Soil total organic carbon/total nitrogen ratio as a key driver deterministically shapes diazotrophic community assemblages during the succession of biological soil crusts

Lin Xu, Bingchang Zhang, Entao Wang, Bingjian Zhu, Minjie Yao, Chaonan Li, Xiangzhen Li

PDF(1264 KB)
PDF(1264 KB)
Soil Ecology Letters ›› 2021, Vol. 3 ›› Issue (4) : 328-341. DOI: 10.1007/s42832-020-0075-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Soil total organic carbon/total nitrogen ratio as a key driver deterministically shapes diazotrophic community assemblages during the succession of biological soil crusts

Author information +
History +

Highlights

• Biocrust succession alters diazotrophic diversity and community compositions.

• Deterministic processes govern diazotrophic community assemblages.

• The TOC/TN ratio is a key factor driving diazotrophic community succession.

• Diazotrophic networks become less complex with biocrust succession.

Abstract

The diazotrophic community in biological soil crusts (biocrusts) is the key supplier of nitrogen in dryland. To date, there is still limited information on how biocrust development influences the succession of diazotrophic community, and what are the most important factors mediating diazotrophic communities during biocrust succession. Using the high throughput nifH amplicon sequencing, the diazotrophs in soils at different developmental stages of biocrust were comparatively studied. The results evidenced the decrease of TOC/TN ratio and pH value with biocrust development. Nostoc and Scytonema were the most dominant diazotrophic genera at all biocrust stages, while Azospirillum and Bradyrhizobium were abundant only in bare soil. Diazotrophic co-occurrence networks tended to be less complex and less connected with biocrust succession. The soil TOC/TN ratio was the most dominant factor mediating diazotrophic diversity, community composition and assembly processes, while diazotrophic-diversity and NO3-N/NH4+-N ratio were positively correlated with the nitrogenase activity during biocrust succession. This study provided novel understandings of nitrogen fixation and succession patterns of diazotrophic community, by showing the effects of biocrust succession on diazotrophic diversity, community composition, community assembly and co-occurrence networks, and recognizing TOC/TN ratio as the most dominant factor mediating diazotrophs during biocrust succession.

Graphical abstract

Keywords

Biological soil crust succession / nifH amplicon sequencing / Diazotrophs / Community assembly / Co-occurrence networks

Cite this article

Download citation ▾
Lin Xu, Bingchang Zhang, Entao Wang, Bingjian Zhu, Minjie Yao, Chaonan Li, Xiangzhen Li. Soil total organic carbon/total nitrogen ratio as a key driver deterministically shapes diazotrophic community assemblages during the succession of biological soil crusts. Soil Ecology Letters, 2021, 3(4): 328‒341 https://doi.org/10.1007/s42832-020-0075-x

References

[1]
Abed, R.M., Lam, P., de Beer, D., Stief, P., 2013. High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman. ISME Journal 7, 1862–1875
CrossRef Pubmed Google scholar
[2]
Bachelot, B., Uriarte, M., Mcguire, K., 2015. Interactions among mutualism, competition, and predation foster species coexistence in diverse communities. Theoretical Ecology 8, 297–312
CrossRef Google scholar
[3]
Banerjee, S., Kirkby, C.A., Schmutter, D., Bissett, A., Kirkegaard, J.A., Richardson, A.E., 2016. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology & Biochemistry 97, 188–198
CrossRef Google scholar
[4]
Bashan, Y., Holguin, G., de-Bashan, L.E., 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian Journal of Microbiology 50, 521–577
CrossRef Pubmed Google scholar
[5]
Belnap, J., 2002. Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biology and Fertility of Soils 35, 128–135
CrossRef Google scholar
[6]
Belnap, J., Eldridge, D., 2003. Disturbance and Recovery of Biological Soil Crusts. In: Belnap J., Lange O.L. (eds.) Biological Soil Crusts: Structure, Function, and Management. Springer, Berlin, Heidelberg. 363–383
[7]
Belnap, J., Lange, D., 2003. Biological Soil Crusts: Structure, Function, and Management. Springer Berlin Heidelberg.
[8]
Belnap, J., Weber, B., Büdel, B., 2016. Biological Soil Crusts as an Organizing Principle in Drylands. In: Weber, B., Büdel, B., Belnap, J. (eds.). Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies (Analysis and Synthesis). Springer, Cham, 3–13.
[9]
Berry, D., Widder, S., 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology 5, 219
CrossRef Pubmed Google scholar
[10]
Billings, S.A., Schaeffer, S.M., Evans, R.D., 2003. Nitrogen fixation by biological soil crusts and heterotrophic bacteria in an intact Mojave Desert ecosystem with elevated CO2 and added soil carbon. Soil Biology & Biochemistry 35, 643–649
CrossRef Google scholar
[11]
Büdel, B., Dulić, T., Darienko, T., Rybalka, N., Friedl, T., 2016. Cyanobacteria and Algae of Biological Soil Crusts, In: Weber, B., Büdel, B., Belnap, J. (eds.). Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies (Analysis and Synthesis). Springer, Cham, 55–80.
[12]
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336
CrossRef Pubmed Google scholar
[13]
Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S., Naeem, S., 2012. Biodiversity loss and its impact on humanity. Nature 486, 59–67
CrossRef Pubmed Google scholar
[14]
Chase, J.M., Myers, J.A., 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366, 2351–2363
CrossRef Pubmed Google scholar
[15]
Colesie, C., Felde, V.J.M.N.L., Büdel, B., 2016. Composition and Macrostructure of Biological Soil Crusts. In: Weber, B., Büdel, B., Belnap, J. (eds.). Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies (Analysis and Synthesis). Springer, Cham, Berlin, 159–172.
[16]
Cordero, O.X., Wildschutte, H., Kirkup, B., Proehl, S., Ngo, L., Hussain, F., Le Roux, F., Mincer, T., Polz, M.F., 2012. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337, 1228–1231
CrossRef Pubmed Google scholar
[17]
Dai, W., Bai, E., Li, W., Jiang, P., Dai, G., Zheng, X., 2020. Predicting plant–soil N cycling and soil N2O emissions in a Chinese old-growth temperate forest under global changes: uncertainty and implications. Soil Ecology Letters 2, 73–82
CrossRef Google scholar
[18]
Delgado-Baquerizo, M., Reith, F., Dennis, P.G., Hamonts, K., Powell, J.R., Young, A., Singh, B.K., Bissett, A., 2018. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology 99, 583–596
CrossRef Pubmed Google scholar
[19]
Deng, Y., Jiang, Y.H., Yang, Y., He, Z., Luo, F., Zhou, J., 2012. Molecular ecological network analyses. BMC Bioinformatics 13, 113
CrossRef Pubmed Google scholar
[20]
Dufrene, M., Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345–366
CrossRef Google scholar
[21]
Dumbrell, A.J., Nelson, M., Helgason, T., Dytham, C., Fitter, A.H., 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME Journal 4, 337–345
CrossRef Pubmed Google scholar
[22]
Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics (Oxford, England) 27, 2194–2200
CrossRef Pubmed Google scholar
[23]
Eldridge, D.J., Delgado-Baquerizo, M., 2019. The influence of climatic legacies on the distribution of dryland biocrust communities. Global Change Biology 25, 327–336
CrossRef Pubmed Google scholar
[24]
Eldridge, D.J., Greene, R., 1994. Microbiotic soil crusts- a review of their roles in soil and ecological processes in the rangelands of Australia. Soil Research (Collingwood, Vic.) 32, 389–415
CrossRef Google scholar
[25]
Fan, K., Weisenhorn, P., Gilbert, J.A., Shi, Y., Bai, Y., Chu, H., 2018. Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biology & Biochemistry 121, 185–192
CrossRef Google scholar
[26]
Farnelid, H., Bentzon-Tilia, M., Andersson, A.F., Bertilsson, S., Jost, G., Labrenz, M., Jürgens, K., Riemann, L., 2013. Active nitrogen-fixing heterotrophic bacteria at and below the chemocline of the central Baltic Sea. ISME Journal 7, 1413–1423
CrossRef Pubmed Google scholar
[27]
Ferrenberg, S., O’Neill, S.P., Knelman, J.E., Todd, B., Duggan, S., Bradley, D., Robinson, T., Schmidt, S.K., Townsend, A.R., Williams, M.W., Cleveland, C.C., Melbourne, B.A., Jiang, L., Nemergut, D.R., 2013. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME Journal 7, 1102–1111
CrossRef Pubmed Google scholar
[28]
Fierer, N., Leff, J.W., Adams, B.J., Nielsen, U.N., Bates, S.T., Lauber, C.L., Owens, S., Gilbert, J.A., Wall, D.H., Caporaso, J.G., 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America 109, 21390–21395
CrossRef Pubmed Google scholar
[29]
Fine, P.V., Kembel, S.W., 2011. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34, 552–565
CrossRef Google scholar
[30]
Fleming, E.D., Castenholz, R.W., 2007. Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environmental Microbiology 9, 1448–1455
CrossRef Pubmed Google scholar
[31]
Gaby, J.C., Rishishwar, L., Valderrama-Aguirre, L.C., Green, S.J., Valderrama-Aguirre, A., Jordan, I.K., Kostka, J.E., 2018. Diazotroph community characterization via a high-throughput nifH amplicon sequencing and analysis pipeline. Applied and Environmental Microbiology 84, e01512–e01517
Pubmed
[32]
Hara, S., Morikawa, T., Wasai, S., Kasahara, Y., Koshiba, T., Yamazaki, K., Fujiwara, T., Tokunaga, T., Minamisawa, K., 2019. Identification of nitrogen-fixing Bradyrhizobium associated with roots of field-grown sorghum by metagenome and proteome analyses. Frontiers in Microbiology 10, 407
CrossRef Pubmed Google scholar
[33]
Hardy, R.W., Holsten, R.D., Jackson, E.K., Burns, R.C., 1968. The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiology 43, 1185–1207
CrossRef Pubmed Google scholar
[34]
Housman, D.C., Powers, H.H., Collins, A.D., Belnap, J., 2006. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. Journal of Arid Environments 66, 620–634
CrossRef Google scholar
[35]
Huson, D.H., Auch, A.F., Qi, J., Schuster, S.C., 2007. MEGAN analysis of metagenomic data. Genome Research 17, 377–386
CrossRef Pubmed Google scholar
[36]
Kim, M., Or, D., 2017. Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts. Biogeosciences 14, 5403–5424
CrossRef Google scholar
[37]
Koponen, P., Nygren, P., Domenach, A.M., Le Roux, C., Saur, E., Roggy, J.C., 2003. Nodulation and dinitrogen fixation of legume trees in a tropical freshwater swamp forest in French Guiana. Journal of Tropical Ecology 19, 655–666
CrossRef Google scholar
[38]
Lan, S., Li, W., Zhang, D., Hu, C., 2012. Composition of photosynthetic organisms and diurnal changes of photosynthetic efficiency in algae and moss crusts. Plant and Soil 351, 325–336
CrossRef Google scholar
[39]
Levins, R., 1968. Evolution in Changing Environments: Some Theoretical Explorations. Princeton University Press.
[40]
Logares, R., Lindström, E.S., Langenheder, S., Logue, J.B., Paterson, H., Laybourn-Parry, J., Rengefors, K., Tranvik, L., Bertilsson, S., 2013. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME Journal 7, 937–948
CrossRef Pubmed Google scholar
[41]
Lupatini, M., Suleiman, A.K.A., Jacques, R.J.S., Antoniolli, Z.I., de Siqueira Ferreira, A., Kuramae, E.E., Roesch, L.F.W., 2014. Network topology reveals high connectance levels and few key microbial genera within soils. Frontiers in Environmental Science 2, 10
CrossRef Google scholar
[42]
Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., García-Gómez, M., Bowker, M.A., Soliveres, S., Escolar, C., García-Palacios, P., Berdugo, M., Valencia, E., Gozalo, B., Gallardo, A., Aguilera, L., Arredondo, T., Blones, J., Boeken, B., Bran, D., Conceição, A.A., Cabrera, O., Chaieb, M., Derak, M., Eldridge, D.J., Espinosa, C.I., Florentino, A., Gaitán, J., Gatica, M.G., Ghiloufi, W., Gómez-González, S., Gutiérrez, J.R., Hernández, R.M., Huang, X., Huber-Sannwald, E., Jankju, M., Miriti, M., Monerris, J., Mau, R.L., Morici, E., Naseri, K., Ospina, A., Polo, V., Prina, A., Pucheta, E., Ramírez-Collantes, D.A., Romão, R., Tighe, M., Torres-Díaz, C., Val, J., Veiga, J.P., Wang, D., Zaady, E., 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218
CrossRef Pubmed Google scholar
[43]
Maier, S., Tamm, A., Wu, D., Caesar, J., Grube, M., Weber, B., 2018. Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME Journal 12, 1032–1046
CrossRef Pubmed Google scholar
[44]
Mugnai, G., Rossi, F., Felde, V.J.M.N.L., Colesie, C., Büdel, B., Peth, S., Kaplan, A., De Philippis, R., 2018. Development of the polysaccharidic matrix in biocrusts induced by a cyanobacterium inoculated in sand microcosms. Biology and Fertility of Soils 54, 27–40
CrossRef Google scholar
[45]
Newman, M.E., 2006. Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America 103, 8577–8582
CrossRef Pubmed Google scholar
[46]
Pande, S., Kost, C., 2017. Bacterial unculturability and the formation of intercellular metabolic networks. Trends in Microbiology 25, 349–361
CrossRef Pubmed Google scholar
[47]
Pande, S., Merker, H., Bohl, K., Reichelt, M., Schuster, S., de Figueiredo, L.F., Kaleta, C., Kost, C., 2014. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME Journal 8, 953–962
CrossRef Pubmed Google scholar
[48]
Pandit, S.N., Kolasa, J., Cottenie, K., 2009. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262
CrossRef Pubmed Google scholar
[49]
Pepe-Ranney, C., Koechli, C., Potrafka, R., Andam, C., Eggleston, E., Garcia-Pichel, F., Buckley, D.H., 2016. Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation. ISME Journal 10, 287–298
CrossRef Pubmed Google scholar
[50]
Pritschet, L., Powell, D., Horne, Z., 2016. Marginally significant effects as evidence for hypotheses: Changing attitudes over four decades. Psychological Science 27, 1036–1042
CrossRef Pubmed Google scholar
[51]
Pushkareva, E., Kvíderová, J., Šimek, M., Elster, J., 2017. Nitrogen fixation and diurnal changes of photosynthetic activity in Arctic soil crusts at different development stage. European Journal of Soil Biology 79, 21–30
CrossRef Google scholar
[52]
R-Core-Development-Team, 2010. R: A language and environment for statistical computing. Computing 14, 12–21.
[53]
Rominger, A.J., Miller, T.E., Collins, S.L., 2009. Relative contributions of neutral and niche-based processes to the structure of a desert grassland grasshopper community. Oecologia 161, 791–800
CrossRef Pubmed Google scholar
[54]
Rosentreter, R., Eldridge, D.J., Westberg, M., Williams, L., Grube, M., 2016. Structure, Composition, and Function of Biocrust Lichen Communities. In: Weber, B., Büdel, B., Belnap, J. (eds.). Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies (Analysis and Synthesis). Springer, Cham, 121–138.
[55]
Santos, H.F., Carmo, F.L., Duarte, G., Dini-Andreote, F., Castro, C.B., Rosado, A.S., van Elsas, J.D., Peixoto, R.S., 2014. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME Journal 8, 2272–2279
CrossRef Pubmed Google scholar
[56]
Schöler, A., Jacquiod, S., Vestergaard, G., Schulz, S., Schloter, M., 2017. Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biology and Fertility of Soils 53, 485–489
CrossRef Google scholar
[57]
Seth, E.C., Taga, M.E., 2014. Nutrient cross-feeding in the microbial world. Frontiers in Microbiology 5, 350
CrossRef Pubmed Google scholar
[58]
Sieber, J.R., McInerney, M.J., Gunsalus, R.P., 2012. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annual Review of Microbiology 66, 429–452
CrossRef Pubmed Google scholar
[59]
Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., Rockhold, M.L., Konopka, A., 2013. Quantifying community assembly processes and identifying features that impose them. ISME Journal 7, 2069–2079
CrossRef Pubmed Google scholar
[60]
Stegen, J.C., Lin, X., Konopka, A.E., Fredrickson, J.K., 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME Journal 6, 1653–1664
CrossRef Pubmed Google scholar
[61]
Stephen, A., Jack, A., Jonathan, W., Seren, M., Caitlyn, M., Mary, R., Benjamin, L., Francis, Q., Krista, L., 2017. Consequences of tropical forest conversion to oil palm on soil bacterial community and network structure. Soil Biology & Biochemistry 112, 258–268
CrossRef Google scholar
[62]
Vellend, M., 2010. Conceptual synthesis in community ecology. Quarterly Review of Biology 85, 183–206
CrossRef Pubmed Google scholar
[63]
Vellend, M., Srivastava, D.S., Anderson, K.M., Brown, C.D., Jankowski, J.E., Kleynhans, E.J., Kraft, N.J., Letaw, A.D., Macdonald, A.A.M., Maclean, J.E., Myers-Smith, I.H., Norris, A.R., Xue, X., 2014. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430
CrossRef Google scholar
[64]
Vestergaard, G., Schulz, S., Schöler, A., Schloter, M., 2017. Making big data smart—how to use metagenomics to understand soil quality. Biology and Fertility of Soils 53, 479–484
CrossRef Google scholar
[65]
Vitousek, P.M., Cassman, K., Cleveland, C., Crews, T., Field, C.B., Grimm, N.B., Howarth, R.W., Marino, R., Martinelli, L., Rastetter, E.B., 2002. Towards an Ecological Understanding of Biological Nitrogen Fixation, In: Boyer, E.W., Howarth R.W. (eds.). The Nitrogen Cycle at Regional to Global Scales. Springer, Dordrecht. 1–45.
[66]
Wang, Q., Quensen, J.F. 3rd, Fish, J.A., Lee, T.K., Sun, Y., Tiedje, J.M., Cole, J.R., 2013. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. mBio 4, e00592–e13
CrossRef Pubmed Google scholar
[67]
Wang, Y., Li, C., Kou, Y., Wang, J., Tu, B., Li, H., Li, X., Wang, C., Yao, M., 2017a. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows. Soil Biology & Biochemistry 115, 547–555
CrossRef Google scholar
[68]
Wang, Y., Li, C., Shen, Z., Rui, J., Jin, D., Li, J., Li, X., 2019. Community assemblage of free-living diazotrophs along the elevational gradient of Mount Gongga. Soil Ecology Letters 1, 136–146
CrossRef Google scholar
[69]
Wang, Y., Li, H., Li, J., Li, X., 2017b. The diversity and co-occurrence patterns of diazotrophs in the steppes of Inner Mongolia. Catena 157, 130–138
CrossRef Google scholar
[70]
Webb, C.O., Ackerly, D.D., Kembel, S.W., 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics (Oxford, England) 24, 2098–2100
CrossRef Pubmed Google scholar
[71]
Weber, B., Bowker, M., Zhang, Y., Belnap, J., 2016. Natural Recovery of Biological Soil Crusts After Disturbance. In: Weber, B., Büdel, B., Belnap, J. (eds.). Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies (Analysis and Synthesis). Springer, Cham, 479–498.
[72]
Wirtz, N., Lumbsch, H.T., Green, T.A., Türk, R., Pintado, A., Sancho, L., Schroeter, B., 2003. Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytologist 160, 177–183
CrossRef Google scholar
[73]
Wu, N., Zhang, Y.M., Downing, A., 2009. Comparative study of nitrogenase activity in different types of biological soil crusts in the Gurbantunggut Desert, Northwestern China. Journal of Arid Environments 73, 828–833
CrossRef Google scholar
[74]
Xu, L., Zhu, B., Li, C., Yao, M., Zhang, B., Li, X., 2020. Development of biological soil crust prompts convergent succession of prokaryotic communities. Catena 187, 104360
CrossRef Google scholar
[75]
Yao, M., Rui, J., Niu, H., Heděnec, P., Li, J., He, Z., Wang, J., Cao, W., Li, X., 2017. The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe. Catena 152, 47–56
CrossRef Google scholar
[76]
Yeager, C.M., Kornosky, J.L., Housman, D.C., Grote, E.E., Belnap, J., Kuske, C.R., 2004. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Applied and Environmental Microbiology 70, 973–983
CrossRef Pubmed Google scholar
[77]
Zehr, J.P., McReynolds, L.A., 1989. Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Applied and Environmental Microbiology 55, 2522–2526
CrossRef Pubmed Google scholar
[78]
Zhang, B., Kong, W., Wu, N., Zhang, Y., 2016. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China. Journal of Basic Microbiology 56, 670–679
CrossRef Pubmed Google scholar
[79]
Zhang, B., Zhang, Y., Li, X., Zhang, Y., 2018. Successional changes of fungal communities along the biocrust development stages. Biology and Fertility of Soils 54, 285–294
CrossRef Google scholar
[80]
Zhang, B., Zhou, X., Zhang, Y., 2015. Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang. Journal of Arid Land 7, 101–109
CrossRef Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (32071548, 31670503, 42077206), the National Key Research and Development Program of China (2018YFE0107000), the 13th Five-year Informatization Plan of Chinese Academy of Sciences (XXH13503-03-106), the National Science Fund for Distinguished Young Scholars (41925028) and China Biodiversity Observation Networks (Sino BON). We thank the colleagues in Xinjiang Institute of Ecology and Geography, CAS for their help in field sampling and in providing environmental data.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1264 KB)

Accesses

Citations

Detail

Sections
Recommended

/