Revisiting mycorrhizal dogmas: Are mycorrhizas really functioning as they are widely believed to do?
Felipe E. Albornoz, Kingsley W. Dixon, Hans Lambers
Revisiting mycorrhizal dogmas: Are mycorrhizas really functioning as they are widely believed to do?
[1] |
bbott, L.K., Robson, A.D., De Boer, G., 1984. The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum. New Phytologist 97, 437–446
CrossRef
Google scholar
|
[2] |
Abrahão, A., Lambers, H., Sawaya, A.C.H.F., Mazzafera, P., Oliveira, R.S., 2014. Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus. Oecologia 176, 345–355
CrossRef
Google scholar
|
[3] |
Albornoz, F.E., Burgess, T.I., Lambers, H., Etchells, H., Laliberté, E., 2017. Native soil-borne pathogens equalise differences in competitive ability between plants of contrasting nutrient-acquisition strategies. Journal of Ecology 105, 549–557
CrossRef
Google scholar
|
[4] |
Allsopp, N., Colville, J.F., Verboom, G.A., 2014. Fynbos: Ecology, Evolution, and Conservation of a Megadiverse Region. Oxford University Press, Oxford.
|
[5] |
Arvieu, J.C., Leprince, F., Plassard, C., 2003. Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution. Annals of Forest Science 60, 815–821
CrossRef
Google scholar
|
[6] |
Bell, T.L., Pate, J.S., 1996. Nitrogen and phosphorus nutrition in mycorrhizal Epacridaceae of south-west Australia. Annals of Botany 77, 389–398
CrossRef
Google scholar
|
[7] |
Bethlenfalvay, G.J., Franson, R.L., 1989. Manganese toxicity alleviated by mycorrhizae in soybean. Journal of Plant Nutrition 12, 953–970
CrossRef
Google scholar
|
[8] |
Bethlenfalvay, G.J., Pacovsky, R.S., Brown, M.S., 1982. Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: development of the endophyte. Phytopathology 72, 894–897
CrossRef
Google scholar
|
[9] |
Bolan, N.S., Robson, A.D., Barrow, N.J., 1984. Increasing phosphorus supply can increase the infection of plant roots by vesicular-arbuscular mycorrhizal fungi. Soil Biology & Biochemistry 16, 419–420
CrossRef
Google scholar
|
[10] |
Bolan, N.S., Robson, A.D., Barrow, N.J., 1987. Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant and Soil 99, 401–410
CrossRef
Google scholar
|
[11] |
Boulet, F., Lambers, H., 2005. Characterisation of arbuscular mycorrhizal fungi colonisation in cluster roots of shape Hakea verrucosa F. Muell (Proteaceae), and its effect on growth and nutrient acquisition in ultramafic soil. Plant and Soil 269, 357–367
CrossRef
Google scholar
|
[12] |
Bourles, A., Guentas, L., Charvis, C., Gensous, S., Majorel, C., Crossay, T., Cavaloc, Y., Burtet-Sarramegna, V., Jourand, P., Amir, H., 2020. Co-inoculation with a bacterium and arbuscular mycorrhizal fungi improves root colonization, plant mineral nutrition, and plant growth of a Cyperaceae plant in an ultramafic soil. Mycorrhiza 30, 121–131
CrossRef
Google scholar
|
[13] |
Bouwens, L., Longin, J., 1979. Le du manganèse foliaire dans les strates herbacées en rapport avec l'écophysiologie des plantes calcicoles et calcifuges. Bulletin de la Société Royale de Botanique de Belgique / Bulletin van de Koninklijke Belgische Botanische Vereniging 112, 243–251.
|
[14] |
Bowen, G.D., Smith, S.E., 1981. The effects of mycorrhizas on nitrogen uptake by plants. Ecological Bulletins 33, 237–247.
|
[15] |
Brundrett, M.C., 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 320, 37–77
CrossRef
Google scholar
|
[16] |
Brundrett, M.C., 2017. Distribution and evolution of mycorrhizal types and other specialised roots in Australia. In: Tedersoo, L., ed. Biogeography of Mycorrhizal Symbiosis. Springer International Publishing, Cham, pp. 361–394.
|
[17] |
Brundrett, M.C., Abbott, L.K., the Mycorrhizal Associations of Shrubs and Herbaceous Plants, 1991. Roots of jarrah forest plants. I. Mycorrhizal associations of shrubs and herbaceous plants. Australian Journal of Botany 39, 445–457
CrossRef
Google scholar
|
[18] |
Brundrett, M.C., Tedersoo, L., 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 220, 1108–1115
CrossRef
Google scholar
|
[19] |
Cairney, J.W.G., 2000. Evolution of mycorrhiza systems. Naturwissenschaften 87, 467–475
CrossRef
Google scholar
|
[20] |
Canton, G.C., Bertolazi, A.A., Cogo, A.J.D., Eutrópio, F.J., Melo, J., De Souza, S.B.A., Krohling, C., Campostrini, E., Da Silva, A.G., Façanha, A.R., Sepúlveda, N., Cruz, C., Ramos, A.C., 2016. Biochemical and ecophysiological responses to manganese stress by ectomycorrhizal fungus Pisolithus tinctorius and in association with Eucalyptus grandis. Mycorrhiza 26, 475–487
CrossRef
Google scholar
|
[21] |
Christenhusz, M.J., Byng, J.W., 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217
CrossRef
Google scholar
|
[22] |
Christenhusz, M.J.M., Fay, M.F., Byng, J.W., eds., 2018. Plant Gateways–The Global-Flora-A Practical Flora to Vascular Plant Species of the World.Plant Gateway Ltd, Bradford.
|
[23] |
Dickie, I.A., Martínez-García, L.B., Koele, N., Grelet, G.A., Tylianakis, J.M., Peltzer, D.A., Richardson, S.J., 2013. Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant and Soil 367, 11–39
CrossRef
Google scholar
|
[24] |
Dixon, K.W., Kell, S.P., Barrett, R.L., Cribb, P.J., eds., 2003. Orchid Conservation. Natural History Publications. Kota Kinabalu, Sabah.
|
[25] |
Dixon, K.W., Sivasithamparam, K., Read, D.J., 2002. Ericoid Mycorrhizas in Plant Communities In: Sivasithamparama, K., Dixon, K.W., Barrett, R.L., eds.. Microorganisms in Plant Conservation and Biodiversity. Springer, Dordrecht.
|
[26] |
Fernandes, G.W., 2016. Ecology and Conservation of Mountaintop Grasslands in Brazil.Springer, Cham.
|
[27] |
Ferrol, N., Tamayo, E., Vargas, P., 2016. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. Journal of Experimental Botany 67, 6253–6265
CrossRef
Google scholar
|
[28] |
Fochi, V., Falla, N., Girlanda, M., Perotto, S., Balestrini, R., 2017. Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae. Plant Science 263, 39–45
CrossRef
Google scholar
|
[29] |
Francis, R., Read, D.J., 1994. The contributions of mycorrhizal fungi to the determination of plant community structure. Plant and Soil 159, 11–25
CrossRef
Google scholar
|
[30] |
Francis, R., Read, D.J., 1995. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Canadian Journal of Botany 73, 1301–1309
CrossRef
Google scholar
|
[31] |
Frank, A.B., 1885. Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unteriridische Pilze. Berichte der Deutschen Botanischen Gesellschaft 3, 128–145.
|
[32] |
Gardner, W.K., Parbery, D.G., Barber, D.A., 1981. Proteoid root morphology and function in Lupinus albus. Plant and Soil 60, 143–147
CrossRef
Google scholar
|
[33] |
Gardner, W.K., Parbery, D.G., Barber, D.A., 1982. The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface. Plant and Soil 68, 19–32
CrossRef
Google scholar
|
[34] |
Gebauer, G., Meyer, M., 2003. 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytologist 160, 209–223
CrossRef
Google scholar
|
[35] |
Gebauer, G., Preiss, K., Gebauer, A.C., 2016. Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytologist 211, 11–15
CrossRef
Google scholar
|
[36] |
Govaerts, R., Pfahl, J., Campacci, M., Holland Baptista, D., Tigges, H., Shaw, J., Cribb, P., George, A., Kreuz, K., Wood, J., 2016. World checklist of Orchidaceae. The board of trustees of the Royal Botanic Gardens, Kew.
|
[37] |
Hamim, A., Miché, L., Douaik, A., Mrabet, R., Ouhammou, A., Duponnois, R., Hafidi, M., 2017. Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems. Comptes Rendus Biologies 340, 226–237
CrossRef
Google scholar
|
[38] |
Hashem, A.R., 1995. The role of mycorrhizal infection in the resistance of Vaccinium macrocarpon to manganese. Mycorrhiza 5, 289–291
CrossRef
Google scholar
|
[39] |
Hill, E.M., Robinson, L.A., Abdul-Sada, A., Vanbergen, A.J., Hodge, A., Hartley, S.E., 2018. Arbuscular mycorrhizal fungi and plant chemical defence: effects of colonisation on aboveground and belowground metabolomes. Journal of Chemical Ecology 44, 198–208
CrossRef
Google scholar
|
[40] |
Hinsley, A., De Boer, H.J., Fay, M.F., Gale, S.W., Gardiner, L.M., Gunasekara, R.S., Kumar, P., Masters, S., Metusala, D., Roberts, D.L., Veldman, S., Wong, S., Phelps, J., 2017. A review of the trade in orchids and its implications for conservation. Botanical Journal of the Linnean Society 186, 435–455
CrossRef
Google scholar
|
[41] |
Hopkins, N.A., 1987. Mycorrhizae in a California serpentine grassland community. Canadian Journal of Botany 65, 484–487
CrossRef
Google scholar
|
[42] |
Hopper, S.D., 2009. OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant and Soil 322, 49–86
CrossRef
Google scholar
|
[43] |
Jacott, C., Murray, J., Ridout, C., 2017. Trade-offs in arbuscular mycorrhizal symbiosis: disease resistance, growth responses and perspectives for crop breeding. Agronomy (Basel) 7, 75
CrossRef
Google scholar
|
[44] |
Jacquemyn, H., Merckx, V.S.F.T., 2019. Mycorrhizal symbioses and the evolution of trophic modes in plants. Journal of Ecology 107, 1567–1581
CrossRef
Google scholar
|
[45] |
Javelle, A., André, B., Marini, A.M., Chalot, M., 2003. High-affinity ammonium transporters and nitrogen sensing in mycorrhizas. Trends in Microbiology 11, 53–55
CrossRef
Google scholar
|
[46] |
Johnson, N.C., Graham, J.H., Smith, F.A., 1997. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytologist 135, 575–585
CrossRef
Google scholar
|
[47] |
Kadam, S.B., Pable, A.A., Barvkar, V.T., 2020. Mycorrhiza induced resistance (MIR): a defence developed through synergistic engagement of phytohormones, metabolites and rhizosphere. Functional Plant Biology 47, 880–890
CrossRef
Google scholar
|
[48] |
Kohout, P., 2017. Biogeography of ericoid mycorrhiza. In: Tedersoo, L., ed. Biogeography of Mycorrhizal Symbiosis. Springer International Publishing, Cham. pp. 179–193.
|
[49] |
Kooyman, R.M., Laffan, S.W., Westoby, M., 2017. The incidence of low phosphorus soils in Australia. Plant and Soil 412, 143–150
CrossRef
Google scholar
|
[50] |
Korcak, R.F., 1987. Satisfying and altering edaphic requirements for acidophilic plants. Journal of Plant Nutrition 10, 1071–1078
CrossRef
Google scholar
|
[51] |
Kula, E., Wildová, E., Hrdlička, P., 2018. Accumulation and dynamics of manganese content in bilberry (Vaccinium myrtillus L.). Environmental Monitoring and Assessment 190, 224
CrossRef
Google scholar
|
[52] |
Lagrange, A., Ducousso, M., Jourand, P., Majorel, C., Amir, H., 2011. New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Canadian Journal of Microbiology 57, 21–28
CrossRef
Google scholar
|
[53] |
Laliberté, E., Lambers, H., Burgess, T.I., Wright, S.J., 2015. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytologist 206, 507–521
CrossRef
Google scholar
|
[54] |
Lambers, H., ed., 2014. Plant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot. University of Western Australia Publishing, Crawley, Australia.
|
[55] |
Lambers, H., Albornoz, F., Kotula, L., Laliberté, E., Ranathunge, K., Teste, F.P., Zemunik, G., 2018. How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant and Soil 424, 11–34
CrossRef
Google scholar
|
[56] |
Lambers, H., Clements, J.C., Nelson, M.N., 2013. How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). American Journal of Botany 100, 263–288
CrossRef
Google scholar
|
[57] |
Lambers, H., Guilherme Pereira, C., Wright, I.J., Bellingham, P.J., Bentley, L.P., Boonman, A., Cernusak, L.A., Foulds, W., Gleason, S.M., Gray, E.M., Hayes, P.E., Kooyman, R.M., Malhi, Y., Richardson, S.J., Shane, M.W., Staudinger, C., Stock, W.D., Swarts, N.G., Turner, B.L., Turner, J., Veneklaas, E.J., Wasaki, J., Westoby, M., Xu, Y., 2021. Leaf manganese concentrations as a tool to assess belowground plant functioning in phosphorus-impoverished environments. Plant and Soil (In press). https://doi.org/10.1007/s11104-020-04690-2
|
[58] |
Lambers, H., Hayes, P.E., Laliberté, E., Oliveira, R.S., Turner, B.L., 2015. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends in Plant Science 20, 83–90
CrossRef
Google scholar
|
[59] |
Lambers, H., Raven, J.A., Shaver, G.R., Smith, S.E., 2008. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution 23, 95–103
CrossRef
Google scholar
|
[60] |
Leake, J.R., Read, D.J., 1989. The biology of mycorrhiza in the Ericaceae. New Phytologist 113, 535–544
CrossRef
Google scholar
|
[61] |
Leake, J.R., Read, D.J., 1991. Experiments with ericoid mycorrhiza. Methods in Microbiology 23, 435–459
CrossRef
Google scholar
|
[62] |
Leake, J.R., Read, D.J., 1994. The biology of myco-heterotrophic (‘saprophytic’) plants. XIII. Some characteristics of the extracellular proteinase activity of the ericoid endophyte Hymenoscyphus ericae. New Phytologist 127, 171–216
CrossRef
Google scholar
|
[63] |
Liebel, H.T., Bidartondo, M.I., Preiss, K., Segreto, R., Stöckel, M., Rodda, M., Gebauer, G., 2010. C and N stable isotope signatures reveal constraints to nutritional modes in orchids from the Mediterranean and Macaronesia. American Journal of Botany 97, 903–912
CrossRef
Google scholar
|
[64] |
Luteyn, J.L., 2002. Diversity, adaptation, and endemism in neotropical Ericaceae: biogeographical patterns in the Vaccinieae. Botanical Review 68, 55–87
CrossRef
Google scholar
|
[65] |
Marulanda, A., Azcón, R., Ruiz-Lozano, J.M., 2003. Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiologia Plantarum 119, 526–533
CrossRef
Google scholar
|
[66] |
Marx, D.H., 1972. Ectomycorrhizae as biological deterrents to pathogenic root infections. Annual Review of Phytopathology 10, 429–454
CrossRef
Google scholar
|
[67] |
Mccormick, M.K., Whigham, D.F., Canchani-Viruet, A., 2018. Mycorrhizal fungi affect orchid distribution and population dynamics. New Phytologist 219, 1207–1215
CrossRef
Google scholar
|
[68] |
Merckx, V., Freudenstein, J.V., 2010. Evolution of mycoheterotrophy in plants: a phylogenetic perspective. New Phytologist 185, 605–609
CrossRef
Google scholar
|
[69] |
Millaleo, R., Alvear, M., Aguilera, P., González-Villagra, J., De La Luz Mora, M., Alberdi, M. & Reyes-Díaz, M., 2020. Mn toxicity differentially affects physiological and biochemical features in highbush blueberry (Vaccinium corymbosum L.) cultivars. Journal of Soil Science and Plant Nutrition 20, 795–805.
|
[70] |
Mustafa, G., Khong, N.G., Tisserant, B., Randoux, B., Fontaine, J., Magnin-Robert, M., Reignault, P., Sahraoui, A.L.H., 2017. Defence mechanisms associated with mycorrhiza-induced resistance in wheat against powdery mildew. Functional Plant Biology 44, 443–454
CrossRef
Google scholar
|
[71] |
Nge, F.J., Cambridge, M.L., Ellsworth, D.S., Zhong, H., Lambers, H., 2020. Cluster roots are common in Daviesia and allies (Mirbelioids; Fabaceae). Journal of the Royal Society of Western Australia 103, 111–118.
|
[72] |
Nurfadilah, S., Swarts, N.D., Dixon, K.W., Lambers, H., Merritt, D.J., 2013. Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Annals of Botany 111, 1233–1241
CrossRef
Google scholar
|
[73] |
Ojeda, F., Arroyo, J., Marañón, T., 1998. The phytogeography of European and Mediterranean heath species (Ericoideae, Ericaceae): a quantitative analysis. Journal of Biogeography 25, 165–178
CrossRef
Google scholar
|
[74] |
Ojeda, F., Arroyo, J., Marañón, T., 2000. Ecological distribution of four co-occurring Mediterranean heath species. Ecography 23, 148–159
CrossRef
Google scholar
|
[75] |
Pairunan, A.K., Robson, A.D., Abbott, L.K., 1980. The effectiveness of vesicular-arbuscular mycorrhizas in increasing growth and phosphorus uptake of subterranean clover from phosphorus sources of different solubilities. New Phytologist 84, 327–338
CrossRef
Google scholar
|
[76] |
Pang, J., Ruchi, B., Zhao, H., Bansal, R., Bohuon, E., Lambers, H., Ryan, M.H., Ranathunge, K., Siddique, K.M.H., 2018. The carboxylate-releasing phosphorus-mobilising strategy could be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. New Phytologist 219, 518–529
CrossRef
Google scholar
|
[77] |
Parfitt, R.L., 1979. The availability of P from phosphate-goethite bridging complexes. Desorption and uptake by ryegrass. Plant and Soil 53, 55–65
CrossRef
Google scholar
|
[78] |
Pillon, Y., Petit, D., Gady, C., Soubrand, M., Joussein, E., Saladin, G., 2018. Ionomics suggests niche differences between sympatric heathers (Ericaceae). Plant and Soil 434, 481–489
CrossRef
Google scholar
|
[79] |
Pirie, M.D., Oliver, E.G.H., Gehrke, B., Heringer, L., Mugrabi De Kuppler, A., Le Maitre, N.C., Bellstedt, D.U., 2017. Underestimated regional species diversity in the Cape Floristic Region revealed by phylogenetic analysis of the Erica abietinal E. viscaria clade (Ericaceae). Botanical Journal of the Linnean Society 184, 185–203
CrossRef
Google scholar
|
[80] |
Poca, M., Coomans, O., Urcelay, C., Zeballos, S.R., Bodé, S., Boeckx, P., 2019. Isotope fractionation during root water uptake by Acacia caven is enhanced by arbuscular mycorrhizas. Plant and Soil 441, 485–497
CrossRef
Google scholar
|
[81] |
Prosser, J.I., 2013. Think before you sequence. Nature 494, 41–41.
|
[82] |
Rasmussen, H.N., Rasmussen, F.N., 2009. Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118, 334–345
CrossRef
Google scholar
|
[83] |
Raven, J.A., Lambers, H., Smith, S.E., Westoby, M., 2018. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytologist 217, 1420–1427
CrossRef
Google scholar
|
[84] |
Read, D.J., 1991. Mycorrhizas in ecosystems. Experientia 47, 376–391
CrossRef
Google scholar
|
[85] |
Reddell, P., Yun, Y., Shipton, W.A., 1997. Cluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supply. Australian Journal of Botany 45, 41–51
CrossRef
Google scholar
|
[86] |
Rillig, M.C., Mummey, D.L., 2006. Mycorrhizas and soil structure. New Phytologist 171, 41–53
CrossRef
Google scholar
|
[87] |
Ryan, M.H., Graham, J.H., 2018. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytologist 220, 1092–1107
CrossRef
Google scholar
|
[88] |
Ryan, M.H., Tibbett, M., Edmonds-Tibbett, T., Suriyagoda, L.D.B., Lambers, H., Cawthray, G.R., Pang, J., 2012. Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and mycorrhizal symbiosis in plant phosphorus acquisition. Plant, Cell & Environment 35, 2061–2220
CrossRef
Google scholar
|
[89] |
Schwery, O., Onstein, R.E., Bouchenak-Khelladi, Y., Xing, Y., Carter, R.J., Linder, H.P., 2015. As old as the mountains: the radiations of the Ericaceae. New Phytologist 207, 355–367
CrossRef
Google scholar
|
[90] |
Selosse, M.A., Boullard, B., Richardson, D., 2011. Noël Bernard (1874–1911): orchids to symbiosis in a dozen years, one century ago. Symbiosis 54, 61–68
CrossRef
Google scholar
|
[91] |
Shi, W., Zhang, Y., Chen, S., Polle, A., Rennenberg, H., Luo, Z.B., 2019. Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant, Cell & Environment 42, 1087–1103
CrossRef
Google scholar
|
[92] |
Smith, S.E., Jakobsen, I., Grønlund, M., Smith, F.A., 2011. Roles of arbuscular mycorrhizas in plant phosphorus (P) nutrition: interactions between pathways of P uptake in arbuscular mycorrhizal (AM) roots have important implications for understanding and manipulating plant P acquisition. Plant Physiology 156, 1050–1057
CrossRef
Google scholar
|
[93] |
Smith, S.E., Read, D.J., 2008. Mycorrhizal Symbiosis. Academic Press and Elsevier, London.
|
[94] |
Smith, S.E., Smith, F.A., Jakobsen, I., 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133, 16–20
CrossRef
Google scholar
|
[95] |
Soudzilovskaia, N.A., Vaessen, S., Barcelo, M., He, J., Rahimlou, S., Abarenkov, K., Brundrett, M.C., Gomes, S.I.F., Merckx, V., Tedersoo, L., 2020. FungalRoot: global online database of plant mycorrhizal associations. New Phytologist 227, 955–966
CrossRef
Google scholar
|
[96] |
Soudzilovskaia, N.A., Van Bodegom, P.M., Terrer, C., Van’t Zelfde, M., Mccallum, I., Luke Mccormack, M., Fisher, J.B., Brundrett, M.C., De Sá, N.C., Tedersoo, L., 2019. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nature Communications 10, 5077
CrossRef
Google scholar
|
[97] |
Swarts, N.D., Dixon, K.W., 2017. Conservation Methods for Terrestrial Orchids.J. Ross Publishing, United States.
|
[98] |
Tedersoo, L., Bahram, M., Zobel, M., 2020. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223
CrossRef
Google scholar
|
[99] |
Teste, F.P., Laliberté, E., Lambers, H., Auer, Y., Kramer, S., Kandeler, E., 2016. Mycorrhizal fungal biomass and scavenging declines in phosphorus-impoverished soils during ecosystem retrogression. Soil Biology & Biochemistry 92, 119–132
CrossRef
Google scholar
|
[100] |
Treu, R., Laursen, G.A., Stephenson, S.L., Landolt, J.C., Densmore, R., 1995. Mycorrhizae from Denali National Park and Preserve, Alaska. Mycorrhiza 6, 21–29
CrossRef
Google scholar
|
[101] |
Viscarra Rossel, R.A., Bui, E.N., 2016. A new detailed map of total phosphorus stocks in Australian soil. Science of the Total Environment 542, 1040–1049
CrossRef
Google scholar
|
[102] |
Wang, B., Qiu, Y.L., 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16, 299–363
CrossRef
Google scholar
|
[103] |
Wang, J.H., Cai, Y.F., Zhang, L., Xu, C.K., Zhang, S.B., 2018. Species richness of the family Ericaceae along an elevational gradient in Yunnan, China. Forests 9, 511
CrossRef
Google scholar
|
[104] |
Watts-Williams, S.J., Cavagnaro, T.R., 2018. Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Plant Science 274, 163–170
CrossRef
Google scholar
|
[105] |
Wojtuń, B., Samecka-Cymerman, A., Żołnierz, L., Rajsz, A., Kempers, A.J., 2017. Vascular plants as ecological indicators of metals in alpine vegetation (Karkonosze, SW Poland). Environmental Science and Pollution Research International 24, 20093–20103
CrossRef
Google scholar
|
[106] |
Wright, D.P., Scholes, J.D., Read, D.J., Rolfe, S.A., 2005. European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytologist 167, 881–896
CrossRef
Google scholar
|
[107] |
Zemunik, G., Turner, B.L., Lambers, H., Laliberté, E., 2015. Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nature Plants 1, 15050
CrossRef
Google scholar
|
[108] |
Zhang, Q., Liu, Q., Yin, H., Zhao, C., Zhang, L., Zhou, G., Yin, C., Lu, Z., Xiong, G., Li, Y., Li, J., Xu, W., Tang, Z., Xie, Z., 2018. C:N:P stoichiometry of Ericaceae species in shrubland biomes across Southern China: influences of climate, soil and species identity. Journal of Plant Ecology 12, 346–357
CrossRef
Google scholar
|
[109] |
Zhang, Y.C., Wang, P., Wu, Q.H., Zou, Y.N., Bao, Q., Wu, Q.S., 2017. Arbuscular mycorrhizas improve plant growth and soil structure in trifoliate orange under salt stress. Archives of Agronomy and Soil Science 63, 491–500
CrossRef
Google scholar
|
[110] |
Zhong, H., Zhou, J., Azmi, A., Arruda, A.J., Doolette, A.L., Smernik, R.J., Lambers, H., 2020. Xylomelum occidentale (Proteaceae) accesses relatively mobile soil organic phosphorus without releasing carboxylates. Journal of Ecology, 1365-2745.13468
CrossRef
Google scholar
|
[111] |
Zhou, J., Zúñiga-Feest, A., Lambers, H., 2020. In the beginning, there was only bare regolith- then some plants arrived and changed the regolith. Journal of Plant Ecology 13, 511–516
CrossRef
Google scholar
|
/
〈 | 〉 |