High variation of fungal communities and associated potential plant pathogens induced by long-term addition of N fertilizers rather than P, K fertilizers: A case study in a Mollisol field
Xiaojing Hu , Haidong Gu , Junjie Liu , Baoku Zhou , Dan Wei , Xueli Chen , Guanghua Wang
Soil Ecology Letters ›› 2022, Vol. 4 ›› Issue (4) : 348 -361.
High variation of fungal communities and associated potential plant pathogens induced by long-term addition of N fertilizers rather than P, K fertilizers: A case study in a Mollisol field
• Fungal communities were more sensitive to N fertilizers than P, K fertilizers. • More harmonious and stable fungal network induced by P, K fertilizers. • N fertilizers induced lower fungal community resistance with detriments on crop yields.
Nitrogen (N), phosphate (P), and potassium (K) are the three most important nutrients applied into agricultural soils, but the impacts of their single or combined application on soil fungal community structure and stability are still open questions. Using qPCR and Illumina Miseq sequencing, the variation of soil fungal communities in response to long-term addition of N, P, or K fertilization alone and their combinations in a Mollisol field was investigated in this study. In addition, the fungal community resistance indices and network structure were studied. Results showed that N fertilizations (N, NK, NP and NPK treatments) rather than P, K fertilizations (P, K and PK treatments) significantly increased fungal abundance, but decreased fungal diversity and shifted fungal community structures when compared to non-fertilization (NoF). Additionally, N fertilization treatments presented lower resistance of fungal communities to environment disturbances than those of P, K fertilization treatments. More numbers and higher abundances of changed fungal taxa at the genus and OTU levels were induced by N fertilizations rather than by addition of P, K fertilizers. In addition, N fertilizations induced a more changeable fungal network and complex pathogenic subnetwork with many positive interactions among responding plant pathogens (RP, the changeable plant pathogens induced by fertilizers addition compared to NoF) when compared to P, K fertilizations. These RP directly and negatively influenced fungal community resistance examined by structural equation modeling (SEM), which were indirectly detrimental to soybean yields. Our findings revealed that addition of N fertilizers significantly disturbed fungal communities and promoted pathogenic interactions, and provided insights into the optimization of fertilization strategies toward agricultural sustainability.
N fertilizations / P, K fertilizations / Fungal communities / Responding taxa / Network interaction / Mollisol
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |