Assessment of microbial α-diversity in one meter squared topsoil

Shuzhen Li, Xiongfeng Du, Kai Feng, Yueni Wu, Qing He, Zhujun Wang, Yangying Liu, Danrui Wang, Xi Peng, Zhaojing Zhang, Arthur Escalas, Yuanyuan Qu, Ye Deng

PDF(2713 KB)
PDF(2713 KB)
Soil Ecology Letters ›› 2022, Vol. 4 ›› Issue (3) : 224-236. DOI: 10.1007/s42832-021-0111-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Assessment of microbial α-diversity in one meter squared topsoil

Author information +
History +

Highlights

• Roughly 15 919 to 56 985 prokaryotic species inhabited in 1 m2 grassland topsoil.

• Three clustering tools, including DADA2, UPARSE and Deblur showed huge differences.

• Nearly 500 000 sequences were required to catch 50% species.

• Insufficient sequencing depth greatly affected observed and estimated richness.

• Higher order of Hill numbers reached saturation with fewer than 100 000 sequences.

Abstract

Due to the tremendous diversity of microbial organisms in topsoil, the estimation of saturated richness in a belowground ecosystem is still challenging. Here, we intensively surveyed the 16S rRNA gene in four 1 m2 sampling quadrats in a typical grassland, with 141 biological or technical replicates generating over 11 million sequences per quadrat. Through these massive data sets and using both non-asymptotic extrapolation and non-parametric asymptotic approaches, results revealed that roughly 15 919±193 27 193±1076 and 56 985±2347 prokaryotic species inhabited in 1 m2 topsoil, classifying by DADA2, UPARSE (97% cutoff) and Deblur, respectively, and suggested a huge difference among these clustering tools. Nearly 500 000 sequences were required to catch 50% species in 1 m2, while any estimator based on 500 000 sequences would still lose about a third of total richness. Insufficient sequencing depth will greatly underestimate both observed and estimated richness. At least ~911 000, ~3 461 000, and ~1 878 000 sequences were needed for DADA2, UPARSE, and Deblur, respectively, to catch 80% species in 1 m2 topsoil, and the numbers of sequences would be nearly twice to three times on this basis to cover 90% richness. In contrast, α-diversity indexes characterized by higher order of Hill numbers, including Shannon entropy and inverse Simpson index, reached saturation with fewer than 100 000 sequences, suggesting sequencing depth could be varied greatly when focusing on exploring different α-diversity characteristics of a microbial community. Our findings were fundamental for microbial studies that provided benchmarks for the extending surveys in large scales of terrestrial ecosystems.

Graphical abstract

Keywords

Grassland / Topsoil / Prokaryote / Richness / α-diversity / Hill number

Cite this article

Download citation ▾
Shuzhen Li, Xiongfeng Du, Kai Feng, Yueni Wu, Qing He, Zhujun Wang, Yangying Liu, Danrui Wang, Xi Peng, Zhaojing Zhang, Arthur Escalas, Yuanyuan Qu, Ye Deng. Assessment of microbial α-diversity in one meter squared topsoil. Soil Ecology Letters, 2022, 4(3): 224‒236 https://doi.org/10.1007/s42832-021-0111-5

References

[1]
Alberdi, A., Gilbert, M.T.P., 2019. A guide to the application of Hill numbers to DNA-based diversity analyses. Molecular Ecology Resources 19, 804–817
CrossRef Google scholar
[2]
Amir, A., McDonald, D., Navas-Molina, J.A., Kopylova, E., Morton, J.T., Xu, Z.Z., Kightley, E.P., Thompson, L.R., Hyde, E.R., Gonzalez, A., Knight, R., 2017. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191–e16
CrossRef Google scholar
[3]
Balint, M., Bahram, M., Eren, A.M., Faust, K., Fuhrman, J.A., Lindahl, B., O’Hara, R.B., Opik, M., Sogin, M.L., Unterseher, M., Tedersoo, L., 2016. Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiology Reviews 40, 686–700
CrossRef Google scholar
[4]
Bao, S., 2000. Soil and Agricultural Chemistry Analysis. China Agricultural Press, Beijing.
[5]
Bressan, M., Gattin, I.T., Desaire, S., Castel, L., Gangneux, C., Laval, K., 2015. A rapid flow cytometry method to assess bacterial abundance in agricultural soil. Applied Soil Ecology 88, 60–68
CrossRef Google scholar
[6]
Bunge, J., Epstein, S.S., Peterson, D.G., 2006. Comment on “Computational improvements reveal great bacterial diversity and high metal toxicity in soil”. Science 313, 918c
CrossRef Google scholar
[7]
Bunge, J., Willis, A., Walsh, F., 2014. Estimating the number of species in microbial diversity studies. Annual Review of Statistics and Its Application 1, 427–445
CrossRef Google scholar
[8]
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13, 581–583
CrossRef Google scholar
[9]
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J.A., Smith, G., Knight, R., 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal 6, 1621–1624
CrossRef Google scholar
[10]
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America 108, 4516–4522
CrossRef Google scholar
[11]
Chao, A., 1987. Estimating the population-size for capture recapture data with unequal catchability. Biometrics 43, 783–791
CrossRef Google scholar
[12]
Chao, A., Chazdon, R.L., Colwell, R.K., Shen, T.J., 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters 8, 148–159
CrossRef Google scholar
[13]
Chao, A., Chiu, C.-H., 2016. Nonparametric Estimation and Comparison of Species Richness. 1–11.
[14]
Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., Ellison, A.M., 2014a. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 45–67
CrossRef Google scholar
[15]
Chao, A., Jost, L., 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547
CrossRef Google scholar
[16]
Chao, A., Jost, L., 2015. Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution 6, 873–882
CrossRef Google scholar
[17]
Chao, A.N., Chiu, C.H., Jost, L., 2014b. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics 45, 297–324
CrossRef Google scholar
[18]
Chazdon, R.L., Colwell, R.K., Denslow, J.S., Guariguata, M.R., 1998. Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of northeastern Costa Rica. Forest Biodiversity Research. Monitoring and Modeling 20, 285–309.
[19]
Chiu, C.H., Chao, A., 2016. Estimating and comparing microbial diversity in the presence of sequencing errors. PeerJ 4, e1634
CrossRef Google scholar
[20]
Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.Y., Mao, C.X., Chazdon, R.L., Longino, J.T., 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5, 3–21
CrossRef Google scholar
[21]
Colwell, R.K., Coddington, J.A., 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 345, 101–118
CrossRef Google scholar
[22]
Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-Gonzalez, A., Eldridge, D.J., Bardgett, R.D., Maestre, F.T., Singh, B.K., Fierer, N., 2018. A global atlas of the dominant bacteria found in soil. Science 359, 320–325
CrossRef Google scholar
[23]
Deng, Y., Ning, D.L., Qin, Y.J., Xue, K., Wu, L.Y., He, Z.L., Yin, H.Q., Liang, Y.T., Buzzard, V., Michaletz, S.T., Zhou, J.Z., 2018. Spatial scaling of forest soil microbial communities across a temperature gradient. Environmental Microbiology 20, 3504–3513
CrossRef Google scholar
[24]
Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996–998
CrossRef Google scholar
[25]
Ellison, A.M., 2010. Partitioning diversity. Ecology 91, 1962–1963
CrossRef Google scholar
[26]
Feng, K., Zhang, Z.J., Cai, W.W., Liu, W.Z., Xu, M.Y., Yin, H.Q., Wang, A.J., He, Z.L., Deng, Y., 2017. Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology 26, 6170–6182
CrossRef Google scholar
[27]
Gans, J., Wolinsky, M., Dunbar, J., 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390
CrossRef Google scholar
[28]
Ginestet, C., 2011. ggplot2: Elegant Graphics for Data Analysis. Journal of the Royal Statistical Society Series a-Statistics in Society 174, 245–245.
[29]
Gohl, D.M., Vangay, P., Garbe, J., MacLean, A., Hauge, A., Becker, A., Gould, T.J., Clayton, J.B., Johnson, T.J., Hunter, R., Knights, D., Beckman, K.B., 2016. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nature Biotechnology 34, 942–949
CrossRef Google scholar
[30]
Gotelli, N.J., Colwell, R.K., 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4, 379–391
CrossRef Google scholar
[31]
Haegeman, B., Hamelin, J., Moriarty, J., Neal, P., Dushoff, J., Weitz, J.S., 2013. Robust estimation of microbial diversity in theory and in practice. ISME Journal 7, 1092–1101
CrossRef Google scholar
[32]
Heltshe, J.F., Forrester, N.E., 1983. Estimating species richness using the Jackknife procedure. Biometrics 39, 1–11
CrossRef Google scholar
[33]
Hill, M.O., 1973. Diversity and evenness: A unifying notation and its consequences. Ecology 54, 427–432
CrossRef Google scholar
[34]
Hsieh, T.C., Ma, K.H., Chao, A., 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7, 1451–1456
CrossRef Google scholar
[35]
Hu, Y.J., Veresoglou, S.D., Tedersoo, L., Xu, T.L., Ge, T.D., Liu, L., Chen, Y.L., Hao, Z.P., Su, Y.R., Rillig, M.C., Chen, B.D., 2019. Contrasting latitudinal diversity and co-occurrence patterns of soil fungi and plants in forest ecosystems. Soil Biology & Biochemistry 131, 100–110
CrossRef Google scholar
[36]
Hugerth, L.W., Andersson, A.F., 2017. Analysing microbial community composition through amplicon sequencing: From sampling to hypothesis testing. Frontiers in Microbiology 8, 1561
CrossRef Google scholar
[37]
Kang, S., Rodrigues, J.L.M., Ng, J.P., Gentry, T.J., 2016. Hill number as a bacterial diversity measure framework with high-throughput sequence data. Scientific Reports 6, 38263
CrossRef Google scholar
[38]
Knight, R., Vrbanac, A., Taylor, B.C., Aksenov, A., Callewaert, C., Debelius, J., Gonzalez, A., Kosciolek, T., McCall, L.I., McDonald, D., Melnik, A.V., Morton, J.T., Navas, J., Quinn, R.A., Sanders, J.G., Swafford, A.D., Thompson, L.R., Tripathi, A., Xu, Z.J.Z., Zaneveld, J.R., Zhu, Q.Y., Caporaso, J.G., Dorrestein, P.C., 2018. Best practices for analysing microbiomes. Nature Reviews. Microbiology 16, 410–422
CrossRef Google scholar
[39]
Kong, Y., 2011. Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98, 152–153
CrossRef Google scholar
[40]
Lee, S.M., Chao, A., 1994. Estimating population-size via sample coverage for closed capture-recapture models. Biometrics 50, 88–97
CrossRef Google scholar
[41]
Li, S., Deng, Y., Du, X., Feng, K., Wu, Y., He, Q., Wang, Z., Liu, Y., Wang, D., Peng, X., Zhang, Z., Escalas, A., Qu, Y., 2021. Sampling cores and sequencing depths affected the measurement of microbial diversity in soil quadrats. Science of the Total Environment 767, 144966
CrossRef Google scholar
[42]
Locey, K.J., Lennon, J.T., 2016. Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences of the United States of America 113, 5970–5975
CrossRef Google scholar
[43]
Magoc, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England) 27, 2957–2963
CrossRef Google scholar
[44]
Mao, C.X., Colwell, R.K., 2005. Estimation of species richness: Mixture models, the role of rare species, and inferential challenges. Ecology 86, 1143–1153
CrossRef Google scholar
[45]
Nguyen, N.H., Smith, D., Peay, K., Kennedy, P., 2015. Parsing ecological signal from noise in next generation amplicon sequencing. New Phytologist 205, 1389–1393
CrossRef Google scholar
[46]
O’Hara, R.B., 2005. Species richness estimators: how many species can dance on the head of a pin? Journal of Animal Ecology 74, 375–386
CrossRef Google scholar
[47]
Rajakaruna, H., Drake, D.A.R., Chan, F.T., Bailey, S.A., 2016. Optimizing performance of nonparametric species richness estimators under constrained sampling. Ecology and Evolution 6, 7311–7322
CrossRef Google scholar
[48]
Roesch, L.F., Fulthorpe, R.R., Riva, A., Casella, G., Hadwin, A.K.M., Kent, A.D., Daroub, S.H., Camargo, F.A.O., Farmerie, W.G., Triplett, E.W., 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME Journal 1, 283–290
CrossRef Google scholar
[49]
Ru, J.Y., Zhou, Y.Q., Hui, D.F., Zheng, M.M., Wan, S.Q., 2018. Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland. Global Change Biology 24, 1001–1011
CrossRef Google scholar
[50]
Schloss, P.D., Handelsman, J., 2006. Toward a census of bacteria in soil. PLoS Computational Biology 2, 786–793
CrossRef Google scholar
[51]
Shannon, C.E., 1948. A mathematical theory of communication. Bell System Technical Journal 27, 379–423
CrossRef Google scholar
[52]
Simpson, E.H., 1949. Measurement of Diversity. Nature 163, 688–688
CrossRef Google scholar
[53]
Tedersoo, L., Bahram, M., Polme, S., Koljalg, U., Yorou, N.S., Wijesundera, R., Ruiz, L.V., Vasco-Palacios, A.M., Thu, P.Q., Suija, A., Smith, M.E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Poldmaa, K., Piepenbring, M., Phosri, C., Peterson, M., Parts, K., Partel, K., Otsing, E., Nouhra, E., Njouonkou, A.L., Nilsson, R.H., Morgado, L.N., Mayor, J., May, T.W., Majuakim, L., Lodge, D.J., Lee, S.S., Larsson, K.H., Kohout, P., Hosaka, K., Hiiesalu, I., Henkel, T.W., Harend, H., Guo, L.D., Greslebin, A., Grelet, G., Geml, J., Gates, G., Dunstan, W., Dunk, C., Drenkhan, R., Dearnaley, J., De Kesel, A., Dang, T., Chen, X., Buegger, F., Brearley, F.Q., Bonito, G., Anslan, S., Abell, S., Abarenkov, K., 2014. Global diversity and geography of soil fungi. Science 346, 1078
CrossRef Google scholar
[54]
Torsvik, V., Goksoyr, J., Daae, F.L., 1990. High diversity in DNA of soil bacteria. Applied and Environmental Microbiology 56, 782–787
CrossRef Google scholar
[55]
Tu, Q.C., Deng, Y., Yan, Q.Y., Shen, L.N., Lin, L., He, Z.L., Wu, L.Y., Van Nostrand, J.D., Buzzard, V., Michaletz, S.T., Enquist, B.J., Weiser, M.D., Kaspari, M., Waide, R.B., Brown, J.H., Zhou, J.Z., 2016. Biogeographic patterns of soil diazotrophic communities across six forests in the North America. Molecular Ecology 25, 2937–2948
CrossRef Google scholar
[56]
Vavrek, M.J., 2011. fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontologia Electronica 14:1T
[57]
Volkov, I., Banavar, J.R., Maritan, A., 2006. Comment on “Computational improvements reveal great bacterial diversity and high metal toxicity in soil”. Science 313, 918
CrossRef Google scholar
[58]
Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73, 5261–5267
CrossRef Google scholar
[59]
Wang, Y.Q., Song, F.H., Zhu, J.W., Zhang, S.S., Yang, Y.D., Chen, T.T., Tang, B.X., Dong, L.L., Ding, N., Zhang, Q., Bai, Z.X., Dong, X.N., Chen, H.X., Sun, M.Y., Zhai, S., Sun, Y.B., Yu, L., Lan, L., Xiao, J.F., Fang, X.D., Lei, H.X., Zhang, Z., Zhao, W.M., 2017. GSA: Genome Sequence Archive. Genomics, Proteomics & Bioinformatics 15, 14–18
CrossRef Google scholar
[60]
Wu, L.W., Ning, D.L., Zhang, B., Li, Y., Zhang, P., Shan, X.Y., Zhang, Q.T., Brown, M., Li, Z.X., Van Nostrand, J.D., Ling, F.Q., Xiao, N.J., Zhang, Y., Vierheilig, J., Wells, G.F., Yang, Y.F., Deng, Y., Tu, Q.C., Wang, A.J., Zhang, T., He, Z.L., Keller, J., Nielsen, P.H., Alvarez, P.J.J., Criddle, C.S., Wagner, M., Tiedje, J.M., He, Q., Curtis, T.P., Stahl, D.A., Alvarez-Cohen, L., Rittmann, B.E., Wen, X.H., Zhou, J.Z., Acevedo, D., Agullo-Barcelo, M., Andersen, G.L., de Araujo, J.C., Boehnke, K., Bond, P., Bott, C.B., Bovio, P., Brewster, R.K., Bux, F., Cabezas, A., Cabrol, L., Chen, S., Etchebehere, C., Ford, A., Frigon, D., Gomez, J.S., Griffin, J.S., Gu, A.Z., Habagil, M., Hale, L., Hardeman, S.D., Harmon, M., Horn, H., Hu, Z.Q., Jauffur, S., Johnson, D.R., Keucken, A., Kumari, S., Leal, C.D., Lebrun, L.A., Lee, J., Lee, M., Lee, Z.M.P., Li, M.Y., Li, X., Liu, Y., Luthy, R.G., Mendonca-Hagler, L.C., de Menezes, F.G.R., Meyers, A.J., Mohebbi, A., Oehmen, A., Palmer, A., Parameswaran, P., Park, J., Patsch, D., Reginatto, V., de los Reyes, F.L., Robles, A.N., Rossetti, S., Sidhu, J., Sloan, W.T., Smith, K., de Sousa, O.V., Stephens, K., Tian, R.M., Tooker, N.B., Vasconcelos, D.D., Wakelin, S., Wang, B., Weaver, J.E., West, S., Wilmes, P., Woo, S.G., Wu, J.H., Wu, L.Y., Xi, C.W., Xu, M.Y., Yan, T., Yang, M., Young, M., Yue, H.W., Zhang, Q., Zhang, W., Zhang, Y., Zhou, H.D., Brown, M., Consortium, G.W.M., 2019. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology 4, 1183–1195
CrossRef Google scholar
[61]
Zhang, X.M., Johnston, E.R., Li, L.H., Konstantinidis, K.T., Han, X.G., 2017a. Experimental warming reveals positive feedbacks to climate change in the Eurasian Steppe. ISME Journal 11, 885–895
CrossRef Google scholar
[62]
Zhang, X.X., Zhang, R.J., Gao, J.S., Wang, X.C., Fan, F.L., Ma, X.T., Yin, H.Q., Zhang, C.W., Feng, K., Deng, Y., 2017b. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biology & Biochemistry 104, 208–217
CrossRef Google scholar
[63]
Zhang, Z., Qu, Y., Li, S., Feng, K., Wang, S., Cai, W., Liang, Y., Li, H., Xu, M., Yin, H., Deng, Y., 2017c. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Scientific Reports 7, 4837
CrossRef Google scholar
[64]
Zhang, Z., Zhao, W.M., Xiao, J.F., Bao, Y.M., Wang, F., Hao, L.L., Zhu, J.W., Chen, T.T., Zhang, S.S., Chen, X., Tang, B.X., Zhou, Q., Wang, Z.H., Dong, L.L., Wang, Y.Q., Ma, Y.K., Zhang, Z.W., Wang, Z., Chen, M.L., Tian, D.M., Li, C.P., Teng, X.F., Du, Z.L., Yuan, N., Zeng, J.Y., Wang, J.Y., Shi, S., Zhang, Y.D., Wang, Q., Pan, M.Y., Qian, Q.H., Song, S.H., Niu, G.Y., Li, M., Xia, L., Zou, D., Zhang, Y.S., Sang, J., Li, M.W., Zhang, Y., Wang, P., Gao, Q.W., Liang, F., Li, R.J., Liu, L., Cao, J., Abbasi, A.A., Shireen, H., Li, Z., Xiong, Z., Jiang, M.Y., Guo, T.K., Li, Z.H., Zhang, H., Ma, L., Gao, R., Zhang, T., Li, W.L., Zhang, X.Q., Lan, L., Zhai, S., Zhang, Y.P., Wang, G.D., Wang, Z.N., Xue, Y.B., Sun, Y.B., Yu, L., Sun, M.Y., Chen, H.X., Hu, H., Guo, A.Y., Lin, S.F., Xue, Y., Wang, C.W., Ning, W.S., Zhang, Y., Luo, H., Gao, F., Guo, Y.P., Zhang, Q., Zhou, J.Q., Huang, Z., Cui, Q.H., Miao, Y.R., Ruan, C., Yuan, C.H., Chen, M., Jinpu, J., Gao, G., Xu, H.D., Li, Y.M., Li, C.Y., Tang, Q., Peng, D., Deng, W.K., Members, B.D.C., 2019a. Database resources of the BIG Data Center in 2019. Nucleic Acids Research 47, D8–D14
CrossRef Google scholar
[65]
Zhang, Z.J., Deng, Y., Feng, K., Cai, W.W., Li, S.Z., Yin, H.Q., Xu, M.Y., Ning, D.L., Qu, Y.Y., 2019b. Deterministic assembly and diversity gradient altered the biofilm community performances of bioreactors. Environmental Science & Technology 53, 1315–1324
CrossRef Google scholar
[66]
Zhou, J.Z., Deng, Y., Shen, L.N., Wen, C.Q., Yan, Q.Y., Ning, D.L., Qin, Y.J., Xue, K., Wu, L.Y., He, Z.L., Voordeckers, J.W., Van Nostrand, J.D., Buzzard, V., Michaletz, S.T., Enquist, B.J., Weiser, M.D., Kaspari, M., Waide, R., Yang, Y.F., Brown, J.H., 2016. Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications 7, 12083
CrossRef Google scholar
[67]
Zhou, J.Z., Wu, L.Y., Deng, Y., Zhi, X.Y., Jiang, Y.H., Tu, Q.C., Xie, J.P., Van Nostrand, J.D., He, Z.L., Yang, Y.F., 2011. Reproducibility and quantitation of amplicon sequencing-based detection. ISME Journal 5, 1303–1313
CrossRef Google scholar

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

This study was supported by the National Nature Science Foundation of China (NSFC Grant No. U1906223), the National Key Research and Development Program (Grant No. 2019YFC1905001). The authors are very grateful to Dr. James Walter Voordeckers for careful edition on the final version. We thank the convenience provided by Restoration Ecology Experimental Demonstration Research Station of Institute of Botany, CAS.

Electronic supplementary material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s42832-021-0111-5 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2713 KB)

Accesses

Citations

Detail

Sections
Recommended

/