Zooming in to acquire micro-reaction: Application of microfluidics on soil microbiome

Xiongkun Zhang, Shan Wu, Xiaojie Sun, Monika Mortimer, Yichao Wu, Ming Zhang, Qiaoyun Huang, Peng Cai

PDF(1195 KB)
PDF(1195 KB)
Soil Ecology Letters ›› 2022, Vol. 4 ›› Issue (3) : 213-223. DOI: 10.1007/s42832-021-0073-7
REVIEW
REVIEW

Zooming in to acquire micro-reaction: Application of microfluidics on soil microbiome

Author information +
History +

Highlights

1. Basic principles of microfluidics are introduced

2. Microfluidics to study bacterial spatial distribution and functions

3. Challenges of microfluidics for soil microbiome in future

Abstract

Microfluidics confers unique advantages in microbiological studies as these devices can accurately replicate the micro- and even nano-scale structures of soil to simulate the habitats of bacteria. It not only helps us understand the spatial distribution of bacterial communities (such as biofilms), but also provides mechanistic insights into microbial behaviors including chemotaxis and horizontal gene transfer (HGT). Microfluidics provides a feasible means for real-time, in situ studies and enables in-depth exploration of the mechanisms of interactions in the soil microbiome. This review aims to introduce the basic principles of microfluidic technology and summarize the recent progress in microfluidic devices to study bacterial spatial distribution and functions, as well as biological processes, such bacterial chemotaxis, biofilm streamers (BS), quorum sensing (QS), and HGT. The challenges in and future development of microfluidics for soil microbiological studies are also discussed.

Graphical abstract

Keywords

Microfluidics / Soil bacteria / Biofilms / Chemotaxis / Quorum sensing / Horizontal gene transfer

Cite this article

Download citation ▾
Xiongkun Zhang, Shan Wu, Xiaojie Sun, Monika Mortimer, Yichao Wu, Ming Zhang, Qiaoyun Huang, Peng Cai. Zooming in to acquire micro-reaction: Application of microfluidics on soil microbiome. Soil Ecology Letters, 2022, 4(3): 213‒223 https://doi.org/10.1007/s42832-021-0073-7

References

[1]
Aleklett, K., Kiers, E.T., Ohlsson, P., Shimizu, T.S., Caldas, V.E., Hammer, E.C., 2018. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME Journal 12, 312–319
CrossRef Pubmed Google scholar
[2]
Aufrecht, J.A., Fowlkes, J.D., Bible, A.N., Morrell-Falvey, J., Doktycz, M.J., Retterer, S.T., 2019. Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network. PLoS One 14, e0218316
CrossRef Pubmed Google scholar
[3]
Bassler, B.L., Losick, R., 2006. Bacterially speaking. Cell 125, 237–246
CrossRef Pubmed Google scholar
[4]
Biswas, I., Ghosh, R., Sadrzadeh, M., Kumar, A., 2018. Near wall void growth leads to disintegration of colloidal bacterial streamer. Journal of Colloid and Interface Science 522, 249–255
CrossRef Pubmed Google scholar
[5]
Borer, B., Tecon, R., Or, D., 2018. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nature Communications 9, 769
CrossRef Pubmed Google scholar
[6]
Burmeister, A., Hilgers, F., Langner, A., Westerwalbesloh, C., Kerkhoff, Y., Tenhaef, N., Drepper, T., Kohlheyer, D., von Lieres, E., Noack, S., Grünberger, A., 2018. A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments. Lab on a Chip 19, 98–110
CrossRef Pubmed Google scholar
[7]
Cai, P., Sun, X.J., Wu, Y.C., Gao, C.H., Mortimer, M., Holden, P.A., Redmile-Gordon, M., Huang, Q.Y., 2019. Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization. Soil Ecology Letters 1, 85–93
CrossRef Google scholar
[8]
Cho, H., Jönsson, H., Campbell, K., Melke, P., Williams, J.W., Jedynak, B., Stevens, A.M., Groisman, A., Levchenko, A., 2007. Self-organization in high-density bacterial colonies: efficient crowd control. PLoS Biology 5, e302
CrossRef Pubmed Google scholar
[9]
Cooper, R., Tsimring, L., Hasty, J., 2018. Microfluidics-based analysis of contact-dependent bacterial interactions. Bio-Protocol 8, 8
CrossRef Pubmed Google scholar
[10]
Coyte, K.Z., Tabuteau, H., Gaffney, E.A., Foster, K.R., Durham, W.M., 2017. Microbial competition in porous environments can select against rapid biofilm growth. Proceedings of the National Academy of Sciences of the United States of America 114, E161–E170
CrossRef Pubmed Google scholar
[11]
de Anna, P., Pahlavan, A.A., Yawata, Y., Stocker, R., Juanes, R., 2020. Chemotaxis under flow disorder shapes microbial dispersion in porous media. Nature Physics. https://doi.org/10.1038/s41567-020-1002-x
[12]
Deng, J., Orner, E.P., Chau, J.F., Anderson, E.M., Kadilak, A.L., Rubinstein, R.L., Bouchillon, G.M., Goodwin, R.A., Gage, D.J., Shor, L.M., 2015. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biology & Biochemistry 83, 116–124
CrossRef Google scholar
[13]
Drescher, K., Shen, Y., Bassler, B.L., Stone, H.A., 2013. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proceedings of the National Academy of Sciences of the United States of America 110, 4345–4350
CrossRef Pubmed Google scholar
[14]
Feng, J., de la Fuente-Núñez, C., Trimble, M.J., Xu, J., Hancock, R.E.W., Lu, X., 2015. An in situ Raman spectroscopy-based microfluidic “lab-on-a-chip” platform for non-destructive and continuous characterization of Pseudomonas aeruginosa biofilms. Chemical Communications 51, 8966–8969
CrossRef Pubmed Google scholar
[15]
Flemming, H.C., Wuertz, S., 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews. Microbiology 17, 247–260
CrossRef Pubmed Google scholar
[16]
Guo, Y.S., Furrer, J.M., Kadilak, A.L., Hinestroza, H.F., Gage, D.J., Cho, Y.K., Shor, L.M., 2018. Bacterial extracellular polymeric substances amplify water content variability at the pore scale. Frontiers in Environmental Science 6, 93
CrossRef Google scholar
[17]
Gutiérrez Castorena, E.V., Gutiérrez-Castorena, M., González Vargas, T., Cajuste Bontemps, L., Delgadillo Martínez, J., Suástegui Méndez, E., Ortiz Solorio, C.A., 2016. Micromapping of microbial hotspots and biofilms from different crops using digital image mosaics of soil thin sections. Geoderma 279, 11–21
CrossRef Google scholar
[18]
Hassanpourfard, M., Ghosh, R., Thundat, T., Kumar, A., 2016. Dynamics of bacterial streamers induced clogging in microfluidic devices. Lab on a Chip 16, 4091–4096
CrossRef Pubmed Google scholar
[19]
Hassanpourfard, M., Sun, X., Valiei, A., Mukherjee, P., Thundat, T., Liu, Y., Kumar, A., 2014. Protocol for biofilm streamer formation in a microfluidic device with micropillars. Jove-Journal of Visualized Experiments 90, e51732.
[20]
Heuer, H., Smalla, K., 2012. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiology Reviews 36, 1083–1104
CrossRef Pubmed Google scholar
[21]
Hong, S.H., Hegde, M., Kim, J., Wang, X., Jayaraman, A., Wood, T.K., 2012. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nature Communications 3, 613
CrossRef Pubmed Google scholar
[22]
Huang, X.Z., Li, Y.W., Guggenberger, G., Kuzyakov, Y., Liu, B.F., Wu, J.S., 2020. Direct evidence for thickening nanoscale organic films at soil biogeochemical interfaces and its relevance to organic matter preservation. Environmental Science: Nano 7, 2747–2758
CrossRef Google scholar
[23]
Huang, X.Z., Li, Y.W., Liu, B.F., Guggenberger, G., Shibistova, O., Zhu, Z.K., Ge, T.D., Tan, W.F., Wu, J.S., 2017. SoilChip-XPS integrated technique to study formation of soil biogeochemical interfaces. Soil Biology & Biochemistry 113, 71–79
CrossRef Google scholar
[24]
Jeong, H.H., Jin, S.H., Lee, B.J., Kim, T., Lee, C.S., 2015. Microfluidic static droplet array for analyzing microbial communication on a population gradient. Lab on a Chip 15, 889–899
CrossRef Pubmed Google scholar
[25]
Karimi, A., Karig, D., Kumar, A., Ardekani, A.M., 2015. Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. Lab on a Chip 15, 23–42
CrossRef Pubmed Google scholar
[26]
Kim, J.W., Choi, H., Pachepsky, Y.A., 2010. Biofilm morphology as related to the porous media clogging. Water Research 44, 1193–1201
CrossRef Pubmed Google scholar
[27]
Kim, M.K., Drescher, K., Pak, O.S., Bassler, B.L., Stone, H.A., 2014. Filaments in curved streamlines: Rapid formation of Staphylococcus aureus biofilm streamers. New Journal of Physics 16, 065024
CrossRef Pubmed Google scholar
[28]
Koffler, H., Knight, S.G., Emerson, R.L., Burris, R.H., 1945. The effect of certain chemicals on penicillin production and mold metabolism in shake flask fermentations. Journal of Bacteriology 50, 549–559
CrossRef Google scholar
[29]
Kumar, A., Karig, D., Acharya, R., Neethirajan, S., Mukherjee, P.P., Retterer, S., Doktycz, M.J., 2013. Microscale confinement features can affect biofilm formation. Microfluidics and Nanofluidics 14, 895–902
CrossRef Google scholar
[30]
Leaman, E.J., Geuther, B.Q., Behkam, B., 2018. Quantitative investigation of the role of intra-/intercellular dynamics in bacterial quorum sensing. ACS Synthetic Biology 7, 1030–1042
CrossRef Pubmed Google scholar
[31]
Li, B., Qiu, Y., Zhang, J., Liang, P., Huang, X., 2019. Conjugative potential of antibiotic resistance plasmids to activated sludge bacteria from wastewater treatment plants. International Biodeterioration & Biodegradation 138, 33–40
CrossRef Google scholar
[32]
Männik, J., Driessen, R., Galajda, P., Keymer, J.E., Dekker, C., 2009. Bacterial growth and motility in sub-micron constrictions. Proceedings of the National Academy of Sciences of the United States of America 106, 14861–14866
CrossRef Pubmed Google scholar
[33]
Marty, A., Roques, C., Causserand, C., Bacchin, P., 2012. Formation of bacterial streamers during filtration in microfluidic systems. Biofouling 28, 551–562
CrossRef Pubmed Google scholar
[34]
Miyake, Y., Fujiwara, S., Usui, T., Suginaka, H., 1992. Simple method for measuring the antibiotic concentration required to kill adherent bacteria. Chemotherapy 38, 286–290
CrossRef Pubmed Google scholar
[35]
Mukherjee, M., Menon, N.V., Liu, X., Kang, Y., Cao, B., 2016. Confocal laser scanning microscopy-compatible microfluidic membrane flow cell as a nondestructive tool for studying biofouling dynamics on forward osmosis membranes. Environmental Science & Technology Letters 3, 303–309
CrossRef Google scholar
[36]
Nadell, C.D., Bassler, B.L., 2011. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. Proceedings of the National Academy of Sciences of the United States of America 108, 14181–14185
CrossRef Pubmed Google scholar
[37]
Nagy, K., Sipos, O., Valkai, S., Gombai, É., Hodula, O., Kerényi, Á., Ormos, P., Galajda, P., 2015. Microfluidic study of the chemotactic response of Escherichia coli to amino acids, signaling molecules and secondary metabolites. Biomicrofluidics 9, 044105
CrossRef Pubmed Google scholar
[38]
Nunan, N., Wu, K., Young, I.M., Crawford, J.W., Ritz, K., 2003. Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiology Ecology 44, 203–215
CrossRef Pubmed Google scholar
[39]
Paquet-Mercier, F., Parvinzadeh Gashti, M., Bellavance, J., Taghavi, S.M., Greener, J., 2016. Through thick and thin: a microfluidic approach for continuous measurements of biofilm viscosity and the effect of ionic strength. Lab on a Chip 16, 4710–4717
CrossRef Pubmed Google scholar
[40]
Park, S., Wolanin, P.M., Yuzbashyan, E.A., Lin, H., Darnton, N.C., Stock, J.B., Silberzan, P., Austin, R., 2003. Influence of topology on bacterial social interaction. Proceedings of the National Academy of Sciences of the United States of America 100, 13910–13915
CrossRef Pubmed Google scholar
[41]
Pivetal, J., Frénéa-Robin, M., Haddour, N., Vézy, C., Zanini, L.F., Ciuta, G., Dempsey, N.M., Dumas-Bouchiat, F., Reyne, G., Bégin-Colin, S., Felder-Flesh, D., Ghobril, C., Pourroy, G., Simonet, P., 2015. Development and applications of a DNA labeling method with magnetic nanoparticles to study the role of horizontal gene transfer events between bacteria in soil pollutant bioremediation processes. Environmental Science and Pollution Research International 22, 20322–20327
CrossRef Pubmed Google scholar
[42]
Pousti, M., Zarabadi, M.P., Abbaszadeh Amirdehi, M., Paquet-Mercier, F., Greener, J., 2018. Microfluidic bioanalytical flow cells for biofilm studies: a review. Analyst (London) 144, 68–86
CrossRef Pubmed Google scholar
[43]
Qiu, Y., Zhang, J., Li, B., Wen, X., Liang, P., Huang, X., 2018. A novel microfluidic system enables visualization and analysis of antibiotic resistance gene transfer to activated sludge bacteria in biofilm. Science of the Total Environment 642, 582–590
CrossRef Pubmed Google scholar
[44]
Rashid, S., Long, Z., Singh, S., Kohram, M., Vashistha, H., Navlakha, S., Salman, H., Oltvai, Z.N., Bar-Joseph, Z., 2019. Adjustment in tumbling rates improves bacterial chemotaxis on obstacle-laden terrains. Proceedings of the National Academy of Sciences of the United States of America 116, 11770–11775
CrossRef Pubmed Google scholar
[45]
Ribbe, J., Maier, B., 2016. Density-dependent differentiation of bacteria in spatially structured open systems. Biophysical Journal 110, 1648–1660
CrossRef Pubmed Google scholar
[46]
Roberson, E.B., Firestone, M.K., 1992. Relationship between dessication and exopolysaccharide production in a soil Pseudomonas sp. Applied and Environmental Microbiology 58, 1284–1291
CrossRef Pubmed Google scholar
[47]
Sahari, A., Traore, M.A., Stevens, A.M., Scharf, B.E., Behkam, B., 2014. Toward development of an autonomous network of bacteria-based delivery systems (BacteriaBots): spatiotemporally high-throughput characterization of bacterial quorum-sensing response. Analytical Chemistry 86, 11489–11493
CrossRef Pubmed Google scholar
[48]
Salek, M.M., Carrara, F., Fernandez, V., Guasto, J.S., Stocker, R., 2019. Bacterial chemotaxis in a microfluidic T-maze reveals strong phenotypic heterogeneity in chemotactic sensitivity. Nature Communications 10, 1877
CrossRef Pubmed Google scholar
[49]
Scheidweiler, D., Peter, H., Pramateftaki, P., de Anna, P., Battin, T.J., 2019. Unraveling the biophysical underpinnings to the success of multispecies biofilms in porous environments. ISME Journal 13, 1700–1710
CrossRef Pubmed Google scholar
[50]
Singh, A.K., Prakash, P., Singh, R., Nandy, N., Firdaus, Z., Bansal, M., Singh, R.K., Srivastava, A., Roy, J.K., Mishra, B., Singh, R.K., 2017. Curcumin quantum dots mediated degradation of bacterial biofilms. Frontiers in Microbiology8, 1517.
CrossRef Google scholar
[51]
Singh, R., Olson, M.S., 2012. Transverse chemotactic migration of bacteria from high to low permeability regions in a dual permeability microfluidic device. Environmental Science & Technology 46, 3188–3195
CrossRef Pubmed Google scholar
[52]
Stewart, E.J., 2012. Growing unculturable bacteria. Journal of Bacteriology 194, 4151–4160
CrossRef Pubmed Google scholar
[53]
Tecon, R., Or, D., 2017. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiology Reviews 41, 599–623
CrossRef Pubmed Google scholar
[54]
Toju, H., Peay, K.G., Yamamichi, M., Narisawa, K., Hiruma, K., Naito, K., Fukuda, S., Ushio, M., Nakaoka, S., Onoda, Y., Yoshida, K., Schlaeppi, K., Bai, Y., Sugiura, R., Ichihashi, Y., Minamisawa, K., Kiers, E.T., 2018. Core microbiomes for sustainable agroecosystems. Nature Plants 4, 247–257
CrossRef Pubmed Google scholar
[55]
Underhill, S.A.M., Shields, R.C., Kaspar, J.R., Haider, M., Burne, R.A., Hagen, S.J., 2018. Intracellular signaling by the comRS system in Streptococcus mutans genetic competence. MSphere 3, e00444–e18
CrossRef Pubmed Google scholar
[56]
Valiei, A., Kumar, A., Mukherjee, P.P., Liu, Y., Thundat, T., 2012. A web of streamers: biofilm formation in a porous microfluidic device. Lab on a Chip 12, 5133–5137
CrossRef Pubmed Google scholar
[57]
Wang, X., Atencia, J., Ford, R.M., 2015. Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device. Biotechnology and Bioengineering 112, 896–904
CrossRef Pubmed Google scholar
[58]
Wang, X., Lanning, L.M., Ford, R.M., 2016. Enhanced retention of chemotactic bacteria in a pore network with residual NAPL contamination. Environmental Science & Technology 50, 165–172
CrossRef Pubmed Google scholar
[59]
Wang, X., Long, T., Ford, R.M., 2012. Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber. Biotechnology and Bioengineering 109, 1622–1628
CrossRef Pubmed Google scholar
[60]
Weaver, W.M., Milisavljevic, V., Miller, J.F., Di Carlo, D., 2012. Fluid flow induces biofilm formation in Staphylococcus epidermidis polysaccharide intracellular adhesin-positive clinical isolates. Applied and Environmental Microbiology 78, 5890–5896
CrossRef Pubmed Google scholar
[61]
Wu, S., Wu, Y.C., Huang, Q.Y., Cai, P., 2020. Insights into conjugative transfer of antibiotic resistance genes affected by soil minerals. European Journal of Soil Science
CrossRef Google scholar
[62]
Wu, X., Staggenborg, S., Propheter, J.L., Rooney, W.L., Yu, J., Wang, D., 2010. Features of sweet sorghum juice and their performance in ethanol fermentation. Industrial Crops and Products 31, 164–170
CrossRef Google scholar
[63]
Wu, Y., Cai, P., Jing, X., Niu, X., Ji, D., Ashry, N.M., Gao, C., Huang, Q., 2019. Soil biofilm formation enhances microbial community diversity and metabolic activity. Environment International 132, 105116
CrossRef Pubmed Google scholar
[64]
Yang, S.S., Qu, C.C., Mukherjee, M., Wu, Y.C., Huang, Q.Y., Cai, P., 2020. Soil phyllosilicate and iron oxide inhibit the quorum sensing of Chromobacterium violaceum. Soil Ecology Letters. https://doi.org/10.1007/s42832-020-0051-5.
[65]
Yazdi, S., Ardekani, A.M., 2012. Bacterial aggregation and biofilm formation in a vortical flow. Biomicrofluidics 6, 44114
CrossRef Pubmed Google scholar
[66]
Zambare, N.M., Lauchnor, E.G., Gerlach, R., 2019. Controlling the distribution of microbially precipitated calcium carbonate in radial flow environments. Environmental Science & Technology 53, 5916–5925
CrossRef Pubmed Google scholar
[67]
Zhang, X., Si, G., Dong, Y., Chen, K., Ouyang, Q., Luo, C., Tu, Y., 2019. Escape band in Escherichia coli chemotaxis in opposing attractant and nutrient gradients. Proceedings of the National Academy of Sciences of the United States of America 116, 2253–2258
CrossRef Pubmed Google scholar
[68]
Zhu, Y., Qiu, Y., Li, B., Wang, S., Li, J., 2019. Transfer dynamics of antibiotic resistance genes in sludge bacterial community using live cell 3D imaging technology. Acta Scientiae Circumstantiae 39, 2218–2223.
[69]
Zhu, Y.G., Shen, R.F., He, J.Z., Wang, Y.F., Han, X.G., Jia, Z.J., 2017. China soil microbiome initiative: progress and perspective. Bulletin of the Chinese Academy of Sciences 32, 554–565.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41877029, 41961130383), Royal Society-Newton Advanced Fellowship (NAF\R1\191017), and Wuhan Science and Technology Bureau (2019020701011469). No potential conflicts of interest were reported by the authors.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1195 KB)

Accesses

Citations

Detail

Sections
Recommended

/