Lessons learned from COVID-19 on potentially pathogenic soil microorganisms

Haifeng Qian , Qi Zhang , Tao Lu , W.J.G.M. Peijnenburg , Josep Penuelas , Yong-Guan Zhu

Soil Ecology Letters ›› 2021, Vol. 3 ›› Issue (1) : 1 -5.

PDF (751KB)
Soil Ecology Letters ›› 2021, Vol. 3 ›› Issue (1) : 1 -5. DOI: 10.1007/s42832-020-0068-9
PERSPECTIVE
PERSPECTIVE

Lessons learned from COVID-19 on potentially pathogenic soil microorganisms

Author information +
History +
PDF (751KB)

Cite this article

Download citation ▾
Haifeng Qian, Qi Zhang, Tao Lu, W.J.G.M. Peijnenburg, Josep Penuelas, Yong-Guan Zhu. Lessons learned from COVID-19 on potentially pathogenic soil microorganisms. Soil Ecology Letters, 2021, 3(1): 1-5 DOI:10.1007/s42832-020-0068-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aundy, K., Munder, A., Aravind R., Eapen, S.J., Tümmler, B., Raaijmakers, J.M., 2012. Friend or foe: Genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environmental Microbiology 15, 764–779.

[2]

Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A., Gattinger, A., Keller, T., Charles, R., Van der Heijden, M., 2019. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME Journal 13, 1722–1736

[3]

Bassler, B., 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Current Opinion in Microbiology 2, 582–587

[4]

Bellas, C., Anesio, A., Barker, G., 2015. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions. Frontiers in Microbiology 6, 656

[5]

Berg, G., Eberl, L., Hartmann, A., 2005. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology 7, 1673–1685

[6]

Boris, R., Nikolai, T., Alan, J.P., 2012. Climate change and zoonotic infections in the Russian Arctic. International Journal of Circumpolar Health 71, 18792

[7]

Danovaro, R., Dell’Anno, A., Corinaldesi, C., Magagnini, M., Noble, R., Tamburini, C., Weinbauer, M., 2008. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1087

[8]

Foley, J., Defries, R., Asner, G., Barford, C., Bonan, G., Carpenter, S., Chapin Iii, F.S., Coe, M., Daily, G., Gibbs, H., Helkowski, J., Holloway, T., Howard, E., Kucharik, C., Monfreda, C., Patz, J., Prentice, I., Ramankutty, N., Snyder, P., 2005. Global consequences of land use. Science 309, 570–574

[9]

Foley, J., Ramankutty, N., Brauman, K., Cassidy, E., Gerber, J., Johnston, M., Mueller, N., O’Connell, C., Ray, D., West, P., Balzer, C., Bennett, E., Carpenter, S., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Zaks, D., 2011. Solutions for a cultivated planet. Nature 478, 337–342

[10]

Frenken, T., Brussaard, C., Velthuis, M., Aben, R., Kazanjian, G., Hilt, S., Kosten, S., Peeters, E., de Senerpont Domis, L., Stephan, S., Donk, E., Van de Waal, D., 2020. Warming advances virus population dynamics in a temperate freshwater plankton community. Limnology and Oceanography Letters 5, 295–304

[11]

Gans, J., Wolinsky, M., Dunbar, J., 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390

[12]

Gattuso, J.-P., Magnan, A.; Billé R., Cheung, W., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R., Pörtner, H.-O., Rogers, A., Baxter, J., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Turley, C., 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, 1–10.

[13]

Hofmann, A., Fischer, D., Hartmann, A., Schmid, M., 2014. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production. Frontiers in Microbiology 5, 191

[14]

Kwak, M.J., Kong, H.G., Choi, K., Kwon, S.K., Song, J.Y., Lee, J., Lee, P.A., Choi, S.Y., Seo, M., Lee, H.J., Jung, E.J., Park, H., Roy, N., Kim, H., Lee, M.M., Rubin, E.M., Lee, S.W., Kim, J.F., 2018. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology 36, 1100–1109

[15]

Labbé M., Girard, C., Vincent, W., Culley, A., 2020. Extreme viral partitioning in a marine-derived high arctic lake. MSphere 5, e00334–e20

[16]

Lawson, C., Harcombe, W., Hatzenpichler, R., Lindemann, S., Löffler, F., O’Malley, M., Martín, H., Pfleger, B., Raskin, L., Venturelli, O., Weissbrodt, D., Noguera, D., McMahon, K., 2019. Common principles and best practices for engineering microbiomes. Nature Reviews. Microbiology 17, 1–17

[17]

Leclerc, M., Doré T., Gilligan, C., Lucas, P., Filipe, J., 2013. Host growth can cause invasive spread of crops by soilborne pathogens. PLoS One 8, e63003

[18]

Locatelli, A., Spor, A., Jolivet, C., Piveteau, P., Hartmann, A., 2013. Biotic and abiotic soil properties influence survival of listeria monocytogenes in soil. PLoS One 8, e75969

[19]

Lynch, J., Hsiao, E., 2019. Microbiomes as sources of emergent host phenotypes. Science 365, 1405–1409

[20]

Maurhofer, M., Keel, C., Schnider, U., Voisard, C., Haas, D., Défago, G., 1992. Influence of enhanced antibiotic production in pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82, 190–195

[21]

Mendes, R., Garbeva, P., Raaijmakers, J., 2013. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37, 34–63

[22]

Mendes, R., Kruijt, M., Bruijn, I., Dekkers, E., Voort, M., Schneider, J., Piceno, Y., DeSantis, T., Andersen, G., Bakker, P., Raaijmakers, J., 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100

[23]

Mueller, E., Wisnoski, N., Peralta, A., Lennon, J., 2019. Microbial rescue effects: How microbiomes can save hosts from extinction. Functional Ecology 00, 1–10.

[24]

Mundt, C., 2002. Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology 40, 381–410

[25]

Raaijmakers, J., Mazzola, M., 2016. Soil immune responses. Science 352, 1392–1393

[26]

Schierstaedt, J., Jechalke, S., Nesme, J., Neuhaus, K., Sørensen, S., Grosch, R., Smalla, K., Schikora, A., 2020. Salmonella persistence in soil depends on reciprocal interactions with indigenous microorganisms. Environmental Microbiology 22, 2639–2652

[27]

Steffan, J.J., Derby, J.A., Brevik, E.C., 2020. Soil pathogens that may potentially cause pandemics, including SARS coronaviruses. Current Opinion in Environmental Science & Health.

[28]

Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., 2013. Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge 33–115.

[29]

Teplitski, M., Barak, J., Schneider, K., 2009. Human enteric pathogens in produce: Un-answered ecological questions with direct implications for food safety. Current Opinion in Biotechnology 20, 166–171

[30]

Tyler, H., Triplett, E., 2008. Plants as a habitat for beneficial and/or human pathogenic bacteria. Annual Review of Phytopathology 46, 53–73

[31]

Vannier, N., Agler, M., Hacquard, S., 2019. Microbiota-mediated disease resistance in plants. PLoS Pathogens 15, e1007740

[32]

Williamson, K., Fuhrmann, J., Wommack, K.E., Radosevich, M., 2017. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annual Review of Virology 4, 201–219

[33]

Wu, S.P., 2017. Prevention and control of emerging infectious diseases, an eternal topic of mankind. Electronic Journal of Emerging Infectious Diseases 2, 1–4.

[34]

Zhang, G.L., Gao, Z.L., 2018. Emerging infectious diseases and the strategy of prevention and control. Chinese Journal of Viral Diseases 8, 252–256.

[35]

Zhong, Z., Rapp, J., Wainaina, J., Solonenko, N., Maughan, H., Carpenter, S., Cooper, Z., Jang, H.B., Bolduc, B., Deming, J., Sullivan, M., 2020. Viral ecogenomics of arctic cryopeg brine and sea ice. mSystems 5, e00246–e20

[36]

Zhu, Y.G., Gillings, M., Penuelas, J., 2020. Integrating biomedical, ecological, and sustainability sciences to manage emerging infectious diseases. One Earth 3, 23–26

[37]

Zhu, Y.G., Gillings, M., Simonet, P., Stekel, D., Banwart, S., Penuelas, J., 2017. Microbial mass movements. Science 357, 1099–1100

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (751KB)

2299

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/