Bacterial and eukaryotic community interactions might contribute to shrimp culture pond soil ecosystem at different culture stages

Renjun Zhou, Hao Wang, Dongdong Wei, Shenzheng Zeng, Dongwei Hou, Shaoping Weng, Jianguo He, Zhijian Huang

PDF(2825 KB)
PDF(2825 KB)
Soil Ecology Letters ›› 2022, Vol. 4 ›› Issue (2) : 119-130. DOI: 10.1007/s42832-021-0082-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Bacterial and eukaryotic community interactions might contribute to shrimp culture pond soil ecosystem at different culture stages

Author information +
History +

Highlights

• Positive microbial interaction dominating in sedimentary bacterial and eukaryotic communities.

• Homogeneous selection process governed the assemblage of both bacterial and eukaryotic communities.

• Bacterial and eukaryotic diversities were in the reverse correlations with microbial positive interaction.

Abstract

Sedimentary bacterial and eukaryotic communities are major components of the aquatic ecosystem. Revealing the linkages between their community structure and interactions is crucial to understand the diversity and functions of aquatic and soil ecosystems. However, how their diversity and assembly contribute to their interactions on time scale is unclear. This study examined sedimentary bacterial and eukaryotic communities in shrimp culture ponds at different culture stages. The most abundant bacteria were Proteobacteria (38.27%), whereas the most abundant eukaryotes were Chytridiomycota (27.48%). Bacterial and eukaryotic diversities were correlated (P<0.05), implying the strong interactions between bacteria and eukaryotes. Results showed that the bacterial and eukaryotic communities became increasingly similar on a local scale along with the shrimp culture. Only the eukaryotic community significantly increased in similarity along with the shrimp culture (P<0.05), suggesting that the sedimentary eukaryotic community structure is sensitive under shrimp culture. Co-occurrence network modeling indicated that positive microbial interactions were dominant. The homogeneous selection was the major driver of community assembly. Bacterial diversity negatively correlated with operational taxonomic units and positive links in networks (P<0.05), whereas eukaryotic diversities positively correlated with positive links in networks (P<0.05). This study broadens our knowledge about sedimentary microbial diversity, community assembly, and interaction patterns on time scale, providing a reference for the sustainable management in aquaculture production.

Graphical abstract

Keywords

Sediment / Shrimp culture / Bacteria / Eukaryotes / Microbial community

Cite this article

Download citation ▾
Renjun Zhou, Hao Wang, Dongdong Wei, Shenzheng Zeng, Dongwei Hou, Shaoping Weng, Jianguo He, Zhijian Huang. Bacterial and eukaryotic community interactions might contribute to shrimp culture pond soil ecosystem at different culture stages. Soil Ecology Letters, 2022, 4(2): 119‒130 https://doi.org/10.1007/s42832-021-0082-6

References

[1]
Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 32–46.
[2]
Beals, E.W., 1984. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Advances in Ecological Research 14, 1–55.
[3]
Berry, D., Widder, S., 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology 5, 219
CrossRef Pubmed Google scholar
[4]
Caron, D.A., Countway, P.D., Jones, A.C., Kim, D.Y., Schnetzer, A., 2012. Marine protistan diversity. Annual Review of Marine Science 4, 467–493
CrossRef Pubmed Google scholar
[5]
Countway, P.D., Gast, R.J., Savai, P., Caron, D.A., 2005. Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. Journal of Eukaryotic Microbiology 52, 95–106
CrossRef Pubmed Google scholar
[6]
Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England) 26, 2460–2461
CrossRef Pubmed Google scholar
[7]
Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996–998
CrossRef Pubmed Google scholar
[8]
Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics (Oxford, England) 27, 2194–2200
CrossRef Pubmed Google scholar
[9]
Eichstaedt, K.E., Kovatch, K., Maroof, D.A., 2013. A less conservative method to adjust for familywise error rate in neuropsychological research: the Holm’s sequential Bonferroni procedure. NeuroRehabilitation 32, 693–696
CrossRef Pubmed Google scholar
[10]
Fan, L., Wang, Z., Chen, M., Qu, Y., Li, J., Zhou, A., Xie, S., Zeng, F., Zou, J., 2019. Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment. Science of the Total Environment 657, 1194–1204
CrossRef Pubmed Google scholar
[11]
Fine, P.V.A., Kembel, S.W., 2011. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34, 552–565
CrossRef Google scholar
[12]
Fu, G., Saunders, G., Stevens, J., 2014. Holm multiple correction for large-scale gene-shape association mapping. BMC Genetics 15, S5
CrossRef Pubmed Google scholar
[13]
Godhe, A., Asplund, M.E., Härnström, K., Saravanan, V., Tyagi, A., Karunasagar, I., 2008. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Applied and Environmental Microbiology 74, 7174–7182
CrossRef Pubmed Google scholar
[14]
Gong, W., Marchetti, A., 2019. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Frontiers in Marine Science 6, 6
CrossRef Google scholar
[15]
Hartigan, J.A., Wong, M.A., 1979. Algorithm AS 136: A K-means clustering algorithm. Journal of the Royal Statistical Society. Series C, Applied Statistics 28, 100–108.
[16]
Holmes, A.H., Moore, L.S., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P.J., Piddock, L.J., 2016. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187
CrossRef Pubmed Google scholar
[17]
Hope, J.A., Malarkey, J., Baas, J.H., Peakall, J., Parsons, D.R., Manning, A.J., Bass, S.J., Lichtman, I.D., Thorne, P.D., Ye, L., Paterson, D.M., 2020. Interactions between sediment microbial ecology and physical dynamics drive heterogeneity in contextually similar depositional systems. Limnology and Oceanography 65, 2403–2419
CrossRef Google scholar
[18]
Hou, D., Huang, Z., Zeng, S., Liu, J., Wei, D., Deng, X., Weng, S., He, Z., He, J., 2017. Environmental factors shape water microbial community structure and function in shrimp cultural enclosure ecosystems. Frontiers in Microbiology 8, 2359
CrossRef Pubmed Google scholar
[19]
Hou, D., Huang, Z., Zeng, S., Liu, J., Weng, S., He, J., 2018. Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment. Journal of Applied Microbiology 125, 792–799
CrossRef Pubmed Google scholar
[20]
Huang, Z., Chen, Y., Weng, S., Xiaofeng, L.U., Zhong, L., Fan, W., Chen, X., Zhang, H., Jianguo, H.E., 2016. Multiple bacteria species were involved in hepatopancreas necrosis syndrome (HPNS) of Litopenaeus vannamei. Acta Scientiarum Naturalium Universitatis Sunyatseni 55, 1–11.
[21]
Huang, Z., Zeng, S., Xiong, J., Hou, D., Zhou, R., Xing, C., Wei, D., Deng, X., Yu, L., Wang, H., Deng, Z., Weng, S., Kriengkrai, S., Ning, D., Zhou, J., He, J., 2020. Microecological Koch’s postulates reveal that intestinal microbiota dysbiosis contributes to shrimp white feces syndrome. Microbiome 8, 32
CrossRef Pubmed Google scholar
[22]
Jiao, S., Yang, Y., Xu, Y., Zhang, J., Lu, Y., 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME Journal 14, 202–216
CrossRef Pubmed Google scholar
[23]
Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., Webb, C.O., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England) 26, 1463–1464
CrossRef Pubmed Google scholar
[24]
Khramenkov, S.V., Kozlov, M.N., Krevbona, M.V., Drofeev, A.G., Kazakova, E.A., Grachev, V.A., Kuznetsov, B.B., Poliakov, D.Iu., Nikolaev, IuA., 2013. A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented residue. Microbiology 82, 625–634
CrossRef Pubmed Google scholar
[25]
Ma, B., Wang, Y., Ye, S., Liu, S., Stirling, E., Gilbert, J.A., Faust, K., Knight, R., Jansson, J.K., Cardona, C., Röttjers, L., Xu, J., 2020. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8, 82
CrossRef Pubmed Google scholar
[26]
Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England) 27, 2957–2963
CrossRef Pubmed Google scholar
[27]
Mikhailov, I.S., Zakharova, Y.R., Bukin, Y.S., Galachyants, Y.P., Petrova, D.P., Sakirko, M.V., Likhoshway, Y.V., 2019. Co-occurrence networks among bacteria and microbial eukaryotes of lake baikal during a spring phytoplankton bloom. Microbial Ecology 77, 96–109
CrossRef Pubmed Google scholar
[28]
Ning, D., Yuan, M., Wu, L., Zhang, Y., Guo, X., Zhou, X., Yang, Y., Arkin, A.P., Firestone, M.K., Zhou, J., 2020. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications 11, 4717
CrossRef Pubmed Google scholar
[29]
Peoples, L.M., Grammatopoulou, E., Pombrol, M., Xu, X., Osuntokun, O., Blanton, J., Allen, E.E., Nunnally, C.C., Drazen, J.C., Mayor, D.J., Bartlett, D.H., 2019. Microbial community diversity within sediments from two geographically separated hadal trenches. Frontiers in Microbiology 10, 347
CrossRef Pubmed Google scholar
[30]
Quintela-Baluja, M., Abouelnaga, M., Romalde, J., Su, J.Q., Yu, Y., Gomez-Lopez, M., Smets, B., Zhu, Y.G., Graham, D.W., 2019. Spatial ecology of a wastewater network defines the antibiotic resistance genes in downstream receiving waters. Water Research 162, 347–357
CrossRef Pubmed Google scholar
[31]
Ramalingam, S., Chandra, V., 2018. Influence of live microbes on suspended sediment concentration in coastal ecosystem. Marine Geology 405, 108–113
CrossRef Google scholar
[32]
Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., Fierer, N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal 4, 1340–1351
CrossRef Pubmed Google scholar
[33]
Saunders, A.M., Albertsen, M., Vollertsen, J., Nielsen, P.H., 2016. The activated sludge ecosystem contains a core community of abundant organisms. ISME Journal 10, 11–20
CrossRef Pubmed Google scholar
[34]
Shi, Y., Delgado-Baquerizo, M., Li, Y., Yang, Y., Zhu, Y.G., Peñuelas, J., Chu, H., 2020. Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environment International 142, 105869
CrossRef Pubmed Google scholar
[35]
Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., Rockhold, M.L., Konopka, A., 2013. Quantifying community assembly processes and identifying features that impose them. ISME Journal 7, 2069–2079
CrossRef Pubmed Google scholar
[36]
Stegen, J.C., Lin, X., Fredrickson, J.K., Konopka, A.E., 2015. Estimating and mapping ecological processes influencing microbial community assembly. Frontiers in Microbiology 6, 370
CrossRef Pubmed Google scholar
[37]
Su, Z.Z., Li, Y., Pan, L.Q., Xue, F.F., 2016. An investigation on the immunoassays of an ammonia nitrogen-degrading bacterial strain in aquatic water. Aquaculture (Amsterdam, Netherlands) 450, 17–22
CrossRef Google scholar
[38]
Tan, L.T.H., Chan, K.G., Lee, L.H., Goh, B.H., 2016. Streptomyces bacteria as potential probiotics in aquaculture. Frontiers in Microbiology 7, 79
CrossRef Pubmed Google scholar
[39]
Tsirogiannis, C., Sandel, B., 2014. Computing the skewness of the phylogenetic mean pairwise distance in linear time. Algorithms for Molecular Biology; AMB 9, 15
CrossRef Pubmed Google scholar
[40]
Wei, D., Zeng, S., Hou, D., Zhou, R., Xing, C., Deng, X., Yu, L., Wang, H., Deng, Z., Weng, S., Huang, Z., He, J., 2020. Community diversity and abundance of ammonia-oxidizing archaea and bacteria in shrimp pond sediment at different culture stages. Journal of Applied Microbiology, jam.14846
CrossRef Pubmed Google scholar
[41]
Wright, C.J., Burns, L.H., Jack, A.A., Back, C.R., Dutton, L.C., Nobbs, A.H., Lamont, R.J., Jenkinson, H.F., 2013. Microbial interactions in building of communities. Molecular Oral Microbiology 28, 83–101
CrossRef Pubmed Google scholar
[42]
Wu, L., Ning, D., Zhang, B., Li, Y., Zhang, P., Shan, X., Zhang, Q., Brown, M.R., Li, Z., Van Nostrand, J.D., Ling, F., Xiao, N., Zhang, Y., Vierheilig, J., Wells, G.F., Yang, Y., Deng, Y., Tu, Q., Wang, A., Zhang, T., He, Z., Keller, J., Nielsen, P.H., Alvarez, P.J.J., Criddle, C.S., Wagner, M., Tiedje, J.M., He, Q., Curtis, T.P., Stahl, D.A., Alvarez-Cohen, L., Rittmann, B.E., Wen, X., Zhou, J., Criddle, C.S., Deng, Y., Etchebehere, C., Ford, A., Frigon, D., Sanabria, J., Griffin, J.S., Gu, A.Z., Habagil, M., Hale, L., Hardeman, S.D., Harmon, M., Horn, H., Hu, Z., Jauffur, S., Johnson, D.R., Keller, J., Keucken, A., Kumari, S., Leal, C.D., Lebrun, L.A., Lee, J., Lee, M., Lee, Z.M.P., Li, Y., Li, Z., Li, M., Li, X., Ling, F., Liu, Y., Luthy, R.G., Mendonça-Hagler, L.C., de Menezes, F.G.R., Meyers, A.J., Mohebbi, A., Nielsen, P.H., Ning, D., Oehmen, A., Palmer, A., Parameswaran, P., Park, J., Patsch, D., Reginatto, V., de los Reyes, F.L., Rittmann, B.E., Noyola, A., Rossetti, S., Shan, X., Sidhu, J., Sloan, W.T., Smith, K., de Sousa, O.V., Stahl, D.A., Stephens, K., Tian, R., Tiedje, J.M., Tooker, N.B., Tu, Q., Van Nostrand, J.D., De los Cobos Vasconcelos, D., Vierheilig, J., Wagner, M., Wakelin, S., Wang, A., Wang, B., Weaver, J.E., Wells, G.F., West, S., Wilmes, P., Woo, S.G., Wu, L., Wu, J.H., Wu, L., Xi, C., Xiao, N., Xu, M., Yan, T., Yang, Y., , Yang, M., Young, M., Yue, H., Zhang, B., Zhang, P., Zhang, Q., Zhang, Y., Zhang, T., Zhang, Q., Zhang, W., Zhang, Y., Zhou, H., Zhou, J., Wen, X., Curtis, T.P., He, Q., He, Z., Brown, M.R., Zhang, T., He, Z., Keller, J., Nielsen, P.H., Alvarez, P.J.J., Criddle, C.S., Wagner, M., Tiedje, J.M., He, Q., Curtis, T.P., Stahl, D.A., Alvarez-Cohen, L., Rittmann, B.E., Wen, X., Zhou, J., and the Global Water Microbiome Consortium, 2019. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology 4, 1183–1195
CrossRef Pubmed Google scholar
[43]
Xiong, J., Dai, W., Qiu, Q., Zhu, J., Yang, W., Li, C., 2018. Response of host-bacterial colonization in shrimp to developmental stage, environment and disease. Molecular Ecology 27, 3686–3699
CrossRef Pubmed Google scholar
[44]
Xiong, J., Li, X., Yan, M., Lu, J., Qiu, Q., Chen, J., 2020. Comparable ecological processes govern the temporal succession of gut bacteria and microeukaryotes as shrimp aged. Microbial Ecology 80, 935–945
CrossRef Pubmed Google scholar
[45]
Yue, L., Kong, W., Ji, M., Liu, J., Morgan-Kiss, R.M., 2019. Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes. Science of the Total Environment 696, 134001
CrossRef Pubmed Google scholar
[46]
Zeng, S., Huang, Z., Hou, D., Liu, J., Weng, S., He, J., 2017. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages. PeerJ 5, e3986
CrossRef Pubmed Google scholar
[47]
Zhang, F., Zhang, H., Yuan, Y., Liu, D., Zhu, C.Y., Zheng, D., Li, G.H., Wei, Y.Q., Sun, D., 2020. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network. Frontiers of Environmental Science & Engineering 14, 14
CrossRef Google scholar
[48]
Zhang, T., Shao, M.F., Ye, L., 2012. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME Journal 6, 1137–1147
CrossRef Pubmed Google scholar
[49]
Zhou, J., Ning, D., 2017. Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews 81, e00002–e00017
CrossRef Pubmed Google scholar
[50]
Zhou, R., Zeng, S., Hou, D., Liu, J., Weng, S., He, J., Huang, Z., 2019. Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment. Journal of Environmental Sciences (China) 80, 248–256
CrossRef Pubmed Google scholar
[51]
Zhou, R., Zeng, S., Hou, D., Liu, J., Weng, S., He, J., Huang, Z., 2020. Temporal variation of antibiotic resistance genes carried by culturable bacteria in the shrimp hepatopancreas and shrimp culture pond water. Ecotoxicology and Environmental Safety 199, 110738
CrossRef Pubmed Google scholar
[52]
Zhu, F., Massana, R., Not, F., Marie, D., Vaulot, D., 2005. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiology Ecology 52, 79–92
CrossRef Pubmed Google scholar
[53]
Zhu, Y.G., Zhao, Y., Zhu, D., Gillings, M., Penuelas, J., Ok, Y.S., Capon, A., Banwart, S., 2019. Soil biota, antimicrobial resistance and planetary health. Environment International 131, 105059
CrossRef Pubmed Google scholar

Acknowledgments

This work was financially supported by the China Agriculture Research System (CARS-48); China-ASEAN Maritime Cooperation Fund, China-ASEAN Center for Joint Research and Promotion of Marine Aquaculture Technology; Guangdong MEPP Fund (NO. GDOE (2019) A21); Key Research and Development Projects in Guangdong Province (2020B0202010009); Guangzhou Science Technology and Innovation Commission Project (201510010071); and Guangdong Ocean and Fishery Bureau Project (20164200042090023).

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2825 KB)

Accesses

Citations

Detail

Sections
Recommended

/