Rhizosphere bacteria degrade auxin to promote root growth
Baoyuan Qu
Rhizosphere bacteria degrade auxin to promote root growth
[1] |
Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F.O., Amann, R., Eickhorst, T., Schulze-Lefert, P., 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95
CrossRef
Pubmed
Google scholar
|
[2] |
Castrillo, G., Teixeira, P.J., Paredes, S.H., Law, T.F., de Lorenzo, L., Feltcher, M.E., Finkel, O.M., Breakfield, N.W., Mieczkowski, P., Jones, C.D., Paz-Ares, J., Dangl, J.L., 2017. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518
CrossRef
Pubmed
Google scholar
|
[3] |
Chen, Y., Wang, J., Yang, N., Wen, Z., Sun, X., Chai, Y., Ma, Z., 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature Communications 9, 3429–3442
CrossRef
Pubmed
Google scholar
|
[4] |
Cherif-Silini, H., Thissera, B., Bouket, A.C., Saadaoui, N., Silini, A., Eshelli, M., Alenezi, F.N., Vallat, A., Luptakova, L., Yahiaoui, B., Cherrad, S., Vacher, S., Rateb, M.E., Belbahri, L., 2019. Durum wheat stress tolerance induced by endophyte Pantoea agglomerans with genes contributing to plant functions and secondary metabolite arsenal. International Journal of Molecular Sciences 20, 3989–4024
CrossRef
Pubmed
Google scholar
|
[5] |
Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., Hacquard, S., 2018. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983.e14
CrossRef
Pubmed
Google scholar
|
[6] |
Evans, M.L., Ishikawa, H., Estelle, M.A., 1994. Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild‐type and auxin‐response mutants. Planta 194, 215–222
CrossRef
Google scholar
|
[7] |
Finkel, O.M., Salas-González, I., Castrillo, G., Conway, J.M., Law, T.F., Teixeira, P.J.P.L., Wilson, E.D., Fitzpatrick, C.R., Jones, C.D., Dangl, J.L., 2020. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108
CrossRef
Pubmed
Google scholar
|
[8] |
Finkel, O.M., Salas-González, I., Castrillo, G., Spaepen, S., Law, T.F., Teixeira, P.J.P.L., Jones, C.D., Dangl, J.L., 2019. The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biology 17, e3000534
CrossRef
Pubmed
Google scholar
|
[9] |
Huang, A.C., Jiang, T., Liu, Y.X., Bai, Y.C., Reed, J., Qu, B., Goossens, A., Nützmann, H.W., Bai, Y., Osbourn, A., 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364, eaau6389
CrossRef
Pubmed
Google scholar
|
[10] |
Kwak, M.J., Kong, H.G., Choi, K., Kwon, S.K., Song, J.Y., Lee, J., Lee, P.A., Choi, S.Y., Seo, M., Lee, H.J., Jung, E.J., Park, H., Roy, N., Kim, H., Lee, M.M., Rubin, E.M., Lee, S.W., Kim, J.F., 2018. Author Correction: Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology 36, 1117
CrossRef
Pubmed
Google scholar
|
[11] |
Lebeis, S.L., Paredes, S.H., Lundberg, D.S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., Glavina del Rio, T., Jones, C.D., Tringe, S.G., Dangl, J.L., 2015. PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864
CrossRef
Pubmed
Google scholar
|
[12] |
Leveau, J.H., Gerards, S., 2008. Discovery of a bacterial gene cluster for catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiology Ecology 65, 238–250
CrossRef
Pubmed
Google scholar
|
[13] |
Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Del Rio, T.G., Edgar, R.C., Eickhorst, T., Ley, R.E., Hugenholtz, P., Tringe, S.G., Dangl, J.L., 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90
CrossRef
Pubmed
Google scholar
|
[14] |
Takase, T., Nakazawa, M., Ishikawa, A., Kawashima, M., Ichikawa, T., Takahashi, N., Shimada, H., Manabe, K., Matsui, M., 2004. ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant Journal 37, 471–483
CrossRef
Pubmed
Google scholar
|
[15] |
Uchida, N., Takahashi, K., Iwasaki, R., Yamada, R., Yoshimura, M., Endo, T.A., Kimura, S., Zhang, H., Nomoto, M., Tada, Y., Kinoshita, T., Itami, K., Hagihara, S., Torii, K.U., 2018. Chemical hijacking of auxin signaling with an engineered auxin-TIR1 pair. Nature Chemical Biology 14, 299–305
CrossRef
Pubmed
Google scholar
|
[16] |
Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., Nasrulhaq Boyce, A., 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability–A review. Molecules (Basel, Switzerland) 21, 573–589
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |