai, Yajuan Zhuang, Erinne Stirling, Nanlin Liu, Bin Ma

PDF(6114 KB)
PDF(6114 KB)
Soil Ecology Letters ›› 2023, Vol. 5 ›› Issue (1) : 21-37. DOI: 10.1007/s42832-022-0129-3
REVIEW
REVIEW

Microfluidic hotspots in bacteria research: A review of soil and related advances

Author information +
History +

Highlights

• Microfluidic technology promotes the development of soil bacteria research.

• Microfluidics can achieve real time observation and analysis of microorganisms in controlled environments.

• Microfluidics generally use optical and electrochemical methods to detect single cells combined with polymerase chain reaction (PCR) to realize high throughput gene detection on chips.

• Microfluidics is mainly applied in chemotaxis, biofilm, antibiotic and horizontal gene transfer research of soil bacteria.

Abstract

Soil science is an inherently diverse and multidisciplinary subject that cannot develop further without the continuous introduction and promotion of emerging technologies. One such technology that is widely used in biomedicine and similar research fields, microfluidics, poses significant benefits for soil research; however, this technology is still underutilized in the field. Microfluidics offers unparalleled opportunities in soil bacterial cultivation, observation, and manipulation when compared to conventional approaches to these tasks. This review focuses on the use of microfluidics for bacteria research and, where possible, pulls from examples in the literature where the technologies were used for soil related research. The review also provides commentary on the use of microfluidics for soil bacteria research and discusses the key challenges researchers face when implementing this technology. We believe that microfluidic chips and their associated auxiliary technologies provide a prime inroad into the future of soil science research.

Graphical abstract

Keywords

Soil science / Microfluidics / Bacteria / Research hotspots / Technology trends

Cite this article

Download citation ▾
Hengyi Dai, Yajuan Zhuang, Erinne Stirling, Nanlin Liu, Bin Ma. Microfluidic hotspots in bacteria research: A review of soil and related advances. Soil Ecology Letters, 2023, 5(1): 21‒37 https://doi.org/10.1007/s42832-022-0129-3

References

[1]
Adadevoh, J.S., Ramsburg, C.A., Ford, R.M., 2018. Chemotaxis increases the retention of bacteria in porous media with residual NAPL entrapment. Environmental Science & Technology 52, 7289–7295
CrossRef Google scholar
[2]
Adadevoh, J.S., Triolo, S., Ramsburg, C.A., Ford, R.M., 2016. Chemotaxis increases the residence time of bacteria in granular media containing distributed contaminant sources. Environmental Science & Technology 50, 181–187
CrossRef Google scholar
[3]
Agresti, J.J., Antipov, E., Abate, A.R., Ahn, K., Rowat, A.C., Baret, J.C., Marquez, M., Klibanov, A.M., Griffiths, A.D., Weitz, D.A., 2010. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences of the United States of America 107, 4004–4009
CrossRef Google scholar
[4]
Aleklett, K., Kiers, E.T., Ohlsson, P., Shimizu, T.S., Caldas, V.E., Hammer, E.C., 2018. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME Journal 12, 312–319
CrossRef Google scholar
[5]
Alkayyali, T., Pope, E., Wheatley, S.K., Cartmell, C., Haltli, B., Kerr, R.G., Ahmadi, A., 2021. Development of a microbe domestication pod (MD Pod) for in situ cultivation of micro-encapsulated marine bacteria. Biotechnology and Bioengineering 118, 1166–1176
CrossRef Google scholar
[6]
Alkorta, I., Aizpurua, A., Riga, P., Albizu, I., Amézaga, I., Garbisu, C., 2003. Soil enzyme activities as biological indicators of soil health. Reviews on Environmental Health 18, 65–73
CrossRef Google scholar
[7]
Arber, W., 2000. Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiology Reviews 24, 1–7
CrossRef Google scholar
[8]
Berthold, T., Centler, F., Hübschmann, T., Remer, R., Thullner, M., Harms, H., Wick, L.Y., 2016. Mycelia as a focal point for horizontal gene transfer among soil bacteria. Scientific Reports 6, 36390
CrossRef Google scholar
[9]
Boedicker, J.Q., Li, L., Kline, T.R., Ismagilov, R.F., 2008. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab on a Chip 8, 1265–1272
CrossRef Google scholar
[10]
Boedicker, J.Q., Vincent, M.E., Ismagilov, R.F., 2009. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie 121, 6022–6025
CrossRef Google scholar
[11]
Cai, P., Sun, X., Wu, Y., Gao, C., Mortimer, M., Holden, P.A., Redmile-Gordon, M., Huang, Q., 2019. Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization. Soil Ecology Letters 1, 85–93
CrossRef Google scholar
[12]
Capone, D., Bivins, A., Knee, J., Cumming, O., Nalá, R., Brown, J., 2021. Quantitative microbial risk assessment of pediatric infections attributable to ingestion of fecally contaminated domestic soils in low-income urban Maputo, Mozambique. Environmental Science & Technology 55, 1941–1952
CrossRef Google scholar
[13]
Cheng, S., Wang, Z., Ge, S., Wang, H., He, P., Fang, Y., Wang, Q., 2012. Rapid separation of four probiotic bacteria in mixed samples using microchip electrophoresis with laser-induced fluorescence detection. Microchimica Acta 176, 295–301
CrossRef Google scholar
[14]
Cheng, S.Y., Heilman, S., Wasserman, M., Archer, S., Shuler, M.L., Wu, M., 2007. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab on a Chip 7, 763–769
CrossRef Google scholar
[15]
Churski, K., Kaminski, T.S., Jakiela, S., Kamysz, W., Baranska-Rybak, W., Weibel, D.B., Garstecki, P., 2012. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on a Chip 12, 1629–1637
CrossRef Google scholar
[16]
Cirz, R.T., Chin, J.K., Andes, D.R., de Crécy-Lagard, V., Craig, W.A., Romesberg, F.E., 2005. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biology 3, e176
CrossRef Google scholar
[17]
Cooper, R., Tsimring, L., Hasty, J., 2018. Microfluidics-based analysis of contact-dependent bacterial interactions. Bio-Protocol 8, e2970
CrossRef Google scholar
[18]
Cooper, R.M., Tsimring, L., Hasty, J., 2017. Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance. eLife 6, e25950
CrossRef Google scholar
[19]
Coyte, K.Z., Tabuteau, H., Gaffney, E.A., Foster, K.R., Durham, W.M., 2017. Microbial competition in porous environments can select against rapid biofilm growth. Proceedings of the National Academy of Sciences of the United States of America 114, E161–E170
CrossRef Google scholar
[20]
Cruz, B.C., Furrer, J.M., Guo, Y.S., Dougherty, D., Hinestroza, H.F., Hernandez, J.S., Gage, D.J., Cho, Y.K., Shor, L.M., 2017. Pore-scale water dynamics during drying and the impacts of structure and surface wettability. Water Resources Research 53, 5585–5600
CrossRef Google scholar
[21]
Dazzo, F.B., Schmid, M., Hartmann, A., 2007. Immunofluorescence Microscopy and Fluorescence in situ Hybridization Combined with CMEIAS and Other Image Analysis Tools for Soil- and Plant-associated Microbial Autecology. In: Hurst, C.J., ed. Manual of Environmental Microbiology, Third Edition. American Society of Microbiology, pp. 712–733.
[22]
de Vries, F.T., Wallenstein, M.D., 2017. Below-ground connections underlying above-ground food production: a framework for optimising ecological connections in the rhizosphere. Journal of Ecology 105, 913–920
CrossRef Google scholar
[23]
Drescher, K., Shen, Y., Bassler, B.L., Stone, H.A., 2013. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proceedings of the National Academy of Sciences of the United States of America 110, 4345–4350
CrossRef Google scholar
[24]
Eisenhauer, N., Antunes, P.M., Bennett, A.E., Birkhofer, K., Bissett, A., Bowker, M.A., Caruso, T., Chen, B., Coleman, D.C., Boer, W.D., 2017. Priorities for research in soil ecology. Pedobiologia 63, 1–7
CrossRef Google scholar
[25]
Ettema, C.H., Wardle, D.A., 2002. Spatial soil ecology. Trends in Ecology & Evolution 17, 177–183
CrossRef Google scholar
[26]
Fleischmann, M., Hendra, P.J., McQuillan, A.J., 1974. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 26, 163–166
CrossRef Google scholar
[27]
Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., Kjelleberg, S., 2016. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology 14, 563–575
CrossRef Google scholar
[28]
Fu, F., Shang, L., Zheng, F., Chen, Z., Wang, H., Wang, J., Gu, Z., Zhao, Y., 2016. Cells cultured on core–shell photonic crystal barcodes for drug screening. ACS Applied Materials & Interfaces 8, 13840–13848
CrossRef Google scholar
[29]
Fu, X., Zhang, Y., Xu, Q., Sun, X., Meng, F., 2021. Recent advances on sorting methods of high-throughput droplet-based microfluidics in enzyme directed evolution. Frontiers in Chemistry 9, 666867
CrossRef Google scholar
[30]
Giuffrida, M.C., Spoto, G., 2017. Integration of isothermal amplification methods in microfluidic devices: Recent advances. Biosensors & Bioelectronics 90, 174–186
CrossRef Google scholar
[31]
Gupta, S., Pathak, B., Fulekar, M.H., 2015. Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: a review. Reviews in Environmental Science and Biotechnology 14, 241–269
CrossRef Google scholar
[32]
Hamamoto, H., Urai, M., Ishii, K., Yasukawa, J., Paudel, A., Murai, M., Kaji, T., Kuranaga, T., Hamase, K., Katsu, T., Su, J., Adachi, T., Uchida, R., Tomoda, H., Yamada, M., Souma, M., Kurihara, H., Inoue, M., Sekimizu, K., 2015. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nature Chemical Biology 11, 127–133
CrossRef Google scholar
[33]
Harvey, A.L., Edrada-Ebel, R., Quinn, R.J., 2015. The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery 14, 111–129
CrossRef Google scholar
[34]
Hattori, K., Sugiura, S., Kanamori, T., 2009. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Lab on a Chip 9, 1763–1772
CrossRef Google scholar
[35]
Hayden, R.T., Gu, Z., Ingersoll, J., Abdul-Ali, D., Shi, L., Pounds, S., Caliendo, A.M., 2013. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. Journal of Clinical Microbiology 51, 540–546
CrossRef Google scholar
[36]
He, J., Mu, X., Guo, Z., Hao, H., Zhang, C., Zhao, Z., Wang, Q., 2014. A novel microbead-based microfluidic device for rapid bacterial identification and antibiotic susceptibility testing. European Journal of Clinical Microbiology & Infectious Diseases 33, 2223–2230
CrossRef Google scholar
[37]
Hermans, S.M., Buckley, H.L., Case, B.S., Curran-Cournane, F., Taylor, M., Lear, G., 2020. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome 8, 79
CrossRef Google scholar
[38]
Hindson, B.J., Ness, K.D., Masquelier, D.A., Belgrader, P., Heredia, N.J., Makarewicz, A.J., Bright, I.J., Lucero, M.Y., Hiddessen, A.L., Legler, T.C., Kitano, T.K., Hodel, M.R., Petersen, J.F., Wyatt, P.W., Steenblock, E.R., Shah, P.H., Bousse, L.J., Troup, C.B., Mellen, J.C., Wittmann, D.K., Erndt, N.G., Cauley, T.H., Koehler, R.T., So, A.P., Dube, S., Rose, K.A., Montesclaros, L., Wang, S., Stumbo, D.P., Hodges, S.P., Romine, S., Milanovich, F.P., White, H.E., Regan, J.F., Karlin-Neumann, G.A., Hindson, C.M., Saxonov, S., Colston, B.W., 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Analytical Chemistry 83, 8604–8610
CrossRef Google scholar
[39]
Hong, S.H., Hegde, M., Kim, J., Wang, X., Jayaraman, A., Wood, T.K., 2012. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nature Communications 3, 613
CrossRef Google scholar
[40]
Huang, X., Li, Y., Liu, B., Guggenberger, G., Shibistova, O., Zhu, Z., Ge, T., Tan, W., Wu, J., 2017. SoilChip-XPS integrated technique to study formation of soil biogeochemical interfaces. Soil Biology & Biochemistry 113, 71–79
CrossRef Google scholar
[41]
Huber, D., Voith von Voithenberg, L., Kaigala, G.V., 2018. Fluorescence in situ hybridization (FISH): history, limitations and what to expect from micro-scale FISH? Micro and Nano Engineering 1, 15–24
CrossRef Google scholar
[42]
Humphries, J., Xiong, L., Liu, J., Prindle, A., Yuan, F., Arjes, H.A., Tsimring, L., Süel, G.M., 2017. Species-independent attraction to biofilms through electrical signaling. Cell 168, 200–209.e12
CrossRef Google scholar
[43]
Jokerst, J.C., Emory, J.M., Henry, C.S., 2012. Advances in microfluidics for environmental analysis. Analyst (London) 137, 24–34
CrossRef Google scholar
[44]
Kalsi, S., Sellars, S.L., Turner, C., Sutton, J.M., Morgan, H., 2017. A programmable digital microfluidic assay for the simultaneous detection of multiple anti-microbial resistance genes. Micromachines 8, 111
CrossRef Google scholar
[45]
Karimifard, S., Li, X., Elowsky, C., Li, Y., 2021. Modeling the impact of evolving biofilms on flow in porous media inside a microfluidic channel. Water Research 188, 116536
CrossRef Google scholar
[46]
Khemthongcharoen, N., Uawithya, P., Chanasakulniyom, M., Yasawong, M., Jeamsaksiri, W., Sripumkhai, W., Pattamang, P., Juntasaro, E., Houngkamhang, N., Thienthong, T., Promptmas, C., 2021. Polydimethylsiloxane (PDMS) microfluidic modifications for cell-based immunofluorescence assay. Journal of Adhesion Science and Technology 35, 955–972
CrossRef Google scholar
[47]
Kim, S.C., Cestellos-Blanco, S., Inoue, K., Zare, R.N., 2015. Miniaturized antimicrobial susceptibility test by combining concentration gradient generation and rapid cell culturing. Antibiotics (Basel, Switzerland) 4, 455–466
CrossRef Google scholar
[48]
Koo, J., Ko, J., Lim, H.B., Song, J.M., 2011. Surface modified microarray chip and laser induced fluorescence microscopy to detect DNA cleavage. Microchemical Journal 99, 523–529
CrossRef Google scholar
[49]
Krafft, B., Tycova, A., Urban, R.D., Dusny, C., Belder, D., 2021. Microfluidic device for concentration and SERS-based detection of bacteria in drinking water. Electrophoresis 42, 86–94
CrossRef Google scholar
[50]
Krell, T., Lacal, J., Reyes-Darias, J.A., Jimenez-Sanchez, C., Sungthong, R., Ortega-Calvo, J.J., 2013. Bioavailability of pollutants and chemotaxis. Current Opinion in Biotechnology 24, 451–456
CrossRef Google scholar
[51]
Lambert, B.S., Raina, J.B., Fernandez, V.I., Rinke, C., Siboni, N., Rubino, F., Hugenholtz, P., Tyson, G.W., Seymour, J.R., Stocker, R., 2017. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nature Microbiology 2, 1344–1349
CrossRef Google scholar
[52]
Lanning, L.M., Ford, R.M., Long, T., 2008. Bacterial chemotaxis transverse to axial flow in a microfluidic channel. Biotechnology and Bioengineering 100, 653–663
CrossRef Google scholar
[53]
Li, B., Qiu, Y., Zhang, J., Huang, X., Shi, H., Yin, H., 2018. Real-time study of rapid spread of antibiotic resistance plasmid in biofilm using microfluidics. Environmental Science & Technology 52, 11132–11141
CrossRef Google scholar
[54]
Li, T., Zhu, F., Guo, W., Gu, H., Zhao, J., Yan, M., Liu, S., 2017. Selective capture and rapid identification of E. coli O157: H7 by carbon nanotube multilayer biosensors and microfluidic chip-based LAMP. RSC Advances 7, 30446–30452
CrossRef Google scholar
[55]
Li, Y., Cherukury, H., Labanieh, L., Zhao, W., Kang, D.K., 2020. Rapid detection of β-lactamase-producing bacteria using the integrated comprehensive droplet digital detection (Ic 3d) system. Sensors (Basel) 20, 4667
CrossRef Google scholar
[56]
Lin, H.Y., Huang, C.H., Hsieh, W.H., Liu, L.H., Lin, Y.C., Chu, C.C., Wang, S.T., Kuo, I.T., Chau, L.K., Yang, C.Y., 2014. On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device. Small 10, 4700–4710
CrossRef Google scholar
[57]
Ling, L.L., Schneider, T., Peoples, A.J., Spoering, A.L., Engels, I., Conlon, B.P., Mueller, A., Schäberle, T.F., Hughes, D.E., Epstein, S., Jones, M., Lazarides, L., Steadman, V.A., Cohen, D.R., Felix, C.R., Fetterman, K.A., Millett, W.P., Nitti, A.G., Zullo, A.M., Chen, C., Lewis, K., 2015. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459
CrossRef Google scholar
[58]
Liu, H.T., Wen, Z.Y., Xu, Y., Shang, Z.G., Peng, J.L., Tian, P., 2017a. An integrated microfluidic analysis microsystems with bacterial capture enrichment and in-situ impedance detection. Modern Physics Letters B 31, 1750233
CrossRef Google scholar
[59]
Liu, W., Zhu, Y., 2020. “Development and application of analytical detection techniques for droplet-based microfluidics”–A review. Analytica Chimica Acta 1113, 66–84
CrossRef Google scholar
[60]
Liu, Z., Banaei, N., Ren, K., 2017b. Microfluidics for combating antimicrobial resistance. Trends in Biotechnology 35, 1129–1139
CrossRef Google scholar
[61]
Lu, N., Kutter, J.P., 2020. Recent advances in microchip enantioseparation and analysis. Electrophoresis 41, 2122–2135
CrossRef Google scholar
[62]
Lutz, S., Weber, P., Focke, M., Faltin, B., Hoffmann, J., Müller, C., Mark, D., Roth, G., Munday, P., Armes, N., Piepenburg, O., Zengerle, R., von Stetten, F., 2010. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab on a Chip 10, 887–893
CrossRef Google scholar
[63]
Manz, A., Graber, N., Widmer, H.M., 1990. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators. B, Chemical 1, 244–248
CrossRef Google scholar
[64]
Martiny, A.C., 2019. High proportions of bacteria are culturable across major biomes. ISME Journal 13, 2125–2128
CrossRef Google scholar
[65]
Martiny, A.C., 2020. The ‘1% culturability paradigm’ needs to be carefully defined. ISME Journal 14, 10–11
CrossRef Google scholar
[66]
Mazouffre, S., 2012. Laser-induced fluorescence diagnostics of the cross-field discharge of Hall thrusters. Plasma Sources Science & Technology 22, 013001
CrossRef Google scholar
[67]
Mortier-Barrière, I., Polard, P., Campo, N., 2020. Direct visualization of horizontal gene transfer by transformation in live pneumococcal cells using microfluidics. Genes 11, 675
CrossRef Google scholar
[68]
Murugesan, N., Singha, S., Panda, T., Das, S.K., 2016. A diffusion based long-range and steady chemical gradient generator on a microfluidic device for studying bacterial chemotaxis. Journal of Micromechanics and Microengineering 26, 035011
CrossRef Google scholar
[69]
Negri, P., Jacobs, K.T., Dada, O.O., Schultz, Z.D., 2013. Ultrasensitive surface-enhanced Raman scattering flow detector using hydrodynamic focusing. Analytical Chemistry 85, 10159–10166
CrossRef Google scholar
[70]
Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T., 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research 28, e63
CrossRef Google scholar
[71]
Oblath, E.A., Henley, W.H., Alarie, J.P., Ramsey, J.M., 2013. A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva. Lab on a Chip 13, 1325–1332
CrossRef Google scholar
[72]
Olson, M.E., Ceri, H., Morck, D.W., Buret, A.G., Read, R.R., 2002. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Canadian Journal of Veterinary Research 66, 86.
[73]
Ou, J.-H., Xie, Z.-X., Chen, X.-D., Ni, L.-N., Shen, P., 2003. Horizontal gene transfer. Hereditas 25, 623–627.
[74]
Park, A., Jeong, H.H., Lee, J., Lee, C.S., 2012. The inhibitory effect of phloretin on the formation of Escherichia coli O157: H7 biofilm in a microfluidic system. Biochip Journal 6, 299–305
CrossRef Google scholar
[75]
Park, J., Kerner, A., Burns, M.A., Lin, X.N., 2011. Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One 6, e17019
CrossRef Google scholar
[76]
Parsley, N.C., Smythers, A.L., Hicks, L.M., 2020. Implementation of microfluidics for antimicrobial susceptibility assays: issues and optimization requirements. Frontiers in Cellular and Infection Microbiology 10, 503
CrossRef Google scholar
[77]
Pedler, B.E., Aluwihare, L.I., Azam, F., 2014. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proceedings of the National Academy of Sciences of the United States of America 111, 7202–7207
CrossRef Google scholar
[78]
Peszynska, M., Trykozko, A., Iltis, G., Schlueter, S., Wildenschild, D., 2016. Biofilm growth in porous media: experiments, computational modeling at the porescale, and upscaling. Advances in Water Resources 95, 288–301
CrossRef Google scholar
[79]
Pinheiro, L.B., Coleman, V.A., Hindson, C.M., Herrmann, J., Hindson, B.J., Bhat, S., Emslie, K.R., 2012. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Analytical Chemistry 84, 1003–1011
CrossRef Google scholar
[80]
Pronk, G.J., Heister, K., Vogel, C., Babin, D., Bachmann, J., Ding, G.C., Ditterich, F., Gerzabek, M.H., Giebler, J., Hemkemeyer, M., Kandeler, E., Kunhi Mouvenchery, Y., Miltner, A., Poll, C., Schaumann, G.E., Smalla, K., Steinbach, A., Tanuwidjaja, I., Tebbe, C.C., Wick, L.Y., Woche, S.K., Totsche, K.U., Schloter, M., Kögel-Knabner, I., 2017. Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments. Biology and Fertility of Soils 53, 9–22
CrossRef Google scholar
[81]
Qiu, Y., Zhang, J., Li, B., Wen, X., Liang, P., Huang, X., 2018. A novel microfluidic system enables visualization and analysis of antibiotic resistance gene transfer to activated sludge bacteria in biofilm. Science of the Total Environment 642, 582–590
CrossRef Google scholar
[82]
Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J., Lander, E.S., Mitzenmacher, M., Sabeti, P.C., 2011. Detecting novel associations in large data sets. Science 334, 1518–1524
CrossRef Google scholar
[83]
Richter, L., Stepper, C., Mak, A., Reinthaler, A., Heer, R., Kast, M., Brückl, H., Ertl, P., 2007. Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics. Lab on a Chip 7, 1723–1731
CrossRef Google scholar
[84]
Rillig, M.C., Muller, L.A., Lehmann, A., 2017. Soil aggregates as massively concurrent evolutionary incubators. ISME Journal 11, 1943–1948
CrossRef Google scholar
[85]
Rodriguez-Mateos, P., Azevedo, N.F., Almeida, C., Pamme, N., 2020. FISH and chips: a review of microfluidic platforms for FISH analysis. Medical Microbiology and Immunology 209, 373–391
CrossRef Google scholar
[86]
Roh, C., Nguyen, T.T., Shim, J.J., Kang, C., 2019. Physico-chemical characterization of caesium and strontium using fluorescent intensity of bacteria in a microfluidic platform. Royal Society Open Science 6, 182069
CrossRef Google scholar
[87]
Rusconi, R., Lecuyer, S., Guglielmini, L., Stone, H.A., 2010. Laminar flow around corners triggers the formation of biofilm streamers. Journal of the Royal Society, Interface 7, 1293–1299
CrossRef Google scholar
[88]
Sackmann, E.K., Fulton, A.L., Beebe, D.J., 2014. The present and future role of microfluidics in biomedical research. Nature 507, 181–189
CrossRef Google scholar
[89]
Safavieh, M., Ahmed, M.U., Tolba, M., Zourob, M., 2012. Microfluidic electrochemical assay for rapid detection and quantification of Escherichia coli. Biosensors & Bioelectronics 31, 523–528
CrossRef Google scholar
[90]
Salek, M.M., Carrara, F., Fernandez, V., Guasto, J.S., Stocker, R., 2019. Bacterial chemotaxis in a microfluidic T-maze reveals strong phenotypic heterogeneity in chemotactic sensitivity. Nature Communications 10, 1877
CrossRef Google scholar
[91]
Scheidweiler, D., Peter, H., Pramateftaki, P., De Anna, P., Battin, T.J., 2019. Unraveling the biophysical underpinnings to the success of multispecies biofilms in porous environments. ISME Journal 13, 1700–1710
CrossRef Google scholar
[92]
Shao, C., Liu, Y., Chi, J., Wang, J., Zhao, Z., Zhao, Y., 2019. Responsive inverse opal scaffolds with biomimetic enrichment capability for cell culture. Research 2019, 1–10
CrossRef Google scholar
[93]
Sheth, R.U., Li, M., Jiang, W., Sims, P.A., Leong, K.W., Wang, H.H., 2019. Spatial metagenomic characterization of microbial biogeography in the gut. Nature Biotechnology 37, 877–883
CrossRef Google scholar
[94]
Shin, D.J., Andini, N., Hsieh, K., Yang, S., Wang, T.H., 2019. Emerging analytical techniques for rapid pathogen identification and susceptibility testing. Annual Review of Analytical Chemistry (Palo Alto, Calif.) 12, 41–67
CrossRef Google scholar
[95]
Smriga, S., Fernandez, V.I., Mitchell, J.G., Stocker, R., 2016. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proceedings of the National Academy of Sciences of the United States of America 113, 1576–1581
CrossRef Google scholar
[96]
Steen, A.D., Crits-Christoph, A., Carini, P., DeAngelis, K.M., Fierer, N., Lloyd, K.G., Cameron Thrash, J., 2019. High proportions of bacteria and archaea across most biomes remain uncultured. ISME Journal 13, 3126–3130
CrossRef Google scholar
[97]
Sun, J., Gong, L., Wang, W., Gong, Z., Wang, D., Fan, M., 2020. Surface-enhanced Raman spectroscopy for on-site analysis: A review of recent developments. Luminescence 35, 808–820
CrossRef Google scholar
[98]
Sweeney, F.P., Courtenay, O., Hibberd, V., Hewinson, R.G., Reilly, L.A., Gaze, W.H., Wellington, E.M.H., 2007. Environmental monitoring of Mycobacterium bovis in badger feces and badger sett soil by real-time PCR, as confirmed by immunofluorescence, immunocapture, and cultivation. Applied and Environmental Microbiology 73, 7471–7473
CrossRef Google scholar
[99]
Sweet, E., Yang, B., Chen, J., Vickerman, R., Lin, Y., Long, A., Jacobs, E., Wu, T., Mercier, C., Jew, R., Attal, Y., Liu, S., Chang, A., Lin, L., 2020. 3D microfluidic gradient generator for combination antimicrobial susceptibility testing. Microsystems & Nanoengineering 6, 92
CrossRef Google scholar
[100]
Tang, Y., Werth, C.J., Sanford, R.A., Singh, R., Michelson, K., Nobu, M., Liu, W.T., Valocchi, A.J., 2015. Immobilization of selenite via two parallel pathways during in situ bioremediation. Environmental Science & Technology 49, 4543–4550
CrossRef Google scholar
[101]
Tong, Z., Balzer, E.M., Dallas, M.R., Hung, W.C., Stebe, K.J., Konstantopoulos, K., 2012. Chemotaxis of cell populations through confined spaces at single-cell resolution. PLoS One 7, e29211
CrossRef Google scholar
[102]
Torisawa, Y., Mosadegh, B., Bersano-Begey, T., Steele, J.M., Luker, K.E., Luker, G.D., Takayama, S., 2010. Microfluidic platform for chemotaxis in gradients formed by CXCL12 source-sink cells. Integrative Biology 2, 680–686
CrossRef Google scholar
[103]
Valiei, A., Kumar, A., Mukherjee, P.P., Liu, Y., Thundat, T., 2012. A web of streamers: biofilm formation in a porous microfluidic device. Lab on a Chip 12, 5133–5137
CrossRef Google scholar
[104]
Valm, A.M., Mark Welch, J.L., Borisy, G.G., 2012. CLASI-FISH: Principles of combinatorial labeling and spectral imaging. Systematic and Applied Microbiology 35, 496–502
CrossRef Google scholar
[105]
Voegel, T.M., Larrabee, M.M., Nelson, L.M., 2021. Development of droplet digital PCR assays to quantify genes involved in nitrification and denitrification, comparison with quantitative real-time PCR and validation of assays in vineyard soil. Canadian Journal of Microbiology 67, 174–187
CrossRef Google scholar
[106]
Vogelstein, B., Kinzler, K.W., 1999. Digital PCR. Proceedings of the National Academy of Sciences of the United States of America 96, 9236–9241
CrossRef Google scholar
[107]
Volpatti, L.R., Yetisen, A.K., 2014. Commercialization of microfluidic devices. Trends in Biotechnology 32, 347–350
CrossRef Google scholar
[108]
von Wintersdorff, C.J., Penders, J., Van Niekerk, J.M., Mills, N.D., Majumder, S., Van Alphen, L.B., Savelkoul, P.H., Wolffs, P.F., 2016. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology 7, 173
CrossRef Google scholar
[109]
Wan, J., Sun, G., Dicent, J., Patel, D.S., Lu, H., 2020. smFISH in chips: a microfluidic-based pipeline to quantify in situ gene expression in whole organisms. Lab on a Chip 20, 266–273
CrossRef Google scholar
[110]
Wang, J., Cheng, Y., Yu, Y., Fu, F., Chen, Z., Zhao, Y., Gu, Z., 2015. Microfluidic generation of porous microcarriers for three-dimensional cell culture. ACS Applied Materials & Interfaces 7, 27035–27039
CrossRef Google scholar
[111]
Zhan, X., Xiao, L., 2017. LivestockWaste 2016-International conference on recent advances in pollution control and resource recovery for the livestock sector. Frontiers of Environmental Science & Engineering 11, 16
CrossRef Google scholar
[112]
Zhang, N., Li, M., Liu, X., 2018. Distribution and transformation of antibiotic resistance genes in soil. China Environmental Science 38, 2609–2617.
[113]
Zhang, Y., Li, C., Wu, Y., Zhang, Y., Zhou, Z., Cao, B., 2019. A microfluidic gradient mixer-flow chamber as a new tool to study biofilm development under defined solute gradients. Biotechnology and Bioengineering 116, 54–64
CrossRef Google scholar
[114]
Zhao, X., Liu, X., Xu, X., Fu, Y.V., 2017. Microbe social skill: the cell-to-cell communication between microorganisms. Science Bulletin 62, 516–524
CrossRef Google scholar
[115]
Zhong, Q., Bhattacharya, S., Kotsopoulos, S., Olson, J., Taly, V., Griffiths, A.D., Link, D.R., Larson, J.W., 2011. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab on a Chip 11, 2167–2174
CrossRef Google scholar
[116]
Zhou, W., Le, J., Chen, Y., Cai, Y., Hong, Z., Chai, Y., 2019. Recent advances in microfluidic devices for bacteria and fungus research. Trends in Analytical Chemistry 112, 175–195
CrossRef Google scholar
[117]
Zhu, Y., Shen, R., He, J., Wang, Y., Han, X., Jia, Z., 2017. China soil microbiome initiative: progress and perspective. Bulletin of Chinese Academy of Sciences 32, 554–565 (in Chinese)
CrossRef Google scholar
[118]
Zhu, Y.G., Zhao, Y., Zhu, D., Gillings, M., Penuelas, J., Ok, Y.S., Capon, A., Banwart, S., 2019. Soil biota, antimicrobial resistance and planetary health. Environment International 131, 105059
CrossRef Google scholar

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LD19D060001) and the National Natural Science Foundation of China (42090060).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(6114 KB)

Accesses

Citations

Detail

Sections
Recommended

/