Strong partitioning of soil bacterial community composition and co-occurrence networks along a small-scale elevational gradient on Zijin Mountain
Xu Liu, Teng Yang, Yu Shi, Yichen Zhu, Mulin He, Yunke Zhao, Jonathan M. Adams, Haiyan Chu
Strong partitioning of soil bacterial community composition and co-occurrence networks along a small-scale elevational gradient on Zijin Mountain
• Soil bacterial community composition strongly differed along a short elevational gradient.
• Soil pH and elevation were significantly correlated with soil bacterial community composition.
• Degree scores, betweenness centralities, and composition of network hubs differed among elevations.
The elevational distributions of bacterial communities in natural mountain forests, especially along large elevational gradients, have been studied for many years. However, the distributional patterns that underlie variations in soil bacterial communities along small-scale elevational gradients in urban ecosystems are not yet well understood. Using Illumina MiSeq DNA sequencing, we surveyed soil bacterial communities at three elevations on Zijin Mountain in Nanjing City: the hilltop (300 m a.s.l.), the hillside (150 m a.s.l.), and the foot of the hill (0 m a.s.l.). The results showed that edaphic properties differed significantly with elevation. Bacterial community composition, rather than alpha diversity, strongly differed among the three elevations (Adonis: R2 = 0.12, P<0.01). Adonis and DistLM analyses demonstrated that bacterial community composition was highly correlated with soil pH, elevation, total nitrogen (TN), and dissolved organic carbon (DOC). The degree scores, betweenness centralities, and composition of keystone species were distinct among the elevations. These results demonstrate strong elevational partitioning in the distributions of soil bacterial communities along the gradient on Zijin Mountain. Soil pH and elevation together drove the small-scale elevational distribution of soil bacterial communities. This study broadens our understanding of distribution patterns and biotic co-occurrence associations of soil bacterial communities from large elevational gradients to short elevational gradients.
Elevational distribution / Soil pH / Bacterial community composition / Co-occurrence network
[1] |
Anderson, M., 2004. DISTLM v. 5: a FORTRAN computer program to calculate a distance-based multivariate analysis for a linear model. Department of Statistics, University of Auckland, New Zealand 10, 2016.
|
[2] |
Bai, X., McPhearson, T., Cleugh, H., Nagendra, H., Tong, X., Zhu, T., Zhu, Y.G., 2017. Linking urbanization and the environment: conceptual and empirical advances. Annual Review of Environment and Resources 42, 215–240
CrossRef
Google scholar
|
[3] |
Banerjee, S., Schlaeppi, K., van der Heijden, M.G., 2018. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews. Microbiology 16, 567–576
CrossRef
Google scholar
|
[4] |
Barabási, A.L., 2009. Scale-free networks: a decade and beyond. Science 325, 412–413
CrossRef
Google scholar
|
[5] |
Berry, D., Widder, S., 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology 5, 219
CrossRef
Google scholar
|
[6] |
Brown, P.J., de Pedro, M.A., Kysela, D.T., Van der Henst, C., Kim, J., De Bolle, X., Fuqua, C., Brun, Y.V., 2012. Polar growth in the Alphaproteobacterial order Rhizobiales. Proceedings of the National Academy of Sciences of the United States of America 109, 1697–1701
CrossRef
Google scholar
|
[7] |
Chaffron, S., Rehrauer, H., Pernthaler, J., von Mering, C., 2010. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Research 20, 947–959
CrossRef
Google scholar
|
[8] |
Chu, H., Fierer, N., Lauber, C.L., Caporaso, J.G., Knight, R., Grogan, P., 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology 12, 2998–3006
CrossRef
Google scholar
|
[9] |
Chu, H., Gao, G.F., Ma, Y., Fan, K., Delgado-Baquerizo, M., 2020. Soil Microbial Biogeography in a Changing World: Recent Advances and Future Perspectives. mSystems 5, e00803–e00819
CrossRef
Google scholar
|
[10] |
Crowther, T.W., van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L., Averill, C., Maynard, D.S., 2019. The global soil community and its influence on biogeochemistry. Science 365, 772
CrossRef
Google scholar
|
[11] |
Deng, Y., Jiang, Y.H., Yang, Y., He, Z., Luo, F., Zhou, J., 2012. Molecular ecological network analyses. BMC Bioinformatics 13, 113.
|
[12] |
DeSantis, T., Hugenholtz, P., Keller, K., Brodie, E., Larsen, N., Piceno, Y., Phan, R., Andersen, G.L., 2006. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Research 34, W394–W399
CrossRef
Google scholar
|
[13] |
DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., Andersen, G.L., 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72, 5069–5072
CrossRef
Google scholar
|
[14] |
Dong, L., Xu, H., Ju, F., Liu, S., Wan, Z., 2011. Plant diversity and its conservation strategies in Zijin Mountain National Forest Park in Nanjing. Journal of Jiangsu Forestry Science & Technology. 38, 30–35.
|
[15] |
Du, S., Yu, M., Liu, F., Xiao, L., Zhang, H., Tao, J., Gu, W., Gu, J., Chen, X., 2017. Effect of facility management regimes on soil bacterial diversity and community structure. Chinese Journal of Eco-Agriculture 25, 1615–1625.
|
[16] |
Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England) 26, 2460–2461
CrossRef
Google scholar
|
[17] |
Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61, 1–10
CrossRef
Google scholar
|
[18] |
Fan, K., Cardona, C., Li, Y., Shi, Y., Xiang, X., Shen, C., Wang, H., Gilbert, J.A., Chu, H., 2017. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biology & Biochemistry 113, 275–284
CrossRef
Google scholar
|
[19] |
Fan, K., Delgado-Baquerizo, M., Guo, X., Wang, D., Wu, Y., Zhu, M., Yu, W., Yao, H., Zhu, Y.G., Chu, H., 2019. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7, 143
CrossRef
Google scholar
|
[20] |
Farrer, E.C., Porazinska, D.L., Spasojevic, M.J., King, A.J., Bueno De Mesquita, C.P., Sartwell, S.A., Smith, J.G., White, C.T., Schmidt, S.K., Suding, K.N., 2019. Soil microbial networks shift across a high-elevation successional gradient. Frontiers in Microbiology 10, 2887
CrossRef
Google scholar
|
[21] |
Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology 10, 538–550
CrossRef
Google scholar
|
[22] |
Fierer, N., Jackson, R.B., 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103, 626–631
CrossRef
Google scholar
|
[23] |
Fierer, N., McCain, C.M., Meir, P., Zimmermann, M., Rapp, J.M., Silman, M.R., Knight, R., 2011. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92, 797–804
CrossRef
Google scholar
|
[24] |
Gkarmiri, K., Mahmood, S., Ekblad, A., Alstrom, S., Hogberg, N., Finlay, R., 2017. Identifying the active microbiome associated with roots and rhizosphere soil of oilseed rape. Applied and Environmental Microbiology 83, e01938–e17
CrossRef
Google scholar
|
[25] |
Greenblum, S., Turnbaugh, P.J., Borenstein, E., 2012. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America 109, 594–599
CrossRef
Google scholar
|
[26] |
Griffiths, R.I., Thomson, B.C., James, P., Bell, T., Bailey, M., Whiteley, A.S., 2011. The bacterial biogeography of British soils. Environmental Microbiology 13, 1642–1654
CrossRef
Google scholar
|
[27] |
Huot, H., Joyner, J., Cordoba, A., Shaw, R.K., Wilson, M.A., Walker, R., Muth, T.R., Cheng, Z.Q., 2017. Characterizing urban soils in New York City: profile properties and bacterial communities. Journal of Soils and Sediments 17, 393–407
CrossRef
Google scholar
|
[28] |
Jones, R.T., Robeson, M.S., Lauber, C.L., Hamady, M., Knight, R., Fierer, N., 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME Journal 3, 442–453
CrossRef
Google scholar
|
[29] |
Klimek, B., Niklińska, M., Jaźwa, M., Tarasek, A., Tekielak, I., Musielok, Ł., 2015. Covariation of soil bacteria functional diversity and vegetation diversity along an altitudinal climatic gradient in the Western Carpathians. Pedobiologia 58, 105–112
CrossRef
Google scholar
|
[30] |
Kuczynski, J., Stombaugh, J., Walters, W.A., González, A., Caporaso, J.G., Knight, R., 2011. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current Protocols in Bioinformatics 10, 17.
|
[31] |
Kurtz, Z.D., Müller, C.L., Miraldi, E.R., Littman, D.R., Blaser, M.J., Bonneau, R.A., 2015. Sparse and compositionally robust inference of microbial ecological networks. PLoS Computational Biology 11, e1004226
CrossRef
Google scholar
|
[32] |
Ladau, J., Shi, Y., Jing, X., He, J.S., Chen, L., Lin, X., Fierer, N., Gilbert, J.A., Pollard, K.S., Chu, H., 2018. Existing climate change will lead to pronounced shifts in the diversity of soil prokaryotes. mSystems 3, e00167–e18
CrossRef
Google scholar
|
[33] |
Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L., Pace, N.R., 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America 82, 6955–6959
CrossRef
Google scholar
|
[34] |
Lanzen, A., Epelde, L., Blanco, F., Martin, I., Artetxe, U., Garbisu, C., 2016. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Scientific Reports 6, 28257
CrossRef
Google scholar
|
[35] |
Layeghifard, M., Hwang, D.M., Guttman, D.S., 2017. Disentangling Interactions in the Microbiome: A Network Perspective. Trends in Microbiology 25, 217–228
CrossRef
Google scholar
|
[36] |
Li, G., Sun, G.X., Ren, Y., Luo, X.S., Zhu, Y.G., 2018. Urban soil and human health: a review. European Journal of Soil Science 69, 196–215
CrossRef
Google scholar
|
[37] |
Li, J., Li, C., Kou, Y., Yao, M., He, Z., Li, X., 2020. Distinct mechanisms shape soil bacterial and fungal co-occurrence networks in a mountain ecosystem. FEMS Microbiology Ecology 96, fiaa030.
|
[38] |
Li, J., Shen, Z., Li, C., Kou, Y., Wang, Y., Tu, B., Zhang, S., Li, X., 2018. Stair-step pattern of soil bacterial diversity mainly driven by pH and vegetation types along the elevational gradients of Gongga Mountain, China. Frontiers in Microbiology 9, 569
CrossRef
Google scholar
|
[39] |
Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., Chaffron, S., Ignacio-Espinosa, J.C., Roux, S., Vincent, F., Bittner, L., Darzi, Y., Wang, J., Audic, S., Berline, L., Bontempi, G., Cabello, A.M., Coppola, L., Cornejo-Castillo, F.M., d’Ovidio, F., De Meester, L., Ferrera, I., Garet-Delmas, M.J., Guidi, L., Lara, E., Pesant, S., Royo-Llonch, M., Salazar, G., Sanchez, P., Sebastian, M., Souffreau, C., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Gorsky, G., Not, F., Ogata, H., Speich, S., Stemmann, L., Weissenbach, J., Wincker, P., Acinas, S.G., Sunagawa, S., Bork, P., Sullivan, M.B., Karsenti, E., Bowler, C., de Vargas, C., Raes, J., 2015. Determinants of community structure in the global plankton interactome. Science 348, 1262073
CrossRef
Google scholar
|
[40] |
Ma, B., Wang, H., Dsouza, M., Lou, J., He, Y., Dai, Z., Brookes, P.C., Xu, J., Gilbert, J.A., 2016. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME Journal 10, 1891–1901
CrossRef
Google scholar
|
[41] |
Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England) 27, 2957–2963
CrossRef
Google scholar
|
[42] |
Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal 17, 10–12
CrossRef
Google scholar
|
[43] |
Okie, J.G., Van Horn, D.J., Storch, D., Barrett, J.E., Gooseff, M.N., Kopsova, L., Takacs-Vesbach, C.D., 2015. Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities. Proceedings. Biological Sciences 282, 9
CrossRef
Google scholar
|
[44] |
Qu, Z.L., Liu, B., Ma, Y., Xu, J., Sun, H., 2020. The response of the soil bacterial community and function to forest succession caused by forest disease. Functional Ecology 34, 2548–2559
CrossRef
Google scholar
|
[45] |
Ramirez, K.S., Leff, J.W., Barberan, A., Bates, S.T., Betley, J., Crowther, T.W., Kelly, E.F., Oldfield, E.E., Shaw, E.A., Steenbock, C., Bradford, M.A., Wall, D.H., Fierer, N., 2014. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proceedings. Biological Sciences 281, 20141988
CrossRef
Google scholar
|
[46] |
Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584
CrossRef
Google scholar
|
[47] |
Röttjers, L., Faust, K., 2018. From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiology Reviews 42, 761–780
CrossRef
Google scholar
|
[48] |
Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., Fierer, N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal 4, 1340–1351
CrossRef
Google scholar
|
[49] |
Saito, R., Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Lotia, S., Pico, A.R., Bader, G.D., Ideker, T., 2012. A travel guide to Cytoscape plugins. Nature Methods 9, 1069–1076
CrossRef
Google scholar
|
[50] |
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13, 2498–2504
CrossRef
Google scholar
|
[51] |
Shen, C., Ni, Y., Liang, W., Wang, J., Chu, H., 2015. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Frontiers in Microbiology 6, 582
CrossRef
Google scholar
|
[52] |
Shen, C., Shi, Y., Fan, K., He, J.S., Adams, J.M., Ge, Y., Chu, H., 2019. Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan plateau. FEMS Microbiology Ecology 95, fiz003
CrossRef
Google scholar
|
[53] |
Shen, C., Xiong, J., Zhang, H., Feng, Y., Lin, X., Li, X., Liang, W., Chu, H., 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry 57, 204–211
CrossRef
Google scholar
|
[54] |
Singh, D., Lee-Cruz, L., Kim, W.S., Kerfahi, D., Chun, J.H., Adams, J.M., 2014. Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea. Soil Biology & Biochemistry 68, 140–149
CrossRef
Google scholar
|
[55] |
Song, F.Q., Tian, X.J., Li, Z.Q., Yang, C.L., Chen, B., Hao, J.J., Zhu, J., 2004. Diversity of filamentous fungi in organic layers of two forests in Zijin Mountain. Journal of Forestry Research 15, 273–279
CrossRef
Google scholar
|
[56] |
Toju, H., Tanabe, A.S., Sato, H., 2018. Network hubs in root-associated fungal metacommunities. Microbiome 6, 116
CrossRef
Google scholar
|
[57] |
Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T., Singh, B.K., 2020. Plant-microbiome interactions: from community assembly to plant health. Nature Reviews. Microbiology 18, 607–621
CrossRef
Google scholar
|
[58] |
Wang, J.J., Soininen, J., 2017. Thermal barriers constrain microbial elevational range size via climate variability. Environmental Microbiology 19, 3283–3296
CrossRef
Google scholar
|
[59] |
Wang, Y., Li, C., Shen, Z., Rui, J., Jin, D., Li, J., Li, X., 2019. Community assemblage of free-living diazotrophs along the elevational gradient of Mount Gongga. Soil Ecology Letters. 1, 136–146
CrossRef
Google scholar
|
[60] |
Wang, Z., Li, M., Zhang, X., Song, L., 2020. Modeling the scenic beauty of autumnal tree color at the landscape scale: A case study of Purple Mountain, Nanjing, China. Urban Forestry & Urban Greening 47, 126526
CrossRef
Google scholar
|
[61] |
Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., Xia, L.C., Xu, Z.Z., Ursell, L., Alm, E.J., Birmingham, A., Cram, J.A., Fuhrman, J.A., Raes, J., Sun, F., Zhou, J., Knight, R., 2016. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME Journal 10, 1669–1681
CrossRef
Google scholar
|
[62] |
Xu, H.J., Li, S., Su, J.Q., Nie, S.A., Gibson, V., Li, H., Zhu, Y.G., 2014. Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method. FEMS Microbiology Ecology 87, 182–192
CrossRef
Google scholar
|
[63] |
Xu, M., Li, X., Cai, X., Gai, J., Li, X., Christie, P., Zhang, J., 2014. Soil microbial community structure and activity along a montane elevational gradient on the Tibetan Plateau. European Journal of Soil Biology 64, 6–14
CrossRef
Google scholar
|
[64] |
Yang, T., Shi, Y., Zhu, J., Zhao, C., Wang, J., Liu, Z., Fu, X., Liu, X., Yan, J., Yuan, M., Chu, H., 2021. The spatial variation of soil bacterial community assembly processes affects the accuracy of source tracking in ten major Chinese cities. Science China. Life Sciences 64, 1546–1559
CrossRef
Google scholar
|
[65] |
Yuan, Z.S., Liu, F., Zhang, G.F., 2015. Bacterial diversity and community structure in moso bamboo forest soils based on 454 pyrosequencing. Dokladi na Bulgarskata Akademiâ na Naukite 68, 609–619.
|
[66] |
Zhalnina, K., Dias, R., de Quadros, P.D., Davis, R.A., Camargo, F A O., Clark, I.M., McGrath, S.P., Hirsch, P.R., Triplett, E.W., 2015. Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology 69, 395–406
CrossRef
Google scholar
|
[67] |
Zhang, B., Zhang, J., Liu, Y., Shi, P., Wei, G., 2018. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biology & Biochemistry 118, 178–186
CrossRef
Google scholar
|
[68] |
Zhang, Z., Geng, J., Tang, X., Fan, H., Xu, J., Wen, X., Ma, Z., Shi, P., 2014. Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME Journal 8, 818–893
CrossRef
Google scholar
|
/
〈 | 〉 |