Strong partitioning of soil bacterial community composition and co-occurrence networks along a small-scale elevational gradient on Zijin Mountain

Xu Liu , Teng Yang , Yu Shi , Yichen Zhu , Mulin He , Yunke Zhao , Jonathan M. Adams , Haiyan Chu

Soil Ecology Letters ›› 2021, Vol. 3 ›› Issue (4) : 290 -302.

PDF (1836KB)
Soil Ecology Letters ›› 2021, Vol. 3 ›› Issue (4) : 290 -302. DOI: 10.1007/s42832-021-0122-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Strong partitioning of soil bacterial community composition and co-occurrence networks along a small-scale elevational gradient on Zijin Mountain

Author information +
History +
PDF (1836KB)

Abstract

• Soil bacterial community composition strongly differed along a short elevational gradient.

• Soil pH and elevation were significantly correlated with soil bacterial community composition.

• Degree scores, betweenness centralities, and composition of network hubs differed among elevations.

The elevational distributions of bacterial communities in natural mountain forests, especially along large elevational gradients, have been studied for many years. However, the distributional patterns that underlie variations in soil bacterial communities along small-scale elevational gradients in urban ecosystems are not yet well understood. Using Illumina MiSeq DNA sequencing, we surveyed soil bacterial communities at three elevations on Zijin Mountain in Nanjing City: the hilltop (300 m a.s.l.), the hillside (150 m a.s.l.), and the foot of the hill (0 m a.s.l.). The results showed that edaphic properties differed significantly with elevation. Bacterial community composition, rather than alpha diversity, strongly differed among the three elevations (Adonis: R2 = 0.12, P<0.01). Adonis and DistLM analyses demonstrated that bacterial community composition was highly correlated with soil pH, elevation, total nitrogen (TN), and dissolved organic carbon (DOC). The degree scores, betweenness centralities, and composition of keystone species were distinct among the elevations. These results demonstrate strong elevational partitioning in the distributions of soil bacterial communities along the gradient on Zijin Mountain. Soil pH and elevation together drove the small-scale elevational distribution of soil bacterial communities. This study broadens our understanding of distribution patterns and biotic co-occurrence associations of soil bacterial communities from large elevational gradients to short elevational gradients.

Graphical abstract

Keywords

Elevational distribution / Soil pH / Bacterial community composition / Co-occurrence network

Cite this article

Download citation ▾
Xu Liu, Teng Yang, Yu Shi, Yichen Zhu, Mulin He, Yunke Zhao, Jonathan M. Adams, Haiyan Chu. Strong partitioning of soil bacterial community composition and co-occurrence networks along a small-scale elevational gradient on Zijin Mountain. Soil Ecology Letters, 2021, 3(4): 290-302 DOI:10.1007/s42832-021-0122-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson, M., 2004. DISTLM v. 5: a FORTRAN computer program to calculate a distance-based multivariate analysis for a linear model. Department of Statistics, University of Auckland, New Zealand 10, 2016.

[2]

Bai, X., McPhearson, T., Cleugh, H., Nagendra, H., Tong, X., Zhu, T., Zhu, Y.G., 2017. Linking urbanization and the environment: conceptual and empirical advances. Annual Review of Environment and Resources 42, 215–240

[3]

Banerjee, S., Schlaeppi, K., van der Heijden, M.G., 2018. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews. Microbiology 16, 567–576

[4]

Barabási, A.L., 2009. Scale-free networks: a decade and beyond. Science 325, 412–413

[5]

Berry, D., Widder, S., 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology 5, 219

[6]

Brown, P.J., de Pedro, M.A., Kysela, D.T., Van der Henst, C., Kim, J., De Bolle, X., Fuqua, C., Brun, Y.V., 2012. Polar growth in the Alphaproteobacterial order Rhizobiales. Proceedings of the National Academy of Sciences of the United States of America 109, 1697–1701

[7]

Chaffron, S., Rehrauer, H., Pernthaler, J., von Mering, C., 2010. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Research 20, 947–959

[8]

Chu, H., Fierer, N., Lauber, C.L., Caporaso, J.G., Knight, R., Grogan, P., 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology 12, 2998–3006

[9]

Chu, H., Gao, G.F., Ma, Y., Fan, K., Delgado-Baquerizo, M., 2020. Soil Microbial Biogeography in a Changing World: Recent Advances and Future Perspectives. mSystems 5, e00803–e00819

[10]

Crowther, T.W., van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L., Averill, C., Maynard, D.S., 2019. The global soil community and its influence on biogeochemistry. Science 365, 772

[11]

Deng, Y., Jiang, Y.H., Yang, Y., He, Z., Luo, F., Zhou, J., 2012. Molecular ecological network analyses. BMC Bioinformatics 13, 113.

[12]

DeSantis, T., Hugenholtz, P., Keller, K., Brodie, E., Larsen, N., Piceno, Y., Phan, R., Andersen, G.L., 2006. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Research 34, W394–W399

[13]

DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., Andersen, G.L., 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72, 5069–5072

[14]

Dong, L., Xu, H., Ju, F., Liu, S., Wan, Z., 2011. Plant diversity and its conservation strategies in Zijin Mountain National Forest Park in Nanjing. Journal of Jiangsu Forestry Science & Technology. 38, 30–35.

[15]

Du, S., Yu, M., Liu, F., Xiao, L., Zhang, H., Tao, J., Gu, W., Gu, J., Chen, X., 2017. Effect of facility management regimes on soil bacterial diversity and community structure. Chinese Journal of Eco-Agriculture 25, 1615–1625.

[16]

Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England) 26, 2460–2461

[17]

Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61, 1–10

[18]

Fan, K., Cardona, C., Li, Y., Shi, Y., Xiang, X., Shen, C., Wang, H., Gilbert, J.A., Chu, H., 2017. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biology & Biochemistry 113, 275–284

[19]

Fan, K., Delgado-Baquerizo, M., Guo, X., Wang, D., Wu, Y., Zhu, M., Yu, W., Yao, H., Zhu, Y.G., Chu, H., 2019. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7, 143

[20]

Farrer, E.C., Porazinska, D.L., Spasojevic, M.J., King, A.J., Bueno De Mesquita, C.P., Sartwell, S.A., Smith, J.G., White, C.T., Schmidt, S.K., Suding, K.N., 2019. Soil microbial networks shift across a high-elevation successional gradient. Frontiers in Microbiology 10, 2887

[21]

Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology 10, 538–550

[22]

Fierer, N., Jackson, R.B., 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103, 626–631

[23]

Fierer, N., McCain, C.M., Meir, P., Zimmermann, M., Rapp, J.M., Silman, M.R., Knight, R., 2011. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92, 797–804

[24]

Gkarmiri, K., Mahmood, S., Ekblad, A., Alstrom, S., Hogberg, N., Finlay, R., 2017. Identifying the active microbiome associated with roots and rhizosphere soil of oilseed rape. Applied and Environmental Microbiology 83, e01938–e17

[25]

Greenblum, S., Turnbaugh, P.J., Borenstein, E., 2012. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America 109, 594–599

[26]

Griffiths, R.I., Thomson, B.C., James, P., Bell, T., Bailey, M., Whiteley, A.S., 2011. The bacterial biogeography of British soils. Environmental Microbiology 13, 1642–1654

[27]

Huot, H., Joyner, J., Cordoba, A., Shaw, R.K., Wilson, M.A., Walker, R., Muth, T.R., Cheng, Z.Q., 2017. Characterizing urban soils in New York City: profile properties and bacterial communities. Journal of Soils and Sediments 17, 393–407

[28]

Jones, R.T., Robeson, M.S., Lauber, C.L., Hamady, M., Knight, R., Fierer, N., 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME Journal 3, 442–453

[29]

Klimek, B., Niklińska, M., Jaźwa, M., Tarasek, A., Tekielak, I., Musielok, Ł., 2015. Covariation of soil bacteria functional diversity and vegetation diversity along an altitudinal climatic gradient in the Western Carpathians. Pedobiologia 58, 105–112

[30]

Kuczynski, J., Stombaugh, J., Walters, W.A., González, A., Caporaso, J.G., Knight, R., 2011. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current Protocols in Bioinformatics 10, 17.

[31]

Kurtz, Z.D., Müller, C.L., Miraldi, E.R., Littman, D.R., Blaser, M.J., Bonneau, R.A., 2015. Sparse and compositionally robust inference of microbial ecological networks. PLoS Computational Biology 11, e1004226

[32]

Ladau, J., Shi, Y., Jing, X., He, J.S., Chen, L., Lin, X., Fierer, N., Gilbert, J.A., Pollard, K.S., Chu, H., 2018. Existing climate change will lead to pronounced shifts in the diversity of soil prokaryotes. mSystems 3, e00167–e18

[33]

Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L., Pace, N.R., 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America 82, 6955–6959

[34]

Lanzen, A., Epelde, L., Blanco, F., Martin, I., Artetxe, U., Garbisu, C., 2016. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Scientific Reports 6, 28257

[35]

Layeghifard, M., Hwang, D.M., Guttman, D.S., 2017. Disentangling Interactions in the Microbiome: A Network Perspective. Trends in Microbiology 25, 217–228

[36]

Li, G., Sun, G.X., Ren, Y., Luo, X.S., Zhu, Y.G., 2018. Urban soil and human health: a review. European Journal of Soil Science 69, 196–215

[37]

Li, J., Li, C., Kou, Y., Yao, M., He, Z., Li, X., 2020. Distinct mechanisms shape soil bacterial and fungal co-occurrence networks in a mountain ecosystem. FEMS Microbiology Ecology 96, fiaa030.

[38]

Li, J., Shen, Z., Li, C., Kou, Y., Wang, Y., Tu, B., Zhang, S., Li, X., 2018. Stair-step pattern of soil bacterial diversity mainly driven by pH and vegetation types along the elevational gradients of Gongga Mountain, China. Frontiers in Microbiology 9, 569

[39]

Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., Chaffron, S., Ignacio-Espinosa, J.C., Roux, S., Vincent, F., Bittner, L., Darzi, Y., Wang, J., Audic, S., Berline, L., Bontempi, G., Cabello, A.M., Coppola, L., Cornejo-Castillo, F.M., d’Ovidio, F., De Meester, L., Ferrera, I., Garet-Delmas, M.J., Guidi, L., Lara, E., Pesant, S., Royo-Llonch, M., Salazar, G., Sanchez, P., Sebastian, M., Souffreau, C., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Gorsky, G., Not, F., Ogata, H., Speich, S., Stemmann, L., Weissenbach, J., Wincker, P., Acinas, S.G., Sunagawa, S., Bork, P., Sullivan, M.B., Karsenti, E., Bowler, C., de Vargas, C., Raes, J., 2015. Determinants of community structure in the global plankton interactome. Science 348, 1262073

[40]

Ma, B., Wang, H., Dsouza, M., Lou, J., He, Y., Dai, Z., Brookes, P.C., Xu, J., Gilbert, J.A., 2016. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME Journal 10, 1891–1901

[41]

Magoč T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England) 27, 2957–2963

[42]

Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal 17, 10–12

[43]

Okie, J.G., Van Horn, D.J., Storch, D., Barrett, J.E., Gooseff, M.N., Kopsova, L., Takacs-Vesbach, C.D., 2015. Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities. Proceedings. Biological Sciences 282, 9

[44]

Qu, Z.L., Liu, B., Ma, Y., Xu, J., Sun, H., 2020. The response of the soil bacterial community and function to forest succession caused by forest disease. Functional Ecology 34, 2548–2559

[45]

Ramirez, K.S., Leff, J.W., Barberan, A., Bates, S.T., Betley, J., Crowther, T.W., Kelly, E.F., Oldfield, E.E., Shaw, E.A., Steenbock, C., Bradford, M.A., Wall, D.H., Fierer, N., 2014. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proceedings. Biological Sciences 281, 20141988

[46]

Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé F., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584

[47]

Röttjers, L., Faust, K., 2018. From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiology Reviews 42, 761–780

[48]

Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., Fierer, N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal 4, 1340–1351

[49]

Saito, R., Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Lotia, S., Pico, A.R., Bader, G.D., Ideker, T., 2012. A travel guide to Cytoscape plugins. Nature Methods 9, 1069–1076

[50]

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13, 2498–2504

[51]

Shen, C., Ni, Y., Liang, W., Wang, J., Chu, H., 2015. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Frontiers in Microbiology 6, 582

[52]

Shen, C., Shi, Y., Fan, K., He, J.S., Adams, J.M., Ge, Y., Chu, H., 2019. Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan plateau. FEMS Microbiology Ecology 95, fiz003

[53]

Shen, C., Xiong, J., Zhang, H., Feng, Y., Lin, X., Li, X., Liang, W., Chu, H., 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry 57, 204–211

[54]

Singh, D., Lee-Cruz, L., Kim, W.S., Kerfahi, D., Chun, J.H., Adams, J.M., 2014. Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea. Soil Biology & Biochemistry 68, 140–149

[55]

Song, F.Q., Tian, X.J., Li, Z.Q., Yang, C.L., Chen, B., Hao, J.J., Zhu, J., 2004. Diversity of filamentous fungi in organic layers of two forests in Zijin Mountain. Journal of Forestry Research 15, 273–279

[56]

Toju, H., Tanabe, A.S., Sato, H., 2018. Network hubs in root-associated fungal metacommunities. Microbiome 6, 116

[57]

Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T., Singh, B.K., 2020. Plant-microbiome interactions: from community assembly to plant health. Nature Reviews. Microbiology 18, 607–621

[58]

Wang, J.J., Soininen, J., 2017. Thermal barriers constrain microbial elevational range size via climate variability. Environmental Microbiology 19, 3283–3296

[59]

Wang, Y., Li, C., Shen, Z., Rui, J., Jin, D., Li, J., Li, X., 2019. Community assemblage of free-living diazotrophs along the elevational gradient of Mount Gongga. Soil Ecology Letters. 1, 136–146

[60]

Wang, Z., Li, M., Zhang, X., Song, L., 2020. Modeling the scenic beauty of autumnal tree color at the landscape scale: A case study of Purple Mountain, Nanjing, China. Urban Forestry & Urban Greening 47, 126526

[61]

Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., Xia, L.C., Xu, Z.Z., Ursell, L., Alm, E.J., Birmingham, A., Cram, J.A., Fuhrman, J.A., Raes, J., Sun, F., Zhou, J., Knight, R., 2016. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME Journal 10, 1669–1681

[62]

Xu, H.J., Li, S., Su, J.Q., Nie, S.A., Gibson, V., Li, H., Zhu, Y.G., 2014. Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method. FEMS Microbiology Ecology 87, 182–192

[63]

Xu, M., Li, X., Cai, X., Gai, J., Li, X., Christie, P., Zhang, J., 2014. Soil microbial community structure and activity along a montane elevational gradient on the Tibetan Plateau. European Journal of Soil Biology 64, 6–14

[64]

Yang, T., Shi, Y., Zhu, J., Zhao, C., Wang, J., Liu, Z., Fu, X., Liu, X., Yan, J., Yuan, M., Chu, H., 2021. The spatial variation of soil bacterial community assembly processes affects the accuracy of source tracking in ten major Chinese cities. Science China. Life Sciences 64, 1546–1559

[65]

Yuan, Z.S., Liu, F., Zhang, G.F., 2015. Bacterial diversity and community structure in moso bamboo forest soils based on 454 pyrosequencing. Dokladi na Bulgarskata Akademiâ na Naukite 68, 609–619.

[66]

Zhalnina, K., Dias, R., de Quadros, P.D., Davis, R.A., Camargo, F A O., Clark, I.M., McGrath, S.P., Hirsch, P.R., Triplett, E.W., 2015. Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology 69, 395–406

[67]

Zhang, B., Zhang, J., Liu, Y., Shi, P., Wei, G., 2018. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biology & Biochemistry 118, 178–186

[68]

Zhang, Z., Geng, J., Tang, X., Fan, H., Xu, J., Wen, X., Ma, Z., Shi, P., 2014. Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME Journal 8, 818–893

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1836KB)

Supplementary files

SEL-00122-OF-HYC_suppl_1

1614

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/