Rhizosphere bacteria degrade auxin to promote root growth

Baoyuan Qu

PDF(184 KB)
PDF(184 KB)
Soil Ecology Letters ›› 2022, Vol. 4 ›› Issue (2) : 93-96. DOI: 10.1007/s42832-021-0090-6
COMMENTARY
COMMENTARY

Rhizosphere bacteria degrade auxin to promote root growth

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Baoyuan Qu. Rhizosphere bacteria degrade auxin to promote root growth. Soil Ecology Letters, 2022, 4(2): 93‒96 https://doi.org/10.1007/s42832-021-0090-6

References

[1]
Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F.O., Amann, R., Eickhorst, T., Schulze-Lefert, P., 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95
CrossRef Pubmed Google scholar
[2]
Castrillo, G., Teixeira, P.J., Paredes, S.H., Law, T.F., de Lorenzo, L., Feltcher, M.E., Finkel, O.M., Breakfield, N.W., Mieczkowski, P., Jones, C.D., Paz-Ares, J., Dangl, J.L., 2017. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518
CrossRef Pubmed Google scholar
[3]
Chen, Y., Wang, J., Yang, N., Wen, Z., Sun, X., Chai, Y., Ma, Z., 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature Communications 9, 3429–3442
CrossRef Pubmed Google scholar
[4]
Cherif-Silini, H., Thissera, B., Bouket, A.C., Saadaoui, N., Silini, A., Eshelli, M., Alenezi, F.N., Vallat, A., Luptakova, L., Yahiaoui, B., Cherrad, S., Vacher, S., Rateb, M.E., Belbahri, L., 2019. Durum wheat stress tolerance induced by endophyte Pantoea agglomerans with genes contributing to plant functions and secondary metabolite arsenal. International Journal of Molecular Sciences 20, 3989–4024
CrossRef Pubmed Google scholar
[5]
Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., Hacquard, S., 2018. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983.e14
CrossRef Pubmed Google scholar
[6]
Evans, M.L., Ishikawa, H., Estelle, M.A., 1994. Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild‐type and auxin‐response mutants. Planta 194, 215–222
CrossRef Google scholar
[7]
Finkel, O.M., Salas-González, I., Castrillo, G., Conway, J.M., Law, T.F., Teixeira, P.J.P.L., Wilson, E.D., Fitzpatrick, C.R., Jones, C.D., Dangl, J.L., 2020. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108
CrossRef Pubmed Google scholar
[8]
Finkel, O.M., Salas-González, I., Castrillo, G., Spaepen, S., Law, T.F., Teixeira, P.J.P.L., Jones, C.D., Dangl, J.L., 2019. The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biology 17, e3000534
CrossRef Pubmed Google scholar
[9]
Huang, A.C., Jiang, T., Liu, Y.X., Bai, Y.C., Reed, J., Qu, B., Goossens, A., Nützmann, H.W., Bai, Y., Osbourn, A., 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364, eaau6389
CrossRef Pubmed Google scholar
[10]
Kwak, M.J., Kong, H.G., Choi, K., Kwon, S.K., Song, J.Y., Lee, J., Lee, P.A., Choi, S.Y., Seo, M., Lee, H.J., Jung, E.J., Park, H., Roy, N., Kim, H., Lee, M.M., Rubin, E.M., Lee, S.W., Kim, J.F., 2018. Author Correction: Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology 36, 1117
CrossRef Pubmed Google scholar
[11]
Lebeis, S.L., Paredes, S.H., Lundberg, D.S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., Glavina del Rio, T., Jones, C.D., Tringe, S.G., Dangl, J.L., 2015. PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864
CrossRef Pubmed Google scholar
[12]
Leveau, J.H., Gerards, S., 2008. Discovery of a bacterial gene cluster for catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiology Ecology 65, 238–250
CrossRef Pubmed Google scholar
[13]
Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Del Rio, T.G., Edgar, R.C., Eickhorst, T., Ley, R.E., Hugenholtz, P., Tringe, S.G., Dangl, J.L., 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90
CrossRef Pubmed Google scholar
[14]
Takase, T., Nakazawa, M., Ishikawa, A., Kawashima, M., Ichikawa, T., Takahashi, N., Shimada, H., Manabe, K., Matsui, M., 2004. ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant Journal 37, 471–483
CrossRef Pubmed Google scholar
[15]
Uchida, N., Takahashi, K., Iwasaki, R., Yamada, R., Yoshimura, M., Endo, T.A., Kimura, S., Zhang, H., Nomoto, M., Tada, Y., Kinoshita, T., Itami, K., Hagihara, S., Torii, K.U., 2018. Chemical hijacking of auxin signaling with an engineered auxin-TIR1 pair. Nature Chemical Biology 14, 299–305
CrossRef Pubmed Google scholar
[16]
Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., Nasrulhaq Boyce, A., 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability–A review. Molecules (Basel, Switzerland) 21, 573–589
CrossRef Pubmed Google scholar

Acknowledgments

This work was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (Precision Seed Design and Breeding, XDA24020104), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (QYZDB-SSW-SMC021), the National Natural Science Foundation of China (31772400, 31761143017, 31801945, 31701997).

Declaration of Interests

The author declare no competing interests.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(184 KB)

Accesses

Citations

Detail

Sections
Recommended

/