Assessment of microbial α-diversity in one meter squared topsoil

Shuzhen Li , Xiongfeng Du , Kai Feng , Yueni Wu , Qing He , Zhujun Wang , Yangying Liu , Danrui Wang , Xi Peng , Zhaojing Zhang , Arthur Escalas , Yuanyuan Qu , Ye Deng

Soil Ecology Letters ›› 2022, Vol. 4 ›› Issue (3) : 224 -236.

PDF (2713KB)
Soil Ecology Letters ›› 2022, Vol. 4 ›› Issue (3) : 224 -236. DOI: 10.1007/s42832-021-0111-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Assessment of microbial α-diversity in one meter squared topsoil

Author information +
History +
PDF (2713KB)

Abstract

• Roughly 15 919 to 56 985 prokaryotic species inhabited in 1 m2 grassland topsoil.

• Three clustering tools, including DADA2, UPARSE and Deblur showed huge differences.

• Nearly 500 000 sequences were required to catch 50% species.

• Insufficient sequencing depth greatly affected observed and estimated richness.

• Higher order of Hill numbers reached saturation with fewer than 100 000 sequences.

Due to the tremendous diversity of microbial organisms in topsoil, the estimation of saturated richness in a belowground ecosystem is still challenging. Here, we intensively surveyed the 16S rRNA gene in four 1 m2 sampling quadrats in a typical grassland, with 141 biological or technical replicates generating over 11 million sequences per quadrat. Through these massive data sets and using both non-asymptotic extrapolation and non-parametric asymptotic approaches, results revealed that roughly 15 919±193 27 193±1076 and 56 985±2347 prokaryotic species inhabited in 1 m2 topsoil, classifying by DADA2, UPARSE (97% cutoff) and Deblur, respectively, and suggested a huge difference among these clustering tools. Nearly 500 000 sequences were required to catch 50% species in 1 m2, while any estimator based on 500 000 sequences would still lose about a third of total richness. Insufficient sequencing depth will greatly underestimate both observed and estimated richness. At least ~911 000, ~3 461 000, and ~1 878 000 sequences were needed for DADA2, UPARSE, and Deblur, respectively, to catch 80% species in 1 m2 topsoil, and the numbers of sequences would be nearly twice to three times on this basis to cover 90% richness. In contrast, α-diversity indexes characterized by higher order of Hill numbers, including Shannon entropy and inverse Simpson index, reached saturation with fewer than 100 000 sequences, suggesting sequencing depth could be varied greatly when focusing on exploring different α-diversity characteristics of a microbial community. Our findings were fundamental for microbial studies that provided benchmarks for the extending surveys in large scales of terrestrial ecosystems.

Graphical abstract

Keywords

Grassland / Topsoil / Prokaryote / Richness / α-diversity / Hill number

Cite this article

Download citation ▾
Shuzhen Li, Xiongfeng Du, Kai Feng, Yueni Wu, Qing He, Zhujun Wang, Yangying Liu, Danrui Wang, Xi Peng, Zhaojing Zhang, Arthur Escalas, Yuanyuan Qu, Ye Deng. Assessment of microbial α-diversity in one meter squared topsoil. Soil Ecology Letters, 2022, 4(3): 224-236 DOI:10.1007/s42832-021-0111-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alberdi, A., Gilbert, M.T.P., 2019. A guide to the application of Hill numbers to DNA-based diversity analyses. Molecular Ecology Resources 19, 804–817

[2]

Amir, A., McDonald, D., Navas-Molina, J.A., Kopylova, E., Morton, J.T., Xu, Z.Z., Kightley, E.P., Thompson, L.R., Hyde, E.R., Gonzalez, A., Knight, R., 2017. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191–e16

[3]

Balint, M., Bahram, M., Eren, A.M., Faust, K., Fuhrman, J.A., Lindahl, B., O’Hara, R.B., Opik, M., Sogin, M.L., Unterseher, M., Tedersoo, L., 2016. Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiology Reviews 40, 686–700

[4]

Bao, S., 2000. Soil and Agricultural Chemistry Analysis. China Agricultural Press, Beijing.

[5]

Bressan, M., Gattin, I.T., Desaire, S., Castel, L., Gangneux, C., Laval, K., 2015. A rapid flow cytometry method to assess bacterial abundance in agricultural soil. Applied Soil Ecology 88, 60–68

[6]

Bunge, J., Epstein, S.S., Peterson, D.G., 2006. Comment on “Computational improvements reveal great bacterial diversity and high metal toxicity in soil”. Science 313, 918c

[7]

Bunge, J., Willis, A., Walsh, F., 2014. Estimating the number of species in microbial diversity studies. Annual Review of Statistics and Its Application 1, 427–445

[8]

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13, 581–583

[9]

Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J.A., Smith, G., Knight, R., 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal 6, 1621–1624

[10]

Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America 108, 4516–4522

[11]

Chao, A., 1987. Estimating the population-size for capture recapture data with unequal catchability. Biometrics 43, 783–791

[12]

Chao, A., Chazdon, R.L., Colwell, R.K., Shen, T.J., 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters 8, 148–159

[13]

Chao, A., Chiu, C.-H., 2016. Nonparametric Estimation and Comparison of Species Richness. 1–11.

[14]

Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., Ellison, A.M., 2014a. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 45–67

[15]

Chao, A., Jost, L., 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547

[16]

Chao, A., Jost, L., 2015. Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution 6, 873–882

[17]

Chao, A.N., Chiu, C.H., Jost, L., 2014b. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics 45, 297–324

[18]

Chazdon, R.L., Colwell, R.K., Denslow, J.S., Guariguata, M.R., 1998. Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of northeastern Costa Rica. Forest Biodiversity Research. Monitoring and Modeling 20, 285–309.

[19]

Chiu, C.H., Chao, A., 2016. Estimating and comparing microbial diversity in the presence of sequencing errors. PeerJ 4, e1634

[20]

Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.Y., Mao, C.X., Chazdon, R.L., Longino, J.T., 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5, 3–21

[21]

Colwell, R.K., Coddington, J.A., 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 345, 101–118

[22]

Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-Gonzalez, A., Eldridge, D.J., Bardgett, R.D., Maestre, F.T., Singh, B.K., Fierer, N., 2018. A global atlas of the dominant bacteria found in soil. Science 359, 320–325

[23]

Deng, Y., Ning, D.L., Qin, Y.J., Xue, K., Wu, L.Y., He, Z.L., Yin, H.Q., Liang, Y.T., Buzzard, V., Michaletz, S.T., Zhou, J.Z., 2018. Spatial scaling of forest soil microbial communities across a temperature gradient. Environmental Microbiology 20, 3504–3513

[24]

Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996–998

[25]

Ellison, A.M., 2010. Partitioning diversity. Ecology 91, 1962–1963

[26]

Feng, K., Zhang, Z.J., Cai, W.W., Liu, W.Z., Xu, M.Y., Yin, H.Q., Wang, A.J., He, Z.L., Deng, Y., 2017. Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology 26, 6170–6182

[27]

Gans, J., Wolinsky, M., Dunbar, J., 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390

[28]

Ginestet, C., 2011. ggplot2: Elegant Graphics for Data Analysis. Journal of the Royal Statistical Society Series a-Statistics in Society 174, 245–245.

[29]

Gohl, D.M., Vangay, P., Garbe, J., MacLean, A., Hauge, A., Becker, A., Gould, T.J., Clayton, J.B., Johnson, T.J., Hunter, R., Knights, D., Beckman, K.B., 2016. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nature Biotechnology 34, 942–949

[30]

Gotelli, N.J., Colwell, R.K., 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4, 379–391

[31]

Haegeman, B., Hamelin, J., Moriarty, J., Neal, P., Dushoff, J., Weitz, J.S., 2013. Robust estimation of microbial diversity in theory and in practice. ISME Journal 7, 1092–1101

[32]

Heltshe, J.F., Forrester, N.E., 1983. Estimating species richness using the Jackknife procedure. Biometrics 39, 1–11

[33]

Hill, M.O., 1973. Diversity and evenness: A unifying notation and its consequences. Ecology 54, 427–432

[34]

Hsieh, T.C., Ma, K.H., Chao, A., 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7, 1451–1456

[35]

Hu, Y.J., Veresoglou, S.D., Tedersoo, L., Xu, T.L., Ge, T.D., Liu, L., Chen, Y.L., Hao, Z.P., Su, Y.R., Rillig, M.C., Chen, B.D., 2019. Contrasting latitudinal diversity and co-occurrence patterns of soil fungi and plants in forest ecosystems. Soil Biology & Biochemistry 131, 100–110

[36]

Hugerth, L.W., Andersson, A.F., 2017. Analysing microbial community composition through amplicon sequencing: From sampling to hypothesis testing. Frontiers in Microbiology 8, 1561

[37]

Kang, S., Rodrigues, J.L.M., Ng, J.P., Gentry, T.J., 2016. Hill number as a bacterial diversity measure framework with high-throughput sequence data. Scientific Reports 6, 38263

[38]

Knight, R., Vrbanac, A., Taylor, B.C., Aksenov, A., Callewaert, C., Debelius, J., Gonzalez, A., Kosciolek, T., McCall, L.I., McDonald, D., Melnik, A.V., Morton, J.T., Navas, J., Quinn, R.A., Sanders, J.G., Swafford, A.D., Thompson, L.R., Tripathi, A., Xu, Z.J.Z., Zaneveld, J.R., Zhu, Q.Y., Caporaso, J.G., Dorrestein, P.C., 2018. Best practices for analysing microbiomes. Nature Reviews. Microbiology 16, 410–422

[39]

Kong, Y., 2011. Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98, 152–153

[40]

Lee, S.M., Chao, A., 1994. Estimating population-size via sample coverage for closed capture-recapture models. Biometrics 50, 88–97

[41]

Li, S., Deng, Y., Du, X., Feng, K., Wu, Y., He, Q., Wang, Z., Liu, Y., Wang, D., Peng, X., Zhang, Z., Escalas, A., Qu, Y., 2021. Sampling cores and sequencing depths affected the measurement of microbial diversity in soil quadrats. Science of the Total Environment 767, 144966

[42]

Locey, K.J., Lennon, J.T., 2016. Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences of the United States of America 113, 5970–5975

[43]

Magoc, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England) 27, 2957–2963

[44]

Mao, C.X., Colwell, R.K., 2005. Estimation of species richness: Mixture models, the role of rare species, and inferential challenges. Ecology 86, 1143–1153

[45]

Nguyen, N.H., Smith, D., Peay, K., Kennedy, P., 2015. Parsing ecological signal from noise in next generation amplicon sequencing. New Phytologist 205, 1389–1393

[46]

O’Hara, R.B., 2005. Species richness estimators: how many species can dance on the head of a pin? Journal of Animal Ecology 74, 375–386

[47]

Rajakaruna, H., Drake, D.A.R., Chan, F.T., Bailey, S.A., 2016. Optimizing performance of nonparametric species richness estimators under constrained sampling. Ecology and Evolution 6, 7311–7322

[48]

Roesch, L.F., Fulthorpe, R.R., Riva, A., Casella, G., Hadwin, A.K.M., Kent, A.D., Daroub, S.H., Camargo, F.A.O., Farmerie, W.G., Triplett, E.W., 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME Journal 1, 283–290

[49]

Ru, J.Y., Zhou, Y.Q., Hui, D.F., Zheng, M.M., Wan, S.Q., 2018. Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland. Global Change Biology 24, 1001–1011

[50]

Schloss, P.D., Handelsman, J., 2006. Toward a census of bacteria in soil. PLoS Computational Biology 2, 786–793

[51]

Shannon, C.E., 1948. A mathematical theory of communication. Bell System Technical Journal 27, 379–423

[52]

Simpson, E.H., 1949. Measurement of Diversity. Nature 163, 688–688

[53]

Tedersoo, L., Bahram, M., Polme, S., Koljalg, U., Yorou, N.S., Wijesundera, R., Ruiz, L.V., Vasco-Palacios, A.M., Thu, P.Q., Suija, A., Smith, M.E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Poldmaa, K., Piepenbring, M., Phosri, C., Peterson, M., Parts, K., Partel, K., Otsing, E., Nouhra, E., Njouonkou, A.L., Nilsson, R.H., Morgado, L.N., Mayor, J., May, T.W., Majuakim, L., Lodge, D.J., Lee, S.S., Larsson, K.H., Kohout, P., Hosaka, K., Hiiesalu, I., Henkel, T.W., Harend, H., Guo, L.D., Greslebin, A., Grelet, G., Geml, J., Gates, G., Dunstan, W., Dunk, C., Drenkhan, R., Dearnaley, J., De Kesel, A., Dang, T., Chen, X., Buegger, F., Brearley, F.Q., Bonito, G., Anslan, S., Abell, S., Abarenkov, K., 2014. Global diversity and geography of soil fungi. Science 346, 1078

[54]

Torsvik, V., Goksoyr, J., Daae, F.L., 1990. High diversity in DNA of soil bacteria. Applied and Environmental Microbiology 56, 782–787

[55]

Tu, Q.C., Deng, Y., Yan, Q.Y., Shen, L.N., Lin, L., He, Z.L., Wu, L.Y., Van Nostrand, J.D., Buzzard, V., Michaletz, S.T., Enquist, B.J., Weiser, M.D., Kaspari, M., Waide, R.B., Brown, J.H., Zhou, J.Z., 2016. Biogeographic patterns of soil diazotrophic communities across six forests in the North America. Molecular Ecology 25, 2937–2948

[56]

Vavrek, M.J., 2011. fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontologia Electronica 14:1T

[57]

Volkov, I., Banavar, J.R., Maritan, A., 2006. Comment on “Computational improvements reveal great bacterial diversity and high metal toxicity in soil”. Science 313, 918

[58]

Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73, 5261–5267

[59]

Wang, Y.Q., Song, F.H., Zhu, J.W., Zhang, S.S., Yang, Y.D., Chen, T.T., Tang, B.X., Dong, L.L., Ding, N., Zhang, Q., Bai, Z.X., Dong, X.N., Chen, H.X., Sun, M.Y., Zhai, S., Sun, Y.B., Yu, L., Lan, L., Xiao, J.F., Fang, X.D., Lei, H.X., Zhang, Z., Zhao, W.M., 2017. GSA: Genome Sequence Archive. Genomics, Proteomics & Bioinformatics 15, 14–18

[60]

Wu, L.W., Ning, D.L., Zhang, B., Li, Y., Zhang, P., Shan, X.Y., Zhang, Q.T., Brown, M., Li, Z.X., Van Nostrand, J.D., Ling, F.Q., Xiao, N.J., Zhang, Y., Vierheilig, J., Wells, G.F., Yang, Y.F., Deng, Y., Tu, Q.C., Wang, A.J., Zhang, T., He, Z.L., Keller, J., Nielsen, P.H., Alvarez, P.J.J., Criddle, C.S., Wagner, M., Tiedje, J.M., He, Q., Curtis, T.P., Stahl, D.A., Alvarez-Cohen, L., Rittmann, B.E., Wen, X.H., Zhou, J.Z., Acevedo, D., Agullo-Barcelo, M., Andersen, G.L., de Araujo, J.C., Boehnke, K., Bond, P., Bott, C.B., Bovio, P., Brewster, R.K., Bux, F., Cabezas, A., Cabrol, L., Chen, S., Etchebehere, C., Ford, A., Frigon, D., Gomez, J.S., Griffin, J.S., Gu, A.Z., Habagil, M., Hale, L., Hardeman, S.D., Harmon, M., Horn, H., Hu, Z.Q., Jauffur, S., Johnson, D.R., Keucken, A., Kumari, S., Leal, C.D., Lebrun, L.A., Lee, J., Lee, M., Lee, Z.M.P., Li, M.Y., Li, X., Liu, Y., Luthy, R.G., Mendonca-Hagler, L.C., de Menezes, F.G.R., Meyers, A.J., Mohebbi, A., Oehmen, A., Palmer, A., Parameswaran, P., Park, J., Patsch, D., Reginatto, V., de los Reyes, F.L., Robles, A.N., Rossetti, S., Sidhu, J., Sloan, W.T., Smith, K., de Sousa, O.V., Stephens, K., Tian, R.M., Tooker, N.B., Vasconcelos, D.D., Wakelin, S., Wang, B., Weaver, J.E., West, S., Wilmes, P., Woo, S.G., Wu, J.H., Wu, L.Y., Xi, C.W., Xu, M.Y., Yan, T., Yang, M., Young, M., Yue, H.W., Zhang, Q., Zhang, W., Zhang, Y., Zhou, H.D., Brown, M., Consortium, G.W.M., 2019. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology 4, 1183–1195

[61]

Zhang, X.M., Johnston, E.R., Li, L.H., Konstantinidis, K.T., Han, X.G., 2017a. Experimental warming reveals positive feedbacks to climate change in the Eurasian Steppe. ISME Journal 11, 885–895

[62]

Zhang, X.X., Zhang, R.J., Gao, J.S., Wang, X.C., Fan, F.L., Ma, X.T., Yin, H.Q., Zhang, C.W., Feng, K., Deng, Y., 2017b. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biology & Biochemistry 104, 208–217

[63]

Zhang, Z., Qu, Y., Li, S., Feng, K., Wang, S., Cai, W., Liang, Y., Li, H., Xu, M., Yin, H., Deng, Y., 2017c. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Scientific Reports 7, 4837

[64]

Zhang, Z., Zhao, W.M., Xiao, J.F., Bao, Y.M., Wang, F., Hao, L.L., Zhu, J.W., Chen, T.T., Zhang, S.S., Chen, X., Tang, B.X., Zhou, Q., Wang, Z.H., Dong, L.L., Wang, Y.Q., Ma, Y.K., Zhang, Z.W., Wang, Z., Chen, M.L., Tian, D.M., Li, C.P., Teng, X.F., Du, Z.L., Yuan, N., Zeng, J.Y., Wang, J.Y., Shi, S., Zhang, Y.D., Wang, Q., Pan, M.Y., Qian, Q.H., Song, S.H., Niu, G.Y., Li, M., Xia, L., Zou, D., Zhang, Y.S., Sang, J., Li, M.W., Zhang, Y., Wang, P., Gao, Q.W., Liang, F., Li, R.J., Liu, L., Cao, J., Abbasi, A.A., Shireen, H., Li, Z., Xiong, Z., Jiang, M.Y., Guo, T.K., Li, Z.H., Zhang, H., Ma, L., Gao, R., Zhang, T., Li, W.L., Zhang, X.Q., Lan, L., Zhai, S., Zhang, Y.P., Wang, G.D., Wang, Z.N., Xue, Y.B., Sun, Y.B., Yu, L., Sun, M.Y., Chen, H.X., Hu, H., Guo, A.Y., Lin, S.F., Xue, Y., Wang, C.W., Ning, W.S., Zhang, Y., Luo, H., Gao, F., Guo, Y.P., Zhang, Q., Zhou, J.Q., Huang, Z., Cui, Q.H., Miao, Y.R., Ruan, C., Yuan, C.H., Chen, M., Jinpu, J., Gao, G., Xu, H.D., Li, Y.M., Li, C.Y., Tang, Q., Peng, D., Deng, W.K., Members, B.D.C., 2019a. Database resources of the BIG Data Center in 2019. Nucleic Acids Research 47, D8–D14

[65]

Zhang, Z.J., Deng, Y., Feng, K., Cai, W.W., Li, S.Z., Yin, H.Q., Xu, M.Y., Ning, D.L., Qu, Y.Y., 2019b. Deterministic assembly and diversity gradient altered the biofilm community performances of bioreactors. Environmental Science & Technology 53, 1315–1324

[66]

Zhou, J.Z., Deng, Y., Shen, L.N., Wen, C.Q., Yan, Q.Y., Ning, D.L., Qin, Y.J., Xue, K., Wu, L.Y., He, Z.L., Voordeckers, J.W., Van Nostrand, J.D., Buzzard, V., Michaletz, S.T., Enquist, B.J., Weiser, M.D., Kaspari, M., Waide, R., Yang, Y.F., Brown, J.H., 2016. Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications 7, 12083

[67]

Zhou, J.Z., Wu, L.Y., Deng, Y., Zhi, X.Y., Jiang, Y.H., Tu, Q.C., Xie, J.P., Van Nostrand, J.D., He, Z.L., Yang, Y.F., 2011. Reproducibility and quantitation of amplicon sequencing-based detection. ISME Journal 5, 1303–1313

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2713KB)

Supplementary files

SEL-00111-OF-YD_suppl_1

1637

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/