Lessons learned from COVID-19 on potentially pathogenic soil microorganisms

Haifeng Qian, Qi Zhang, Tao Lu, W.J.G.M. Peijnenburg, Josep Penuelas, Yong-Guan Zhu

PDF(751 KB)
PDF(751 KB)
Soil Ecology Letters ›› 2021, Vol. 3 ›› Issue (1) : 1-5. DOI: 10.1007/s42832-020-0068-9
PERSPECTIVE
PERSPECTIVE

Lessons learned from COVID-19 on potentially pathogenic soil microorganisms

Author information +
History +

Cite this article

Download citation ▾
Haifeng Qian, Qi Zhang, Tao Lu, W.J.G.M. Peijnenburg, Josep Penuelas, Yong-Guan Zhu. Lessons learned from COVID-19 on potentially pathogenic soil microorganisms. Soil Ecology Letters, 2021, 3(1): 1‒5 https://doi.org/10.1007/s42832-020-0068-9

References

[1]
Aundy, K., Munder, A., Aravind R., Eapen, S.J., Tümmler, B., Raaijmakers, J.M., 2012. Friend or foe: Genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environmental Microbiology 15, 764–779.
[2]
Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A., Gattinger, A., Keller, T., Charles, R., Van der Heijden, M., 2019. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME Journal 13, 1722–1736
CrossRef Google scholar
[3]
Bassler, B., 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Current Opinion in Microbiology 2, 582–587
CrossRef Google scholar
[4]
Bellas, C., Anesio, A., Barker, G., 2015. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions. Frontiers in Microbiology 6, 656
CrossRef Google scholar
[5]
Berg, G., Eberl, L., Hartmann, A., 2005. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology 7, 1673–1685
CrossRef Google scholar
[6]
Boris, R., Nikolai, T., Alan, J.P., 2012. Climate change and zoonotic infections in the Russian Arctic. International Journal of Circumpolar Health 71, 18792
CrossRef Google scholar
[7]
Danovaro, R., Dell’Anno, A., Corinaldesi, C., Magagnini, M., Noble, R., Tamburini, C., Weinbauer, M., 2008. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1087
CrossRef Google scholar
[8]
Foley, J., Defries, R., Asner, G., Barford, C., Bonan, G., Carpenter, S., Chapin Iii, F.S., Coe, M., Daily, G., Gibbs, H., Helkowski, J., Holloway, T., Howard, E., Kucharik, C., Monfreda, C., Patz, J., Prentice, I., Ramankutty, N., Snyder, P., 2005. Global consequences of land use. Science 309, 570–574
CrossRef Google scholar
[9]
Foley, J., Ramankutty, N., Brauman, K., Cassidy, E., Gerber, J., Johnston, M., Mueller, N., O’Connell, C., Ray, D., West, P., Balzer, C., Bennett, E., Carpenter, S., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Zaks, D., 2011. Solutions for a cultivated planet. Nature 478, 337–342
CrossRef Google scholar
[10]
Frenken, T., Brussaard, C., Velthuis, M., Aben, R., Kazanjian, G., Hilt, S., Kosten, S., Peeters, E., de Senerpont Domis, L., Stephan, S., Donk, E., Van de Waal, D., 2020. Warming advances virus population dynamics in a temperate freshwater plankton community. Limnology and Oceanography Letters 5, 295–304
CrossRef Google scholar
[11]
Gans, J., Wolinsky, M., Dunbar, J., 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390
CrossRef Google scholar
[12]
Gattuso, J.-P., Magnan, A.; Billé, R., Cheung, W., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R., Pörtner, H.-O., Rogers, A., Baxter, J., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Turley, C., 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, 1–10.
[13]
Hofmann, A., Fischer, D., Hartmann, A., Schmid, M., 2014. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production. Frontiers in Microbiology 5, 191
CrossRef Google scholar
[14]
Kwak, M.J., Kong, H.G., Choi, K., Kwon, S.K., Song, J.Y., Lee, J., Lee, P.A., Choi, S.Y., Seo, M., Lee, H.J., Jung, E.J., Park, H., Roy, N., Kim, H., Lee, M.M., Rubin, E.M., Lee, S.W., Kim, J.F., 2018. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology 36, 1100–1109
CrossRef Google scholar
[15]
Labbé, M., Girard, C., Vincent, W., Culley, A., 2020. Extreme viral partitioning in a marine-derived high arctic lake. MSphere 5, e00334–e20
CrossRef Google scholar
[16]
Lawson, C., Harcombe, W., Hatzenpichler, R., Lindemann, S., Löffler, F., O’Malley, M., Martín, H., Pfleger, B., Raskin, L., Venturelli, O., Weissbrodt, D., Noguera, D., McMahon, K., 2019. Common principles and best practices for engineering microbiomes. Nature Reviews. Microbiology 17, 1–17
CrossRef Google scholar
[17]
Leclerc, M., Doré, T., Gilligan, C., Lucas, P., Filipe, J., 2013. Host growth can cause invasive spread of crops by soilborne pathogens. PLoS One 8, e63003
CrossRef Google scholar
[18]
Locatelli, A., Spor, A., Jolivet, C., Piveteau, P., Hartmann, A., 2013. Biotic and abiotic soil properties influence survival of listeria monocytogenes in soil. PLoS One 8, e75969
CrossRef Google scholar
[19]
Lynch, J., Hsiao, E., 2019. Microbiomes as sources of emergent host phenotypes. Science 365, 1405–1409
CrossRef Google scholar
[20]
Maurhofer, M., Keel, C., Schnider, U., Voisard, C., Haas, D., Défago, G., 1992. Influence of enhanced antibiotic production in pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82, 190–195
CrossRef Google scholar
[21]
Mendes, R., Garbeva, P., Raaijmakers, J., 2013. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37, 34–63
CrossRef Google scholar
[22]
Mendes, R., Kruijt, M., Bruijn, I., Dekkers, E., Voort, M., Schneider, J., Piceno, Y., DeSantis, T., Andersen, G., Bakker, P., Raaijmakers, J., 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100
CrossRef Google scholar
[23]
Mueller, E., Wisnoski, N., Peralta, A., Lennon, J., 2019. Microbial rescue effects: How microbiomes can save hosts from extinction. Functional Ecology 00, 1–10.
[24]
Mundt, C., 2002. Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology 40, 381–410
CrossRef Google scholar
[25]
Raaijmakers, J., Mazzola, M., 2016. Soil immune responses. Science 352, 1392–1393
CrossRef Google scholar
[26]
Schierstaedt, J., Jechalke, S., Nesme, J., Neuhaus, K., Sørensen, S., Grosch, R., Smalla, K., Schikora, A., 2020. Salmonella persistence in soil depends on reciprocal interactions with indigenous microorganisms. Environmental Microbiology 22, 2639–2652
CrossRef Google scholar
[27]
Steffan, J.J., Derby, J.A., Brevik, E.C., 2020. Soil pathogens that may potentially cause pandemics, including SARS coronaviruses. Current Opinion in Environmental Science & Health. Doi.org/10.1016/j.coesh.2020.08.005.
[28]
Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., 2013. Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge 33–115.
[29]
Teplitski, M., Barak, J., Schneider, K., 2009. Human enteric pathogens in produce: Un-answered ecological questions with direct implications for food safety. Current Opinion in Biotechnology 20, 166–171
CrossRef Google scholar
[30]
Tyler, H., Triplett, E., 2008. Plants as a habitat for beneficial and/or human pathogenic bacteria. Annual Review of Phytopathology 46, 53–73
CrossRef Google scholar
[31]
Vannier, N., Agler, M., Hacquard, S., 2019. Microbiota-mediated disease resistance in plants. PLoS Pathogens 15, e1007740
CrossRef Google scholar
[32]
Williamson, K., Fuhrmann, J., Wommack, K.E., Radosevich, M., 2017. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annual Review of Virology 4, 201–219
CrossRef Google scholar
[33]
Wu, S.P., 2017. Prevention and control of emerging infectious diseases, an eternal topic of mankind. Electronic Journal of Emerging Infectious Diseases 2, 1–4.
[34]
Zhang, G.L., Gao, Z.L., 2018. Emerging infectious diseases and the strategy of prevention and control. Chinese Journal of Viral Diseases 8, 252–256.
[35]
Zhong, Z., Rapp, J., Wainaina, J., Solonenko, N., Maughan, H., Carpenter, S., Cooper, Z., Jang, H.B., Bolduc, B., Deming, J., Sullivan, M., 2020. Viral ecogenomics of arctic cryopeg brine and sea ice. mSystems 5, e00246–e20
CrossRef Google scholar
[36]
Zhu, Y.G., Gillings, M., Penuelas, J., 2020. Integrating biomedical, ecological, and sustainability sciences to manage emerging infectious diseases. One Earth 3, 23–26
CrossRef Google scholar
[37]
Zhu, Y.G., Gillings, M., Simonet, P., Stekel, D., Banwart, S., Penuelas, J., 2017. Microbial mass movements. Science 357, 1099–1100
CrossRef Google scholar

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (41907210, 21777144, 21976161).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(751 KB)

Accesses

Citations

Detail

Sections
Recommended

/