Rhizosphere bacteria degrade auxin to promote root growth

Baoyuan Qu

Soil Ecology Letters ›› 2022, Vol. 4 ›› Issue (2) : 93 -96.

PDF (184KB)
Soil Ecology Letters ›› 2022, Vol. 4 ›› Issue (2) : 93 -96. DOI: 10.1007/s42832-021-0090-6
COMMENTARY
COMMENTARY

Rhizosphere bacteria degrade auxin to promote root growth

Author information +
History +
PDF (184KB)

Graphical abstract

Cite this article

Download citation ▾
Baoyuan Qu. Rhizosphere bacteria degrade auxin to promote root growth. Soil Ecology Letters, 2022, 4(2): 93-96 DOI:10.1007/s42832-021-0090-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F.O., Amann, R., Eickhorst, T., Schulze-Lefert, P., 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95

[2]

Castrillo, G., Teixeira, P.J., Paredes, S.H., Law, T.F., de Lorenzo, L., Feltcher, M.E., Finkel, O.M., Breakfield, N.W., Mieczkowski, P., Jones, C.D., Paz-Ares, J., Dangl, J.L., 2017. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518

[3]

Chen, Y., Wang, J., Yang, N., Wen, Z., Sun, X., Chai, Y., Ma, Z., 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature Communications 9, 3429–3442

[4]

Cherif-Silini, H., Thissera, B., Bouket, A.C., Saadaoui, N., Silini, A., Eshelli, M., Alenezi, F.N., Vallat, A., Luptakova, L., Yahiaoui, B., Cherrad, S., Vacher, S., Rateb, M.E., Belbahri, L., 2019. Durum wheat stress tolerance induced by endophyte Pantoea agglomerans with genes contributing to plant functions and secondary metabolite arsenal. International Journal of Molecular Sciences 20, 3989–4024

[5]

Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., Hacquard, S., 2018. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983.e14

[6]

Evans, M.L., Ishikawa, H., Estelle, M.A., 1994. Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild‐type and auxin‐response mutants. Planta 194, 215–222

[7]

Finkel, O.M., Salas-González, I., Castrillo, G., Conway, J.M., Law, T.F., Teixeira, P.J.P.L., Wilson, E.D., Fitzpatrick, C.R., Jones, C.D., Dangl, J.L., 2020. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108

[8]

Finkel, O.M., Salas-González, I., Castrillo, G., Spaepen, S., Law, T.F., Teixeira, P.J.P.L., Jones, C.D., Dangl, J.L., 2019. The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biology 17, e3000534

[9]

Huang, A.C., Jiang, T., Liu, Y.X., Bai, Y.C., Reed, J., Qu, B., Goossens, A., Nützmann, H.W., Bai, Y., Osbourn, A., 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364, eaau6389

[10]

Kwak, M.J., Kong, H.G., Choi, K., Kwon, S.K., Song, J.Y., Lee, J., Lee, P.A., Choi, S.Y., Seo, M., Lee, H.J., Jung, E.J., Park, H., Roy, N., Kim, H., Lee, M.M., Rubin, E.M., Lee, S.W., Kim, J.F., 2018. Author Correction: Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology 36, 1117

[11]

Lebeis, S.L., Paredes, S.H., Lundberg, D.S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., Glavina del Rio, T., Jones, C.D., Tringe, S.G., Dangl, J.L., 2015. PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864

[12]

Leveau, J.H., Gerards, S., 2008. Discovery of a bacterial gene cluster for catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiology Ecology 65, 238–250

[13]

Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Del Rio, T.G., Edgar, R.C., Eickhorst, T., Ley, R.E., Hugenholtz, P., Tringe, S.G., Dangl, J.L., 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90

[14]

Takase, T., Nakazawa, M., Ishikawa, A., Kawashima, M., Ichikawa, T., Takahashi, N., Shimada, H., Manabe, K., Matsui, M., 2004. ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant Journal 37, 471–483

[15]

Uchida, N., Takahashi, K., Iwasaki, R., Yamada, R., Yoshimura, M., Endo, T.A., Kimura, S., Zhang, H., Nomoto, M., Tada, Y., Kinoshita, T., Itami, K., Hagihara, S., Torii, K.U., 2018. Chemical hijacking of auxin signaling with an engineered auxin-TIR1 pair. Nature Chemical Biology 14, 299–305

[16]

Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., Nasrulhaq Boyce, A., 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability–A review. Molecules (Basel, Switzerland) 21, 573–589

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (184KB)

2699

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/