Compositional variations of active autotrophic bacteria in paddy soils with elevated CO2 and temperature
Chen Zhu, Ning Ling, Ling Li, Xiaoyu Liu, Michaela A. Dippold, Xuhui Zhang, Shiwei Guo, Yakov Kuzyakov, Qirong Shen
Compositional variations of active autotrophic bacteria in paddy soils with elevated CO2 and temperature
Global warming is an increasingly serious ecological problem, we examined how the active autotrophic microbes in paddy soils respond to the elevated CO2 and temperature. Here we employed stable isotope probing (SIP) to label the active bacteria using the soil samples from a fully factorial Simulated Climate Change (SCC) field experiment where soils were exposed to ambient CO2 and temperature, elevated temperature, elevated CO2, and both elevated CO2 and temperature. Around 28.9% of active OTUs belonged to ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). Nitrosospira taxa was dominant in all soils and 80.4% of carbon-fixing bacteria under elevated temperature were classified as Nitrosomonas nitrosa. While no labeled NOBs were detected when temperature or CO2 were elevated independently, diverse NOBs were detected in the ambient conditions. We found that elevated CO2 and temperature had contrasting effects on microbial community composition, while relatively small changes were observed when CO2 and temperature were elevated simultaneously. Summarily these results suggest that carbon-fixing bacteria can respond positively to elevated CO2 concentrations, but when it’s accompanied with increase in the temperature this positive response could be weakened. Multiple abiotic factors thus need to be considered when predicting how microbial communities will respond to multiple climatic factors.
Climate change / Paddy soil / Ammonia-oxidizing bacteria / Nitrite-oxidizing bacteria / Stable isotope probing / Microbial community
[1] |
Austin, E.E., Castro, H.F., Sides, K.E., Schadt, C.W., Classen, A.T., 2009. Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation. Soil Biology & Biochemistry 41, 514–520
CrossRef
Google scholar
|
[2] |
Blagodatskaya, E., Kuzyakov, Y., 2013. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology & Biochemistry 67, 192–211
CrossRef
Google scholar
|
[3] |
Bruggemann, N., Gessler, A., Kayler, Z., Keel, S.G., Badeck, F., Barthel, M., Boeckx, P., Buchmann, N., Brugnoli, E., Esperschutz, J., Gavrichkova, O., Ghashghaie, J., Gomez-Casanovas, N., Keitel, C., Knohl, A., Kuptz, D., Palacio, S., Salmon, Y., Uchida, Y., Bahn, M., 2011. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8, 3457–3489
CrossRef
Google scholar
|
[4] |
Burns, R.G., 1982. Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biology & Biochemistry 14, 423–427
CrossRef
Google scholar
|
[5] |
Cai, C., Yin, X., He, S., Jiang, W., Si, C., Struik, P.C., Luo, W., Li, G., Xie, Y., Xiong, Y., Pan, G., 2016. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology 22, 856–874
CrossRef
Google scholar
|
[6] |
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336
CrossRef
Google scholar
|
[7] |
Chen, Z., Zhang, J., Xiong, Z., Pan, G., Müller, C., 2016. Enhanced gross nitrogen transformation rates and nitrogen supply in paddy field under elevated atmospheric carbon dioxide and temperature. Soil Biology & Biochemistry 94, 80–87
CrossRef
Google scholar
|
[8] |
Courchamp, F., Hoffmann, B.D., Russell, J.C., Leclerc, C., Bellard, C., 2014. Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends in Ecology & Evolution 29, 127–130
CrossRef
Google scholar
|
[9] |
de la Torre, J.R., Walker, C.B., Ingalls, A.E., Konneke, M., Stahl, D.A., 2008. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environmental Microbiology 10, 810–818
CrossRef
Google scholar
|
[10] |
Del Galdo, I., Oechel, W.C., Cotrufo, M.F., 2006. Effects of past, present and future atmospheric CO2 concentrations on soil organic matter dynamics in a chaparral ecosystem. Soil Biology & Biochemistry 38, 3235–3244
CrossRef
Google scholar
|
[11] |
Drigo, B., Kowalchuk, G.A., van Veen, J.A., 2008. Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biology and Fertility of Soils 44, 667–679
CrossRef
Google scholar
|
[12] |
Dumont, M.G., Murrell, J.C., 2005. Stable isotope probing—linking microbial identity to function. Nature Reviews. Microbiology 3, 499–504
CrossRef
Google scholar
|
[13] |
Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996–998
CrossRef
Google scholar
|
[14] |
Freitag, T.E., Chang, L., Prosser, J.I., 2006. Changes in the community structure and activity of betaproteobacterial ammonia‐oxidizing sediment bacteria along a freshwater–marine gradient. Environmental Microbiology 8, 684–696
CrossRef
Google scholar
|
[15] |
Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892
CrossRef
Google scholar
|
[16] |
Gao, H., Chen, X., Wei, J., Zhang, Y., Zhang, L., Chang, J., Thompson, M.L., 2016. Decomposition dynamics and changes in chemical composition of wheat straw residue under anaerobic and aerobic conditions. PLoS One 11, e0158172
CrossRef
Google scholar
|
[17] |
Ge, T., Liu, C., Yuan, H., Zhao, Z., Wu, X., Zhu, Z., Brookes, P., Wu, J., 2015. Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen. Plant and Soil 392, 17–25
CrossRef
Google scholar
|
[18] |
Geisseler, D., Linquist, B.A., Lazicki, P.A., 2017. Effect of fertilization on soil microorganisms in paddy rice systems–A meta-analysis. Soil Biology & Biochemistry 115, 452–460
CrossRef
Google scholar
|
[19] |
Hagerty, S.B., Van Groenigen, K.J., Allison, S.D., Hungate, B.A., Schwartz, E., Koch, G.W., Kolka, R.K., Dijkstra, P., 2014. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nature Climate Change 4, 903–906
CrossRef
Google scholar
|
[20] |
Hatzenpichler, R., Lebedeva, E.V., Spieck, E., Stoecker, K., Richter, A., Daims, H., Wagner, M., 2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proceedings of the National Academy of Sciences of the United States of America 105, 2134–2139
CrossRef
Google scholar
|
[21] |
He, J., Shen, J., Zhang, L., Zhu, Y., Zheng, Y., Xu, M., Di, H., 2007. Quantitative analyses of the abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea of a Chinese upland red soil under long‐term fertilization practices. Environmental Microbiology 9, 2364–2374
CrossRef
Google scholar
|
[22] |
Horie, T., Baker, J.T., Nakagawa, H., Matsui, T., Kim, H.Y., 2000. Crop ecosystem responses to climatic change: rice. Climate Change and Global Crop Productivity, 81–106.
|
[23] |
Horn, S., Caruso, T., Verbruggen, E., Rillig, M.C., Hempel, S., 2014. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales. ISME Journal 8, 2231–2242
CrossRef
Google scholar
|
[24] |
Inubushi, K., Furukawa, Y., Hadi, A., Purnomo, E., Tsuruta, H., 2003. Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere 52, 603–608
CrossRef
Google scholar
|
[25] |
Jia, Z., Conrad, R., 2009. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology 11, 1658–1671
CrossRef
Google scholar
|
[26] |
Jiang, Y., Jin, C., Sun, B., 2014. Soil aggregate stratification of nematodes and ammonia oxidizers affects nitrification in an acid soil. Environmental Microbiology 16, 3083–3094
CrossRef
Google scholar
|
[27] |
Jin, V.L., Evans, R.D., 2007. Elevated CO2 increases microbial carbon substrate use and nitrogen cycling in Mojave Desert soils. Global Change Biology 13, 452–465
CrossRef
Google scholar
|
[28] |
Karhu, K., Auffret, M.D., Dungait, J.A., Hopkins, D.W., Prosser, J.I., Singh, B.K., Subke, J.A., Wookey, P.A., Agren, G.I., Sebastia, M.T., Gouriveau, F., Bergkvist, G., Meir, P., Nottingham, A.T., Salinas, N., Hartley, I.P., 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84
CrossRef
Google scholar
|
[29] |
Ke, X., Angel, R., Lu, Y., Conrad, R., 2013. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environmental Microbiology 15, 2275–2292
CrossRef
Google scholar
|
[30] |
Kembel, S.W., 2009. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecology Letters 12, 949–960
CrossRef
Google scholar
|
[31] |
Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., Webb, C.O., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England) 26, 1463–1464
CrossRef
Google scholar
|
[32] |
Kim, H.Y., Lieffering, M., Kobayashi, K., Okada, M., Miura, S., 2003. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global Change Biology 9, 826–837
CrossRef
Google scholar
|
[33] |
Kimball, B., Kobayashi, K., Bindi, M., (2002). Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy 77, 293–368.
|
[34] |
Kimura, M., 2000. Anaerobic microbiology in waterlogged rice fields. Soil Biochemistry 10, 35–138.
|
[35] |
Kögel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., Kalbitz, K., Kölbl, A., Schloter, M., 2010. Biogeochemistry of paddy soils. Geoderma 157, 1–14
CrossRef
Google scholar
|
[36] |
Krepski, S.T., Hanson, T.E., Chan, C.S., 2012. Isolation and characterization of a novel biomineral stalk-forming iron-oxidizing bacterium from a circumneutral groundwater seep. Environmental Microbiology 14, 1671–1680
CrossRef
Google scholar
|
[37] |
Kusian, B., Bowien, B., 1997. Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiology Reviews 21, 135–155
CrossRef
Google scholar
|
[38] |
Kuzyakov, Y., Domanski, G., 2000. Carbon input by plants into the soil. Journal of Plant Nutrition and Soil Science 163, 421–431
CrossRef
Google scholar
|
[39] |
Lal, R., 2008. Sequestration of atmospheric CO2 in global carbon pools. Energy & Environmental Science 1, 86–100
CrossRef
Google scholar
|
[40] |
Lange, M., Eisenhauer, N., Sierra, C.A., Bessler, H., Engels, C., Griffiths, R.I., Mellado-Vázquez, P.G., Malik, A.A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B.C., Trumbore, S.E., Gleixner, G., 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications 6, 6707
CrossRef
Google scholar
|
[41] |
Lennon, J.T., Jones, S.E., 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Reviews. Microbiology 9, 119–130
CrossRef
Google scholar
|
[42] |
Liesack, W., Schnell, S., Revsbech, N.P., 2000. Microbiology of flooded rice paddies. FEMS Microbiology Reviews 24, 625–645
CrossRef
Google scholar
|
[43] |
Liu, Y., Li, M., Zheng, J., Li, L., Zhang, X., Zheng, J., Pan, G., Yu, X., Wang, J., 2014. Short-term responses of microbial community and functioning to experimental CO2 enrichment and warming in a Chinese paddy field. Soil Biology & Biochemistry 77, 58–68
CrossRef
Google scholar
|
[44] |
Long, X.E., Yao, H., Wang, J., Huang, Y., Singh, B.K., Zhu, Y.G., 2015. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils. Environmental Science & Technology 49, 7152–7160
CrossRef
Google scholar
|
[45] |
Luo, Y., 2007. Terrestrial carbon–cycle feedback to climate warming. Annual Review of Ecology, Evolution, and Systematics 38, 683–712
CrossRef
Google scholar
|
[46] |
McMurdie, P.J., Holmes, S., 2014. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Computational Biology 10, e1003531
CrossRef
Google scholar
|
[47] |
Miltner, A., Kopinke, F.D., Kindler, R., Selesi, D., Hartmann, A., Kästner, M., 2005. Non-phototrophic CO2 fixation by soil microorganisms. Plant and Soil 269, 193–203
CrossRef
Google scholar
|
[48] |
Nie, M., Pendall, E., Bell, C., Gasch, C.K., Raut, S., Tamang, S., Wallenstein, M.D., 2013. Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecology Letters 16, 234–241
CrossRef
Google scholar
|
[49] |
Olk, D., Senesi, N., 2000. Properties of chemically Extracted Soil Organic Matter in Intensively Cropped Lowland Rice Soils. In: Kirk, G.J.D., Olk, D.C. eds. Carbon and Nitrogen Dynamics in Flooded Soils. Makati City (Philippines): International Rice Research Institute, 65–87.
|
[50] |
Ortiz, M., Legatzki, A., Neilson, J.W., Fryslie, B., Nelson, W.M., Wing, R.A., Soderlund, C.A., Pryor, B.M., Maier, R.M., 2014. Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME Journal 8, 478–491
CrossRef
Google scholar
|
[51] |
Ouyang, Y., Norton, J.M., Stark, J.M., Reeve, J.R., Habteselassie, M.Y., 2016. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biology & Biochemistry 96, 4–15
CrossRef
Google scholar
|
[52] |
Pan, G.X., Li, L.Q., Wu, L.S., Zhang, X.H., 2004. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Global Change Biology 10, 79–92
CrossRef
Google scholar
|
[53] |
Pausch, J., Kuzyakov, Y., 2018. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Global Change Biology 24, 1–12
CrossRef
Google scholar
|
[54] |
Pepe-Ranney, C., Campbell, A.N., Koechli, C.N., Berthrong, S., Buckley, D.H., 2016. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Frontiers in Microbiology 7, 703
CrossRef
Google scholar
|
[55] |
Piao, S., Fang, J., Ciais, P., Peylin, P., Huang, Y., Sitch, S., Wang, T., 2009. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013
CrossRef
Google scholar
|
[56] |
Pratscher, J., Dumont, M.G., Conrad, R., 2011. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proceedings of the National Academy of Sciences of the United States of America 108, 4170–4175
CrossRef
Google scholar
|
[57] |
Pritchard, S.G., 2011. Soil organisms and global climate change. Plant Pathology 60, 82–99
CrossRef
Google scholar
|
[58] |
Prober, S.M., Leff, J.W., Bates, S.T., Borer, E.T., Firn, J., Harpole, W.S., Lind, E.M., Seabloom, E.W., Adler, P.B., Bakker, J.D., Cleland, E.E., DeCrappeo, N.M., DeLorenze, E., Hagenah, N., Hautier, Y., Hofmockel, K.S., Kirkman, K.P., Knops, J.M.H., La Pierre, K.J., MacDougall, A.S., McCulley, R.L., Mitchell, C.E., Risch, A.C., Schuetz, M., Stevens, C.J., Williams, R.J., Fierer, N., 2015. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters 18, 85–95
CrossRef
Google scholar
|
[59] |
Radajewski, S., Ineson, P., Parekh, N.R., Murrell, J.C., 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403, 646–649
CrossRef
Google scholar
|
[60] |
Razavi, B.S., Liu, S., Kuzyakov, Y., 2017. Hot experience for cold-adapted microorganisms: temperature sensitivity of soil enzymes. Soil Biology & Biochemistry 105, 236–243
CrossRef
Google scholar
|
[61] |
Rosenzweig, C., Casassa, G., Karoly, D.J., Imeson, A., Liu, C., Menzel, A., Rawlins, S., Root, T.L., Seguin, B., Tryjanowski, P., 2007. Assessment of observed changes and responses in natural and managed systems. Climatic Change 2007, 79.
|
[62] |
Sahrawat, K.L., 2004. Organic matter accumulation in submerged soils. Advances in Agronomy 81, 170–203.
|
[63] |
Saks, Ü., Davison, J., Öpik, M., Vasar, M., Moora, M., Zobel, M., 2013. Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey. Botany 92, 277–285
CrossRef
Google scholar
|
[64] |
Shen, J.P., Zhang, L.M., Zhu, Y.G., Zhang, J.B., He, J.Z., 2008. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology 10, 1601–1611
CrossRef
Google scholar
|
[65] |
Shi, D.H., You, Z.L., Xu, C., Zhang, Q., Zhu, H.L., 2007. Synthesis, crystal structure and urease inhibitory activities of Schiff base metal complexes. Inorganic Chemistry Communications 10, 404–406
CrossRef
Google scholar
|
[66] |
Singh, B.K., Bardgett, R.D., Smith, P., Reay, D.S., 2010. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews. Microbiology 8, 779–790
CrossRef
Google scholar
|
[67] |
Steven, B., Gallegos-Graves, L.V., Yeager, C., Belnap, J., Kuske, C.R., 2014. Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils. Soil Biology & Biochemistry 69, 302–312
CrossRef
Google scholar
|
[68] |
Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., (2013) IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, UK, and New York. p.1535.
|
[69] |
Sun, Y., Huang, S., Yu, X., Zhang, W., 2015. Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China. Plant and Soil 397, 189–200
CrossRef
Google scholar
|
[70] |
Tabita, F.R., Hanson, T.E., Li, H.Y., Satagopan, S., Singh, J., Chan, S., 2007. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiology and Molecular Biology Reviews 71, 576–599
CrossRef
Google scholar
|
[71] |
Tourna, M., Freitag, T.E., Prosser, J.I., 2010. Stable isotope probing analysis of interactions between ammonia oxidizers. Applied and Environmental Microbiology 76, 2468–2477
CrossRef
Google scholar
|
[72] |
Trumbore, S.E., 1997. Potential responses of soil organic carbon to global environmental change. Proceedings of the National Academy of Sciences of the United States of America 94, 8284–8291
CrossRef
Google scholar
|
[73] |
Vuillemin, A., Wankel, S.D., Coskun, Ö.K., Magritsch, T., Vargas, S., Estes, E.R., Spivack, A.J., Smith, D.C., Pockalny, R., Murray, R.W., D’Hondt, S., Orsi, W.D., 2019. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Science Advances 5, eaaw4108
CrossRef
Google scholar
|
[74] |
Wang, B., Zhao, J., Guo, Z., Ma, J., Xu, H., Jia, Z., 2015. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME Journal 9, 1062–1075
CrossRef
Google scholar
|
[75] |
Wang, J., Liu, X., Zhang, X., Smith, P., Li, L., Filley, T.R., Cheng, K., Shen, M., He, Y., Pan, G., 2016. Size and variability of crop productivity both impacted by CO2 enrichment and warming-a case study of 4 year field experiment in a Chinese paddy. Agriculture, Ecosystems & Environment 221, 40–49
CrossRef
Google scholar
|
[76] |
Webb, C.O., Ackerly, D.D., McPeek, M.A., Donoghue, M.J., 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33, 475–505
CrossRef
Google scholar
|
[77] |
Wetzel, F.T., Kissling, W.D., Beissmann, H., Penn, D.J., 2012. Future climate change driven sea-level rise: secondary consequences from human displacement for island biodiversity. Global Change Biology 18, 2707–2719
CrossRef
Google scholar
|
[78] |
Xiong, J., Sun, H., Peng, F., Zhang, H., Xue, X., Gibbons, S.M., Gilbert, J.A., Chu, H., 2014. Characterizing changes in soil bacterial community structure in response to short-term warming. FEMS Microbiology Ecology 89, 281–292
CrossRef
Google scholar
|
[79] |
Yuan, H., Ge, T., Chen, C., O’Donnell, A.G., Wu, J., 2012. Significant role for microbial autotrophy in the sequestration of soil carbon. Applied and Environmental Microbiology 78, 2328–2336
CrossRef
Google scholar
|
[80] |
Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., Fei, S., Deng, S., He, Z., Van Nostrand, J.D., Luo, Y., 2012. Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change 2, 106–110
CrossRef
Google scholar
|
[81] |
Zhu, C., Ling, N., Guo, J.J., Wang, M., Guo, S.W., Shen, C.R., 2016. Impacts of fertilization regimes on arbuscular mycorrhizal fungal (AMF) community composition were correlated with organic matter composition in maize rhizosphere soil. Frontiers in Microbiology 7, 7
CrossRef
Google scholar
|
/
〈 | 〉 |