Distributional patterns of soil nematodes in relation to environmental variables in forest ecosystems

Haifeng Xiao , Wenting Wang , Shangwen Xia , Zhipeng Li , Jianmin Gan , Xiaodong Yang

Soil Ecology Letters ›› 2021, Vol. 3 ›› Issue (2) : 115 -124.

PDF (865KB)
Soil Ecology Letters ›› 2021, Vol. 3 ›› Issue (2) : 115 -124. DOI: 10.1007/s42832-020-0069-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Distributional patterns of soil nematodes in relation to environmental variables in forest ecosystems

Author information +
History +
PDF (865KB)

Abstract

•Relationships between environmental factors and nematode distributions at different spatial scales are assessed.

•Nematode diversity peaked in tropical forest ecosystem.

•Nematode diversity showed contrary patterns compared with their abundance.

•Factors most strongly affecting nematode communities changed across spatial scales.

Understanding biodiversity and biogeographic distribution of soil fauna is an important topic in ecology. While nematode communities have been compared among ecosystems, knowledge remains limited about how environmental factors and nematode distributions are linked at different spatial scales. Here, we employed high-throughput sequencing to compare nematode communities in tropical (Xishuangbanna), subtropical (Ailaoshan), and cold temperate spruce-fir (Lijiang) forest ecosystems with identical spatial sampling. Relationships between nematode communities and environmental factors were analyzed using redundancy analysis (RDA). Our results showed that nematode richness and diversity peaked in Xishuangbanna; however, no significant differences were observed in other two forest ecosystems. Bacterial feeders and Omnivores / Carnivores (Om & Ca) had the lowest relative abundance, but the highest diversity, in Xishuangbanna, with the opposite pattern being detected for fungal and plant feeders. Our data also demonstrated that, for forest ecosystems, climate factors drive nematode communities distributions at the regional scale, while terrain and soil characteristics (including pH and nutrients) drive nematode communities distributions at local scales. This study improves our current understanding of key factors (environmental parameters) responsible for the biogeographical distribution of forest nematode communities at different spatial scales.

Graphical abstract

Keywords

Nematode communities / Spatial scales / Driving factors / High-throughput sequencing forest ecosystems

Cite this article

Download citation ▾
Haifeng Xiao, Wenting Wang, Shangwen Xia, Zhipeng Li, Jianmin Gan, Xiaodong Yang. Distributional patterns of soil nematodes in relation to environmental variables in forest ecosystems. Soil Ecology Letters, 2021, 3(2): 115-124 DOI:10.1007/s42832-020-0069-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511

[2]

Bloemers, G.F., Hodda, M., Lambshead, P.J.D., Lawton, J.H., Wanless, F.R., 1997. The effects of forest disturbance on diversity of tropical soil soil nematodessoil soil nematodes. Oecologia 111, 575–582

[3]

Boag, B., Yeates, G.W., 1998. Soil nematode biodiversity in terrestrial ecosystems. Biodiversity and Conservation 7, 617–630

[4]

Bongers, T., Ferris, H., 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution 14, 224–228

[5]

Boucher, G., 1990. Pattern of nematode species—diversity in temperate and tropical subtidal sediments. Marine Ecology (Berlin) 11, 133–146

[6]

Boucher, G., Lambshead, P.J.D., 1995. Ecological biodiversity of marine soil nematodessoil soil nematodes in samples from temperate, tropical, and deep-sea regions. Conservation Biology 9, 1594–1604

[7]

Cao, M., Zhou, X.M., Warren, M., Zhu, H., 2006. Tropical forests of Xishuangbanna, China. Biotropica 38, 306–309

[8]

Chan, O.C., Yang, X.D., Fu, Y., Feng, Z., Sha, L., Casper, P., Zou, X., 2006. 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiology Ecology 58, 247–259

[9]

Chen, D., Cheng, J., Chu, P., Hu, S., Xie, Y., Tuvshintogtokh, I., Bai, Y., 2015. Regional-scale patterns of soil microbes and nematodes across grasslands on the Mongolian plateau: relationships with climate, soil, and plants. Ecography 38, 622–631

[10]

De Deyn, G., Cornelissen, J.H.C., Bardgett, R.D., 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11, 516–531

[11]

Decaëns, T., 2010. Macroecological patterns in soil communities. Global Ecology and Biogeography 19, 287–302

[12]

Du, X.F., Li, Y.B., Han, X., Ahmad, W., Li, Q., 2020. Using high-throughput sequencing quantitatively to investigate soil nematode community composition in a steppe-forest ecotone. Applied Soil Ecology 152, 103562

[13]

Feeser, K.L., Van Horn, D.J., Buelow, H.N., Colman, D.R., McHugh, T.A., Okie, J.G., Schwartz, E., Takacs-Vesbach, C.D., 2018. Local and regional scale heterogeneity drive bacterial community diversity and composition in a polar desert. Frontiers in Microbiology 9, 1928

[14]

Fierer, N., Strickland, M.S., Liptzin, D., Bradford, M.A., Cleveland, C.C., 2009. Global patterns in belowground communities. Ecology Letters 12, 1238–1249

[15]

Fonseca, G., Netto, S.A., 2015. Macroecological patterns of estuarine soil nematodessoil soil nematodes. Estuaries and Coasts 38, 612–619

[16]

Fonseca, V.G., Carvalho, G.R., Sung, W., Johnson, H.F., Power, D.M., Neill, S.P., Packer, M., Blaxter, M.L., Lambshead, P.J.D., Thomas, W.K., Creer, S., 2010. Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nature Communications 1, 98

[17]

Gong, H., Zhang, Y., Lei, Y., Liu, Y., Yang, G., Lu, Z., 2011. Evergreen broad-leaved forest improves soil water status compared with tea tree plantation in Ailao Mountains, Southwest China. Acta Agriculturæ Scandinavica. Section B, Soil and Plant Science 61, 384–388

[18]

Griffiths, B.S., Donn, S., Neilson, R., Daniell, T.J., 2006. Molecular sequencing and morphological analysis of a nematode community. Applied Soil Ecology 32, 325–337

[19]

Harrison, S., Cornell, H., 2008. Toward a better understanding of the regional causes of local community richness. Ecology Letters 11, 969–979

[20]

Huang, H., Chen, Z., Liu, D., He, G., He, R., Li, D., Xu, K., 2017. Species composition and community structure of the Yulongxueshan (Jade Dragon Snow Mountains) forest dynamics plot in the cold temperate spruce-fir forest, Southwest China. Biodiversity Science Duoyangxing 25, 255–264in Chinese)

[21]

Kerfahi, D., Tripathi, B.M., Porazinska, D.L., Park, J., Go, R., Adams, J.M., 2016. Do tropical rain forest soils have greater nematode diversity than High Arctic tundra? A metagenetic comparison of Malaysia and Svalbard. Global Ecology and Biogeography 25, 716–728

[22]

Lambshead, P.J.D., 2004. Marine Nematode Diversity. In: Chen, Z.X., Chen, S.Y., Dickson, D.W., eds. Nematology: Advances and Perspectives. Volume 1: Nematode Morphology, Physiology and Ecology. Beijing: Tsinghua University Press, pp.438–468.

[23]

Lan, G.Y., Hu, Y.H., Cao, M., Zhu, H., Wang, H., Zhou, S.S., Deng, X.B., Cui, J.Y., Huang, J.G., Liu, L.Y., Xu, H.L., Song, J.P., He, Y.C., 2008. Establishment of Xishuangbanna tropical forest dynamics plot: species compositions and spatial distribution patterns. Acta Phytoecologica Sinica 32, 287–298.

[24]

Lawton, J.H., Bignell, D.E., Bolton, B., Bloemers, G.F., Eggleton, P., Hammond, M., Hodda, M., Holt, R.D., Larsen, T.B., Mawdsley, N.A., Stork, E., Srivastava, D.S., Watt, A.D., 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391, 72–76

[25]

Liang, W., Zhang, X., Li, Q., Jiang, Y., Ou, W., Neher, D.A., 2005. Vertical distribution of bacterivorous nematodes under different land uses. Journal of Nematology 37, 254.

[26]

Liu, T., Guo, R., Ran, W., Whalen, J.K., Li, H., 2015. Body size is a sensitive trait-based indicator of soil nematode community response to fertilization in rice and wheat agroecosystems. Soil Biology & Biochemistry 88, 275–281

[27]

Liu, W.Y., Fox, J.E.D., Xu, Z.F., 2002. Biomass and nutrient accumulation in montane evergreen broad-leaved forest (Lithocarpus xylocarpus type) in Ailao Mountains, SW China. Forest Ecology and Management 158, 223–235

[28]

McSorley, R., Frederick, J.J., 2004. Effect of extraction method on perceived composition of the soil nematode community. Applied Soil Ecology 27, 55–63

[29]

Munch, K., Boomsma, W., Huelsenbeck, J.P., Willerslev, E., Nielsen, R., 2008. Statistical assignment of DNA sequences using Bayesian phylogenetics. Systematic Biology 57, 750–757

[30]

Neher, D.A., 2010. Ecology of plant and free-living soil nematodessoil soil nematodes in natural and agricultural soil. Annual Review of Phytopathology 48, 371–394

[31]

Nielsen, U.N., Ayres, E., Wall, D.H., Li, G., Bardgett, R.D., Wu, T., Garey, J.R., 2014. Global-scale patterns of assemblage structure of soil soil nematodessoil soil nematodes in relation to climate and ecosystem properties. Global Ecology and Biogeography 23, 968–978

[32]

Oksanen, J., Guillaume Blanchet, F., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2010. vegan: Community Ecology Package. R package version 1.17–3.

[33]

Porazinska, D.L., Giblin-Davis, R.M., Esquivel, A., Powers, T.O., Sung, W., Kelley Thomas, W., 2010. Ecometagenetics confirms high tropical rainforest nematode diversity. Molecular Ecology 19, 5521–5530

[34]

Porazinska, D.L., Giblin-Davis, R.M., Powers, T.O., Kelley Thomas, W., 2012. Nematode spatial and ecological patterns from tropical and temperate rainforests. PLoS One 7, e44641

[35]

Powers, T.O., Neher, D.A., Mullin, P., Esquivel, A., Giblin-Davis, R.M., Kanzaki, N., Stock, S.P., Mora, M.M., Uribe-Lorio, L., 2009. Tropical nematode diversity: vertical stratification of nematode communities in a Costa Rican humid lowland rainforest. Molecular Ecology 18, 985–996

[36]

Procter, D.L.C., 1984. Towards a biogeography of free- living soil soil nematodessoil soil nematodes. I. Changing species richness, diversity and densities with changing latitude. Journal of Biogeography 11, 103–117

[37]

Qiao, N., Schaefer, D., Blagodatskaya, E., Zou, X., Xu, X., Kuzyakov, Y., 2014. Labile carbon retention in forest soils compensates for CO2 released by priming. Global Change Biology 20, 1943–1954

[38]

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, 590–596

[39]

R Development Core Team, 2013. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Austria: Vienna

[40]

Salame, L., Glazer, I., 2015. Stress avoidance: vertical movement of entomopathogenic nematodes in response to soil moisture gradient. Phytoparasitica 43, 647–655

[41]

Song, D., Pan, K., Tariq, A., Sun, F., Li, Z., Sun, X., Zhang, L., Olusanya, O.A., Wu, X., 2017. Large-scale patterns of distribution and diversity of terrestrial soil nematodessoil soil nematodes. Applied Soil Ecology 114, 161–169

[42]

van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A., de Goede, R.G.M., Adams, B.J., Ahmad, W., Andriuzzi, W.S., Bardgett, R.D., Bonkowski, M., Campos-Herrera, R., Cares, J.E., Caruso, T., de Brito Caixeta, L., Chen, X.Y., Costa, S.R., Creamer, R., da Cunha Castro, J.M., Dam, M., Djigal, D., Escuer, M., Griffiths, B.S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A., Korthals, G., Krashevska, V., Kudrin, A.A., Li, Q., Liang, W., Magilton, M., Marais, M., Martín, J.A.R., Matveeva, E., Mayad, E.H., Mulder, C., Mullin, P., Neilson, R., Nguyen, T.A.D., Nielsen, U.N., Okada, H., 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198

[43]

Wen, H.D., Lin, L.X., Yang, J., Hu, Y.H., Cao, M., Liu, Y.H., Lu, Z.Y., Xie, Y.N., 2018. Species composition and community structure of a 20hm2 plot of mid-mountain moist evergreen broad-leaved forest on the Mts.Ailaoshan, Yunnan Province, China. Acta Phytoecologica Sinica 42, 419–429

[44]

Willig, M.R., Kaufman, D.M., Stevens, R.D., 2003. Latitudinal gradients of biodiversity: pattern, process, scale and synthesis. Annual Review of Ecology, Evolution, and Systematics 34, 273–309

[45]

Witman, J.D., Etter, R.J., Smith, F., 2004. The relationship between regional and local species diversity in marine benthic communities: A global perspective. Proceedings of the National Academy of Sciences of the United States of America 101, 15664–15669

[46]

Wu, T., Ayres, E., Bardgett, R.D., Wall, D.H., Garey, J.R., 2011. Molecular study of worldwide distribution and diversity of soil animals. Proceedings of the National Academy of Sciences of the United States of America 108, 17720–17725

[47]

Xia, S.W., Chen, J., Shaefer, D., Detto, M., 2015. Scale-dependent soil macronutrient heterogeneity reveals effects of litterfall in a tropical rainforest. Plant and Soil 391, 51–61

[48]

Xiao, H.F., Tian, Y.H., Zhou, H.P., Ai, X.S., Yang, X.D., Schaefer, D.A., 2014. Intensive rubber cultivation degrades soil nematode communities in Xishuangbanna, southwest China. Soil Biology & Biochemistry 76, 161–169

[49]

Yeates, G.W., 1999. Effects of plants on nematode community structure. Annual Review of Phytopathology 37, 127–149

[50]

Yeates, G.W., Bongers, T., de Goede, R.G.M., Freckman, D.W., Georgieva, S.S., 1993. Feeding habits in soil nematode families and genera– an outline for soil ecologists. Journal of Nematology 25, 315–331.

[51]

Zhang, H., Wang, K., Xu, X., Song, T., Xu, Y., Zeng, F., 2015. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests. Scientific Reports 5, 15997

[52]

Zheng, Z., Feng, Z., Cao, M., Li, Z., Zhang, J., 2006. Forest structure and biomass of a tropical seasonal rain forest in Xishuangbanna, Southwest China. Biotropica 3, 318–327

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (865KB)

Supplementary files

SEL-00069-OF-XDY_suppl_1

1691

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/