Contrasting effects of N fertilization and mowing on ecosystem multifunctionality in a meadow steppe

Haiying Cui, Wei Sun, Manuel Delgado-Baquerizo, Wenzheng Song, Jian-Ying Ma, Keying Wang, Xiaoli Ling

PDF(2456 KB)
PDF(2456 KB)
Soil Ecology Letters ›› 2020, Vol. 2 ›› Issue (4) : 268-280. DOI: 10.1007/s42832-020-0046-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Contrasting effects of N fertilization and mowing on ecosystem multifunctionality in a meadow steppe

Author information +
History +

Abstract

There is little experimental field evidence on how multiple essential land use intensification drivers (LUIDs), such as nitrogen (N) fertilization and mowing, interact to control ecosystem multifunctionality. Here, we conducted a 4-year field experiment in a meadow steppe in northeast China and evaluated the direct and indirect effects of mowing and N fertilization on a range of ecosystem functions associated with nutrient cycle, carbon stocks, and organic matter decomposition during the past 2 years of the experiment (2017 and 2018). Mowing had negative effects on the ecosystem multifunctionality index (EMF), carbon (C) cycle multifunctionality index (CCMF), and N cycle multifunctionality index (NCMF) in 2 years of sampling. However, in general, the responses of multifunctionality to N fertilization were rate-specific and year-dependent. N fertilization had positive effects on EMF, CCMF, NCMF, and phosphorus (P) cycle multifunctionality index (PCMF) in 2017, with the higher precipitation rate during the growing season, which was likely associated with the strong monsoon season. However, in 2018, EMF, CCMF, and NCMF increased at the lower N fertilization levels (≤10 g N m2 yr1), but decreased at higher N rates. N fertilization had consistent positive effects on PCMF in the 2 years of sampling. The effects of land use drivers on multifunctionality were indirectly influenced by bacterial biomass, plant richness, and soil moisture changes. Our results also indicated that the impacts of land use drivers on multifunctionality played an important role in maintaining a range of functions at low levels of functioning (<50% functional threshold). Low N fertilization levels (≤10 g N m2 yr1) were able to reduce the negative effects of mowing on ecosystem multifunctionality while promoting plant biomass (food for livestock) and C storage. These findings are useful for designing practical strategies toward promoting multifunctionality by managing multiple LUIDs in a meadow steppe.

Graphical abstract

Keywords

Ecosystem multifunctionality / Sustainable grassland management / Land use intensification / Mowing / Multi-threshold approach / Nitrogen fertilization

Cite this article

Download citation ▾
Haiying Cui, Wei Sun, Manuel Delgado-Baquerizo, Wenzheng Song, Jian-Ying Ma, Keying Wang, Xiaoli Ling. Contrasting effects of N fertilization and mowing on ecosystem multifunctionality in a meadow steppe. Soil Ecology Letters, 2020, 2(4): 268‒280 https://doi.org/10.1007/s42832-020-0046-2

References

[1]
Allan, E., Bossdorf, O., Dormann, C.F., Prati, D., Gossner, M.M., Tscharntke, T., Blüthgen, N., Bellach, M., Birkhofer, K., Boch, S., Böhm, S., Börschig, C., Chatzinotas, A., Christ, S., Daniel, R., Diekötter, T., Fischer, C. , Friedl, T., Glaser, K., Hallmann, C., Hodac, L., Hölzel, N., Jung,K., Klein, A.M., Klaus, V.H., Kleinebecker, T., Krauss, J., Lange, M., Morris, E.K., Müller, J., Nacke, H., Pašalić, E., Rillig, M.C., Rothenwöhrer, C., Schall, P., Scherber, C., Schulze, W., Socher, S.A., Steckel, J., Steffan-Dewenter, I., Türke, M., Weiner, C.N., Werner, M., Westphal, C., Wolters, V., Wubet, T., Gockel, S., Gorke, M., Hemp, A., Renner, S.C., Schöning, I., Pfeiffer, S., König-Ries, B., Buscot, F., Linsenmair, K.E., Schulze, E.D., Weisser, W.W., Fischera, M., (2014). Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences,111, 308–313.
CrossRef Google scholar
[2]
Allan, E., Manning, P., Alt, F., Binkenstein, J., Blaser, S., Blüthgen, N., Böhm, S., Grassein, F., Hölzel, N., Klaus, V.H., Kleinebecker, T., Morris, E.K., Oelmann, Y., Prati, D., Renner, S.C., Rillig, M.C., Schaefer, M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Solly, E., Sorkau, E., Steckel, J., Steffen-Dewenter, I., Stempfhuber, B., Tschapka, M., Weiner, C.N., Weisser, W.W., Werner, M., Westphal, C., Wilcke, W., Fischer, M., 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters 18, 834–843
CrossRef Google scholar
[3]
Bååth, E., Anderson, T.H., 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology & Biochemistry 35, 955–963
CrossRef Google scholar
[4]
Bai, Y., Wu, J., Clark, C.M., Naeem, S., Pan, Q., Huang, J., Zhang, L., Han, X., 2010. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biology 16, 358–372
CrossRef Google scholar
[5]
Bernhardt-Römermann, M., Römermann, C., Sperlich, S., Schmidt, W., 2011. Explaining grassland biomass— the contribution of climate, species and functional diversity depends on fertilization and mowing frequency. Journal of Applied Ecology 48, 1088–1097
CrossRef Google scholar
[6]
Bi, J., Zhang, N.L., Liang, Y., Yang, H.J., Ma, K.P., 2011. Interactive effects of water and nitrogen addition on soil microbial communities in a semi-arid steppe. Journal of Plant Ecology, 5, 320e329.
CrossRef Google scholar
[7]
Blüthgen, N., Dormann, C.F., Prati, D., Klaus, V.H., Kleinebecker, T., Hölzel, N., Alt, F., Boch, S., Gockel, S., Hemp, A., Müller, J., Nieschulze, J., Renner, S.C., Schöning, I., Schumacher, U., Socher, S.A., Wells, K., Birkhofer, K., Buscot, F., Oelmann, Y., Rothenwöhrer, C., Scherber, C., Tscharntke, T., Weiner, C.N., Fischer, M., Kalko, E.K.V., Linsenmair, K.E., Schulze, E.D., Weisser, W.W., 2012. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic and Applied Ecology 13, 207–220
CrossRef Google scholar
[8]
Bradford, M.A., Woob, S.A., Bardgett, R.D., Black, H.I.J., Bonkowski, M., Eggers, T., Jones, T.H., 2014. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proceedings of the National Academy of Sciences,111, 14478–14483.
CrossRef Google scholar
[9]
Byrnes, J.E.K., Gamfeldt, L., Isbell, F., Lefcheck, J.S., Griffin, J.N., Hector, A., Cardinale, B.J., Hooper, D.U., Dee, L.E., Emmett Duffy, J., 2014. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution 5, 111–124
CrossRef Google scholar
[10]
Callaham, M.A. Jr, Whiles, M.R., Blair, J.M., 2002. Annual fire, mowing and fertilization effects on two cicada species (Homoptera: Cicadidae) in tallgrass prairie. American Midland Naturalist 148, 90–101
CrossRef Google scholar
[11]
Collins, S.L., Knapp, A.K., Briggs, J.M., Blair, J.M., Steinauer, E.M., 1998. Modulation of diversity by grazing and mowing innative tallgrass prairie. Science 280, 745–747
CrossRef Google scholar
[12]
Cui, H., Wang, Y., Jiang, Q., Chen, S., Ma, J.Y., Sun, W., 2015. Carbon isotope composition of nighttime leaf-respired CO2 in the agricultural-pastoral zone of the Songnen plain, Northeast China. PLoS One 10, e0137575
CrossRef Google scholar
[13]
De Vries, F.T., Liiri, M.E., Bjørnlund, L., Bowker, M.A., Christensen, S., Setälä, H.M., Bardgett, R.D., 2012. Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change 2, 276–280
CrossRef Google scholar
[14]
Delgado-Baquerizo, M., Eldridge, D.J., Ochoa, V., Gozalo, B., Singh, B.K., Maestre, F.T., 2017a. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters 20, 1295–1305
CrossRef Google scholar
[15]
Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., Singh, B.K., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications 7, 10541
CrossRef Google scholar
[16]
Delgado-Baquerizo, M., Trivedi, P., Trivedi, C., Eldridge, D.J., Reich, P.B., Jeffries, T.C., Singh, B.K., Bennett, A., 2017b. Microbial richness and composition independently drive soil multifunctionality. Functional Ecology 31, 2330–2343
CrossRef Google scholar
[17]
Deng, M., Liu, L., Sun, Z., Piao, S., Ma, Y., Chen, Y., Wang, J., Qiao, C., Wang, X., Li, P., 2016. Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen fertilization in temperate Larix principis-rupprechtii plantations. New Phytologist 212, 1019–1029
CrossRef Google scholar
[18]
Fierer, N., Jackson, R.B., 2006. The diversity and biogeography of soilbacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103, 626–631
CrossRef Google scholar
[19]
Fierer, N., Lauber, C.L., Ramirez, K.S., Zaneveld, J., Bradford, M.A., Knight, R., 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME Journal 6, 1007–1017
CrossRef Google scholar
[20]
Frostegård, A., Bååth, E., 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils 22, 59–65
CrossRef Google scholar
[21]
Frostegård, Å., Tunlid, A., Bååth, E., 2011. Use and misuse of PLFA measurements in soils. Soil Biology & Biochemistry 43, 1621–1625
CrossRef Google scholar
[22]
Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B., Cosby, B.J., 2003. The Nitrogen Cascade. Bioscience 53, 341–356
CrossRef Google scholar
[23]
Giling, D.P., Beaumelle, L., Phillips, H.R.P., Cesarz, S., Eisenhauer, N., Ferlian, O., Gottschall, F., Guerra, C., Hines, J., Sendek, A., Siebert, J., Thakur, M.P., Barnes, A.D., 2019. A niche for ecosystem multifunctionality in global change research. Global Change Biology 25, 763–774
CrossRef Google scholar
[24]
Gossner, M.M., Lewinsohn, T.M., Kahl, T., Grassein, F., Boch, S., Prati, D., Birkhofer, K., Renner, S.C., Sikorski, J., Wubet, T., Arndt, H., Baumgartner, V., Blaser, S., Blüthgen, N., Börschig, C., Buscot, F., Diekötter, T., Jorge, L.R., Jung, K., Keyel, A.C., Klein, A.M., Klemmer, S., Krauss, J., Lange, M., Müller, J., Overmann, J., Pašalić, E., Penone, C., Perović, D.J., Purschke, O., Schall, P., Socher, S.A., Sonnemann, I., Tschapka, M., Tscharntke, T., Türke, M., Venter, P.C., Weiner, C.N., Werner, M., Wolters, V., Wurst, S., Westphal, C., Fischer, M., Weisser, W.W., Allan, E., 2016. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269
CrossRef Google scholar
[25]
Grace, J.B., 2006. Structural Equation Modeling and Natural Systems. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511617799
[26]
He, C.E., Liu, X., Fangmeier, A., Zhang, F., 2007. Quantifying the total airborne nitrogen input into agroecosystems in the North China Plain. Agriculture, Ecosystems & Environment 121, 395–400
CrossRef Google scholar
[27]
Isbell, F., Reich, P.B., Tilman, D., Hobbie, S.E., Polasky, S., Binder, S., 2013. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America 110, 11911–11916
CrossRef Google scholar
[28]
Jing, X., Sanders, N.J., Shi, Y., Chu, H., Classen, A.T., Zhao, K., Chen, L., Shi, Y., Jiang, Y., He, J.S., 2015. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications 6, 1–8
CrossRef Google scholar
[29]
Laliberté, E., Wells, J.A., DeClerck, F., Metcalfe, D.J., Catterall, C.P., Queiroz, C., , 2010. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters 13, 76–86
CrossRef Google scholar
[30]
Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J.W., Goulding, K., Christie, P., Fangmeier, A., Zhang, F., 2013. Enhanced nitrogen fertilization over China. Nature 494, 459–462
CrossRef Google scholar
[31]
Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., Garcia-Gomez, M., Bowker, M.A., Soliveres, S., Escolar, C., Garcia-Palacios, P., Berdugo, M., Valencia, E., Gozalo, B., Gallardo, A., Aguilera, L., Arredondo, T., Blones, J., Boeken, B., Bran, D., Conceicao, A.A., Cabrera, O., Chaieb, M., Derak, M., Eldridge, D.J., Espinosa, C.I., Florentino, A., Gaitan, J., Gatica, M.G., Ghiloufi, W., Gomez-Gonzalez, S., Gutierrez, J.R., Hernandez, R.M., Huang, X., Huber-Sannwald, E., Jankju, M., Miriti, M., Monerris, J., Mau, R.L., Morici, E., Naseri, K., Ospina, A., Polo, V., Prina, A., Pucheta, E., Ramirez-Collantes, D.A., Romao, R., Tighe, M., Torres-Diaz, C., Val, J., Veiga, J.P., Wang, D., Zaady, E., 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218
CrossRef Google scholar
[32]
Manning, P., Newington, J.E., Robson, H.R., Saunders, M., Eggers, T., Bradford, M.A., Bardgett, R.D., Bonkowski, M., Ellis, R.J., Gange, A.C., Grayston, S.J., Kandeler, E., Marhan, S., Reid, E., Tscherko, D., Godfray, H.C.J., Rees, M., 2006. Decoupling the direct and indirect effects of nitrogen fertilization on ecosystem function. Ecology Letters 9, 1015–1024
CrossRef Google scholar
[33]
Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F.T., Mace, G., Whittingham, M.J., Fischer, M., 2018. Redefining ecosystem multifunctionality. Nature Ecology & Evolution 2, 427–436.
CrossRef Google scholar
[34]
Niu, S., Yang, H., Zhang, Z., Wu, M., Lu, Q., Li, L.H.X., Wan, S., 2009. Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems (New York, N.Y.) 12, 915–926
CrossRef Google scholar
[35]
Olsson, P.A., Bååth, E., Jakobsen, I., Söderström, B., 1995. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycological Research 99, 623–629
CrossRef Google scholar
[36]
Reich, P.B., Knops, J., Tilman, D., Craine, J., Ellsworth, D., Tjoelker, M., Lee, T., Wedin, D., Naeem, S., Bahauddin, D., Hendrey, G., Jose, S., Wrage, K., Goth, J., Bengston, W., 2001. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen fertilization. Nature 410, 809–812
CrossRef Google scholar
[37]
Sala, O.E., Stuart Chapin, F. III, Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson10, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M., Wall, D.H., 2000. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774
CrossRef Google scholar
[38]
Thébault, A., Mariotte, P., Lortie, C.J., MacDougall, A.S., 2014. Land management trumps the effects of climate change and elevated CO2 on grassland functioning. Journal of Ecology 102, 896–904
CrossRef Google scholar
[39]
Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hu, H., Anderson, I.C., Jeffries, T.C., Singh, B.K., 2016. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. ISME Journal 10, 2593–2604
CrossRef Google scholar
[40]
Valencia, E., Gross, N., Quero, J.L., Carmona, C.P., Ochoa, V., Gozalo, B., Delgado-Baquerizo, M., Dumack, K., Hamonts, K., Singh, B.K., Bonkowski, M., Maestre, F.T., 2018. Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Global Change Biology 24, 5642–5654
CrossRef Google scholar
[41]
Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biology & Biochemistry 19, 697–702
CrossRef Google scholar
[42]
Wang, L., Delgado-Baquerizo, M., Wang, D., Isbell, F., Liu, J., Feng, C., Liu, J., Zhong, Z., Zhu, H., Yuan, X., Chang, Q., Liu, C., 2019. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proceedings of the National Academy of Sciences of the USA,116, 6187–6192.
CrossRef Google scholar
[43]
Wang, L., Delgado-Baquerizo, M., Zhao, X., Zhang, M., Song, Y., Cai, J., Chang, Q., Li, Z., Chen, Y., Liu, J., Zhu, H., Wang, D., Han, G., Liang, C., Wang, C., Xin, X. (2020). Livestock overgrazing disrupts the positive associations between soil biodiversity and nitrogen availability. Functional Ecology, 00, https://doi.org/10.1111/1365-2435.13575.
[44]
Yan, Y., Zhang, Q., Buyantuev, A., Liu, Q., Niu, J., 2020. Plant functional beta diversity is an important mediator of effects of aridity on soil multifunctionality. Science of the Total Environment 726, 138529
CrossRef Google scholar
[45]
Yang, H., Jiang, L., Li, L., Li, A., Wu, M., Wan, S., 2012. Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecology Letters 15, 619–626
CrossRef Google scholar
[46]
Yao, M., Rui, J., Li, J., Dai, Y., Bai, Y., Heděnec, P., Wang, J., Zhang, S., Pei, K., Liu, C., Wang, Y., Zhili He, Frouz, J., Li, X., 2014. Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe. Soil Biology&Biochemistry 79, 81–90
CrossRef Google scholar

Authorship

H.C., W.S. and M.D-B. developed the original idea of the analyses presented in the manuscript. H.C., W.S. and J-Y.M. designed the field experiment. K.W., W.Z.S. and X.L. helped field and laboratory work by sampling plant and soil and analyzing all the functions. H.C. performed all the statistical analyses and modeling, and wrote the first draft supported by M.D-B. and W.S. All the authors contributed substantially to the revisions of the manuscript.

Acknowledgments

This study was supported by the National Key Research and Development Program of China (2016YFC0500602), the National Natural Science Foundation of China (31570470, 31870456), the Fundamental Research Funds for the Central Universities (2412018ZD010), and the Program of Introducing Talents of Discipline to Universities (B16011). M.D-B. was supported by the Spanish Government under Ramón y Cajal (RYC2018-025483-I). M.D-B. also acknowledges support from a Large Research Grant from the British Ecological Society (Grant Agreement No. LRA17\1193, MUSGONET). H.C. acknowledges support from Chinese Scholarship Council (CSC). The authors declare no conflicts of interest.

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s42832-020-0046-2 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2456 KB)

Accesses

Citations

Detail

Sections
Recommended

/