Considerable impacts of litter inputs on soil nematode community composition in a young Acacia crassicapa plantation

Cancan Zhao , Yin Li , Chenlu Zhang , Yuan Miao , Mengzhou Liu , Wanlin Zhuang , Yuanhu Shao , Weixin Zhang , Shenglei Fu

Soil Ecology Letters ›› 2021, Vol. 3 ›› Issue (2) : 145 -155.

PDF (488KB)
Soil Ecology Letters ›› 2021, Vol. 3 ›› Issue (2) : 145 -155. DOI: 10.1007/s42832-021-0085-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Considerable impacts of litter inputs on soil nematode community composition in a young Acacia crassicapa plantation

Author information +
History +
PDF (488KB)

Abstract

• Nematodes was investigated in a young Acacia crassicapa plantation in southern China

• Both litter addition and root presence enhanced soil nematode abundance

• Litter addition significantly altered soil nematode community composition

• Root presence had a limited impact on nematode trophic group composition

Aboveground litter inputs and root exudates provide basal resources for soil communities, however, their relative contributions to soil food web are still not well understood. Here, we conducted a field manipulative experiment to differentiate the effects of litter inputs and living root on nematode community composition of surface and subsoils in a young Acacia crassicapa plantation in southern China. Our results showed that both litter addition and root presence significantly enhanced soil nematode abundance by 17.3% and 35.3%, respectively. Litter addition altered nematode trophic group composition, decreased fungivore to bacterivore ratio, and enhanced maturity index and structure index, which led to a bacterial-based energy channel and a more complex food web structure. However, root presence had a limited impact on the nematode community composition and ecological indices. Despite nematodes surface assembly, soil depth did not affect nematode trophic group composition or ecological index. Our findings highlight the importance of litter inputs in shaping soil nematode community structure and regulating soil energy channel.

Graphical abstract

Keywords

Litter addition / Root exudates / Nematode community composition / Soil depth / Nematode ecological index

Cite this article

Download citation ▾
Cancan Zhao, Yin Li, Chenlu Zhang, Yuan Miao, Mengzhou Liu, Wanlin Zhuang, Yuanhu Shao, Weixin Zhang, Shenglei Fu. Considerable impacts of litter inputs on soil nematode community composition in a young Acacia crassicapa plantation. Soil Ecology Letters, 2021, 3(2): 145-155 DOI:10.1007/s42832-021-0085-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allison, V.J., Yermakov, Z., Miller, R.M., Jastrow, J.D., Matamala, R., 2007. Using landscape and depth gradients to decouple the impact of correlated environmental variables on soil microbial community composition. Soil Biology & Biochemistry 39, 505–516

[2]

Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M., 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57, 233–266

[3]

Bardgett, R.D., Bowman, W.D., Kaufmann, R., Schmidt, S.K., 2005. A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution 20, 634–641

[4]

Bardgett, R.D., Mommer, L., de Vries, F.T., 2014. Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution 29, 692–699

[5]

Barker, K.R., 1985. Nematode extraction and bioassays, in: Barker, K.R., Carter, C.C., Sasser, J.N., eds., An advanced treatise on Meloidogyne. vol. 2. North Carolina State University Graphics, Raleigh, pp. 19–35. Methodology.

[6]

Bastow, J.L., 2011. Facilitation and predation structure a grassland detrital food web: the responses of soil nematodes to isopod processing of litter. Journal of Animal Ecology 80, 947–957

[7]

Bongers, T., 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14–19

[8]

Bongers, T., Ferris, H., 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution 14, 224–228

[9]

Briar, S.S., Culman, S.W., Young-Mathews, A., Jackson, L.E., Ferris, H., 2012. Nematode community responses to a moisture gradient and grazing along a restored riparian corridor. European Journal of Soil Biology 50, 32–38

[10]

Chen, H., Dai, Z., Veach, A.M., Zheng, J., Xu, J., Schadt, C.W., 2020b. Global meta-analyses show that conservation tillage practices promote soil fungal and bacterial biomass. Agriculture, Ecosystems & Environment 293, 106841

[11]

Chen, Y., Cao, J., He, X., Liu, T., Shao, Y., Zhang, C., Zhou, Q., Li, F., Mao, P., Tao, L., Liu, Z., Lin, Y., Zhou, L., Zhang, W., Fu, S., 2020a. Plant leaf litter plays a more important role than roots in maintaining earthworm communities in subtropical plantations. Soil Biology & Biochemistry 144, 107777

[12]

Chen, Y., Zhang, Y., Cao, J., Fu, S., Hu, S., Wu, J., Zhao, J., Liu, Z., 2019. Stand age and species traits alter the effects of understory removal on litter decomposition and nutrient dynamics in subtropical Eucalyptus plantations. Global Ecology and Conservation 20, e00693

[13]

De Long, J.R., Laudon, H., Blume-Werry, G., Kardol, P., 2016. Nematode community resistant to deep soil frost in boreal forest soils. Pedobiologia 59, 243–251

[14]

Eilers, K.G., Debenport, S., Anderson, S., Fierer, N., 2012. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology & Biochemistry 50, 58–65

[15]

Eisenhauer, N., Ferlian, O., Craven, D., Hines, J., Jochum, M., 2019. Ecosystem responses to exotic earthworm invasion in northern North American forests. Research Ideas and Outcomes 5, e34564

[16]

Eisenhauer, N., Lanoue, A., Strecker, T., Scheu, S., Steinauer, K., Thakur, M.P., Mommer, L., 2017. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports 7, 44641

[17]

Eisenhauer, N., Migunova, V.D., Ackermann, M., Ruess, L., Scheu, S., 2011. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland. PLoS One 6, e24087

[18]

Eisenhauer, N., Reich, P.B., 2012. Above- and below-ground plant inputs both fuel soil food webs. Soil Biology & Biochemistry 45, 156–160

[19]

Elfstrand, S., Lagerlöf, J., Hedlund, K., Mårtensson, A., 2008. Carbon routes from decomposing plant residues and living roots into soil food webs assessed with 13C labelling. Soil Biology & Biochemistry 40, 2530–2539

[20]

Ferris, H., Bongers, T., de Goede, R.G.M., 2001. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology 18, 13–29

[21]

Freschet, G.T., Cornwell, W.K., Wardle, D.A., Elumeeva, T.G., Liu, W., Jackson, B.G., Onipchenko, V.G., Soudzilovskaia, N.A., Tao, J., Cornelissen, J.H.C., 2013. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. Journal of Ecology 101, 943–952

[22]

Glavatska, O., Müller, K., Butenschoen, O., Schmalwasser, A., Kandeler, E., Scheu, S., Totsche, K.U., Ruess, L., 2017. Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by plant removal. PLoS One 12, e0180264

[23]

Gransee, A., Wittenmayer, L., 2000. Qualitative and quantitative analysis of water soluble root exudates in relation to plant species and development. Journal of Plant Nutrition and Soil Science 163, 381–385

[24]

Hsiao, C.J., Sassenrath, G.F., Zeglin, L.H., Hettiarachchi, G.M., Rice, C.W., 2018. Vertical changes of soil microbial properties in claypan soils. Soil Biology & Biochemistry 121, 154–164

[25]

Jones, D.L., Kemmitt, S.J., Wright, D., Cuttle, S.P., Bol, R., Edwards, A.C., 2005. Rapid intrinsic rates of amino acid biodegradation in soils are unaffected by agricultural management strategy. Soil Biology & Biochemistry 37, 1267–1275

[26]

Kalinkat, G., Brose, U., Rall, B.C., 2013. Habitat structure alters top-down control in litter communities. Oecologia 172, 877–887

[27]

Kaneda, S., Kaneko, N., 2011. Influence of Collembola on nitrogen mineralization varies with soil moisture content. Soil Science and Plant Nutrition 57, 40–49

[28]

Keith, A.M., Brooker, R.W., Osler, G.H.R., Chapman, S.J., Burslem, D.F.R.P., van der Wal, R., 2009. Strong impacts of belowground tree inputs on soil nematode trophic composition. Soil Biology & Biochemistry 41, 1060–1065

[29]

Kudrin, A.A., 2017. Effects of low quantities of added labile carbon on soil nematodes in intact forest soil microcosms. European Journal of Soil Biology 78, 29–37

[30]

Lazarova, S.S., de Goede, R.G.M., Peneva, V.K., Bongers, T., 2004. Spatial patterns of variation in the composition and structure of nematode communities in relation to different microhabitats: a case study of Quercus dalechampii Ten. forest. Soil Biology & Biochemistry 36, 701–712

[31]

Liu, J., Chen, Y., Du, C., Liu, X., Ma, Q., Zhang, X., Wang, D., 2019. Interactive effects of nitrogen addition and litter on soil nematodes in grassland. European Journal of Soil Science 70, 697–706

[32]

Malik, A.A., Chowdhury, S., Schlager, V., Oliver, A., Puissant, J., Vazquez, P.G.M., Jehmlich, N., von Bergen, M., Griffiths, R.I., Gleixner, G., 2016. Soil fungal:bacterial ratios are linked to altered carbon cycling. Frontiers in Microbiology 7, 1247

[33]

Moore, J.C., Berlow, E.L., Coleman, D.C., de Ruiter, P.C., Dong, Q., Hastings, A., Johnson, N.C., McCann, K.S., Melville, K., Morin, P.J., Nadelhoffer, K., Rosemond, A.D., Post, D.M., Sabo, J.L., Scow, K.M., Vanni, M.J., Wall, D.H., 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters 7, 584–600

[34]

Moradi, J., John, K., Vicentini, F., Veselá H., Vicena, J., Ardestani, M.M., Frouz, J., 2020. Vertical distribution of soil fauna and microbial community under two contrasting post mining chronosequences: Sites reclaimed by alder plantation and unreclaimed regrowth. Global Ecology and Conservation 23, e01165

[35]

Neher, D.A., Darby, B.J., 2009. General community indices that can be used for analysis of nematode assemblages, In: Wilson, M.J., Kakouli-Duarte, T., eds., Nematodes as Environmental Indicators. CABI, Wallingford, pp. 107–123.

[36]

Pausch, J., Hünninghaus, M., Kramer, S., Scharroba, A., Scheunemann, N., Butenschoen, O., Marhan, S., Bonkowski, M., Kandeler, E., Scheu, S., Kuzyakov, Y., Ruess, L., 2018. Carbon budgets of top- and subsoil food webs in an arable system. Pedobiologia 69, 29–33

[37]

Pollierer, M.M., Langel, R., Körner, C., Maraun, M., Scheu, S., 2007. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecology Letters 10, 729–736

[38]

Potapov, A.M., Goncharov, A.A., Semenina, E.E., Korotkevich, A.Y., Tsurikov, S.M., Rozanova, O.L., Anichkin, A.E., Zuev, A.G., Samoylova, E.S., Semenyuk, I.I., Yevdokimov, I.V., Tiunov, A.V., 2017. Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. European Journal of Soil Biology 82, 88–97

[39]

Rooney, N., McCann, K., Gellner, G., Moore, J.C., 2006. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269

[40]

Ruess, L., Ferris, H., 2004. Decomposition pathways and successional changes. Nematology Monographs & Perspectives 2, 547–556.

[41]

Ruf, A., Kuzyakov, Y., Lopatovskaya, O., 2006. Carbon fluxes in soil food webs of increasing complexity revealed by 14C labelling and 13C natural abundance. Soil Biology & Biochemistry 38, 2390–2400

[42]

Saj, S., Mikola, J., Ekelund, F., 2009. Species-specific effects of live roots and shoot litter on soil decomposer abundances do not forecast plant litter-nitrogen uptake. Oecologia 161, 331–341

[43]

Sauvadet, M., Chauvat, M., Cluzeau, D., Maron, P.A., Villenave, C., Bertrand, I., 2016. The dynamics of soil micro-food web structure and functions vary according to litter quality. Soil Biology & Biochemistry 95, 262–274

[44]

Sayer, E.J., 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews of the Cambridge Philosophical Society 81, 1–31

[45]

Scharroba, A., Kramer, S., Kandeler, E., Ruess, L., 2016. Spatial and temporal variation of resource allocation in an arable soil drives community structure and biomass of nematodes and their role in the micro-food web. Pedobiologia 59, 111–120

[46]

Shao, Y., Zhang, W., Eisenhauer, N., Liu, T., Xiong, Y., Liang, C., Fu, S., 2017. Nitrogen deposition cancels out exotic earthworm effects on plant-feeding nematode communities. Journal of Animal Ecology 86, 708–717

[47]

Sradnick, A., Oltmanns, M., Raupp, J., Joergensen, R.G., 2014. Microbial residue indices down the soil profile after long-term addition of farmyard manure and mineral fertilizer to a sandy soil. Geoderma 226–227, 79–84

[48]

Stone, M.M., DeForest, J.L., Plante, A.F., 2014. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil Biology & Biochemistry 75, 237–247

[49]

Sun, T., Wang, Y., Hui, D., Jing, X., Feng, W., 2020b. Soil properties rather than climate and ecosystem type control the vertical variations of soil organic carbon, microbial carbon, and microbial quotient. Soil Biology & Biochemistry 148, 107905

[50]

Sun, Y., Chen, H.Y.H., Jin, L., Wang, C., Zhang, R., Ruan, H., Yang, J., 2020a. Drought stress induced increase of fungi:bacteria ratio in a poplar plantation. Catena 193, 104607

[51]

Tian, Q., Wang, X., Wang, D., Wang, M., Liao, C., Yang, X., Liu, F., 2017. Decoupled linkage between soil carbon and nitrogen mineralization among soil depths in a subtropical mixed forest. Soil Biology & Biochemistry 109, 135–144

[52]

Wan, S., Zhang, C., Chen, Y., Zhao, J., Zhu, X., Wu, J., Zhou, L., Lin, Y., Liu, Z., Fu, S., 2015. Interactive effects of understory removal and fertilization on soil respiration in subtropical Eucalyptus plantations. Journal of Plant Ecology 8, 284–290

[53]

Wang, Q., He, T., Wang, S., Liu, L., 2013. Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest. Agricultural and Forest Meteorology 178–179, 152–160

[54]

Yang, L., Liu, N., Ren, H., Wang, J., 2009. Facilitation by two exotic Acacia: Acacia auriculiformis and Acacia mangium as nurse plants in South China. Forest Ecology and Management 257, 1786–1793

[55]

Zhang, P., Li, B., Wu, J., Hu, S., 2019. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecology Letters 22, 200–210

[56]

Zhang, P., Neher, D.A., Li, B., Wu, J., 2018. The impacts of above- and belowground plant input on soil microbiota: invasive Spartina alterniflora versus native Phragmites australis. Ecosystems (New York, N.Y.) 21, 469–481

[57]

Zhang, X., Dong, X., Liang, W., 2010. Spatial distribution of soil nematode communities in stable and active sand dunes of Horqin sandy land. Arid Land Research and Management 24, 68–80

[58]

Zhao, C., Guo, E., Shao, Y., Zhang, W., Zhang, C., Liu, Y., Li, Y., Zou, X., Fu, S., 2021. Impacts of litter addition and root presence on soil nematode community structure in a young Eucalyptus plantation in southern China. Forest Ecology and Management 479, 118633

[59]

Zhao, C., Miao, Y., Yu, C., Zhu, L., Wang, F., Jiang, L., Hui, D., Wan, S., 2015b. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe. Scientific Reports 6, 24317

[60]

Zhao, C., Sun, F., Yu, C., Zhu, L., Li, Y., Zhou, Z., Yang, G., Wang, W., Miao, R., 2018. Soil nematode trophic groups in four different plantations in southern China: implications for restoration. Polish Journal of Environmental Studies 27, 1379–1386

[61]

Zhao, C., Zhao, J., Wu, J., Classen, A.T., Li, Y., Lou, Y., Zhang, W., Jing, X., Shao, Y., Fu, S., 2019. Bamboo forest management leads to a shift in the soil energy channel. Geoderma 353, 201–203

[62]

Zhao, J., Li, D., Fu, S., He, X., Fu, Z., Zhang, W., Wang, K., 2016. Using the biomasses of soil nematode taxa as weighting factors for assessing soil food web conditions. Ecological Indicators 60, 310–316

[63]

Zhao, J., Zhao, C., Wan, S., Wang, X., Zhou, L., Fu, S., 2015a. Soil nematode assemblages in an acid soil as affected by lime application. Nematology 17, 179–191

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (488KB)

1323

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/