Microhabitat heterogeneity associated with Vanilla spp. and its influences on the microbial community of leaf litter and soil
Gabriela Montes de Oca-Vásquez, Frank Solano-Campos, Bernal Azofeifa-Bolaños, Amelia Paniagua-Vasquez, José Vega-Baudrit, Antonio Ruiz-Navarro, Rubén López-Mondéjar, Felipe Bastida
Microhabitat heterogeneity associated with Vanilla spp. and its influences on the microbial community of leaf litter and soil
The impact of forest microhabitats on physiochemical properties of the soil and that of microbial communities on tropical soils remain poorly understood. To elucidate the effect of tropical forest stand on leaf litter and soil microbial communities, we studied enzyme activities, microbial biomass, and diversity in three distinct microhabitats in terms of plant richness, diameter at breast height (DBH), and physiochemical properties of soil and litter, each associated with a different Vanilla sp. In the soil, positive correlations were found between electrical conductivity (EC) and total organic carbon (TOC) with phosphatase activity, and between nitrogen (N) and water-soluble carbon (WSC) content with urease activity (UA). In the litter, the water content was positively correlated with bacterial and fungal biomass, and N and WSC contents were positively correlated with fungal biomass. Positive correlations were found between plant richness and UA in the soil, plant richness and fungal biomass in the soil and litter, and DBH and fungal biomass in the litter. Amplicon sequencing revealed differences between microhabitats in the relative abundance of some fungal and bacterial taxa and in the bacterial community composition of both litter and soil. Bacterial richness and diversity were different between microhabitats, and, in litter samples, they were negatively correlated with DBH and plant richness, respectively. By contrast, none of the soil and litter physiochemical properties were significantly correlated with microbial diversity. Our results show that significant shifts in enzyme activity, microbial biomass, and diversity in the microhabitats were driven by key abiotic and biotic factors depending on the soil or litter sample type.
Tropical rainforest / Enzyme activity / Microbial community composition / Microbial biomass / Plant richness
[1] |
Allison, S.D., Jastrow, J.D., 2006. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil Biology & Biochemistry 38, 3245–3256
CrossRef
Google scholar
|
[2] |
Alomia, Y.A., Mosquera-Espinosa, A.T., Flanagan, N.S., Otero, J.T., 2017. Seed viability and symbiotic seed germination in Vanilla spp. (Orchidaceae). Research Journal of Seed Science 10, 43–52
CrossRef
Google scholar
|
[3] |
Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 32–46.
|
[4] |
Aronesty, E., 2013. Comparison of sequencing utility programs. Open Bioinformatics Journal 7, 1–8
CrossRef
Google scholar
|
[5] |
Azofeifa-Bolaños, J., Gigant, L.R., Nicolás-García, M., Pignal, M., Tavares-González, F.B., Hágsater, E., Salazar-Chávez, G.A., Reyes-López, D., Archila-Morales, F.L., García-García, J.A., da Silva, D., Allibert, A., Solano-Campos, F., Rodríguez-Jimenes, G. del C., Paniagua-Vásquez, A., Besse, P., Pérez-Silva, A., Grisoni, M., 2017. A new vanilla species from Costa Rica closely related to V. planifolia (Orchidaceae). European Journal of Taxonomy 284, 1–26
CrossRef
Google scholar
|
[6] |
Azofeifa-Bolaños, J.B., Paniagua-Vásquez, A., García-García, J.A., 2014. Importancia y desafíos de la conservación de Vanilla spp. (Orchidaceae) en Costa Rica. Agronomía Mesoamericana 25, 189–202
CrossRef
Google scholar
|
[7] |
Azofeifa-Bolaños, J.B., Rivera-Coto, G., Paniagua-Vasquez, A., Cordero-Solórzano, R., 2018. Selección cualitativa del esqueje en la sobreviviencia y desarrollo morfogenético de Vanilla planifolia Andrews. Agronomía Mesoamericana 29, 619–627
CrossRef
Google scholar
|
[8] |
Bardgett, R.D., Mommer, L., De Vries, F.T., 2014. Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology & Evolution 29, 692–699
CrossRef
Google scholar
|
[9] |
Bastida, F., Torres, I.F., Moreno, J.L., Baldrian, P., Ondoño, S., Ruiz-Navarro, A., Hernández, T., Richnow, H.H., Starke, R., García, C., Jehmlich, N., 2016. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils. Molecular Ecology 25, 4660–4673
CrossRef
Google scholar
|
[10] |
Bligh, E.G., Dyer, W.J., 1959. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911–917
CrossRef
Google scholar
|
[11] |
Bradford, M.A., Wieder, W.R., Bonan, G.B., Fierer, N., Raymond, P.A., Crowther, T.W., 2016. Managing uncertainty in soil carbon feedbacks to climate change. Nature Climate Change 6, 751–758
CrossRef
Google scholar
|
[12] |
Brant, J.B., Sulzman, E.W., Myrold, D.D., 2006. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology & Biochemistry 38, 2219–2232
CrossRef
Google scholar
|
[13] |
Burns, J.H., Anacker, B.L., Strauss, S.Y., Burke, D.J., 2015. Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB Plants 7, 1–10
CrossRef
Google scholar
|
[14] |
Cabugao, K.G., Timm, C.M., Carrell, A.A., Childs, J., Lu, T.Y.S., Pelletier, D.A., Weston, D.J., Norby, R.J., 2017. Root and rhizosphere bacterial phosphatase activity varies with tree species and soil phosphorus availability in Puerto Rico tropical forest. Frontiers of Plant Science 8, 1–14
CrossRef
Google scholar
|
[15] |
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J.A., Smith, G., Knight, R., 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal 6, 1621–1624
CrossRef
Google scholar
|
[16] |
Chen, L., Xiang, W., Wu, H., Ouyang, S., Zhou, B., Zeng, Y., Chen, Y., Kuzyakov, Y., 2019. Tree species identity surpasses richness in affecting soil microbial richness and community composition in subtropical forests. Soil Biology & Biochemistry 130, 113–121
CrossRef
Google scholar
|
[17] |
Chung, H., Zak, D.R., Reich, P.B., Ellsworth, D.S., 2007. Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology 13, 980–989
CrossRef
Google scholar
|
[18] |
Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., Tiedje, J.M., 2014. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Research 42, 633–642
CrossRef
Google scholar
|
[19] |
Dassen, S., Cortois, R., Martens, H., de Hollander, M., Kowalchuk, G.A., van der Putten, W.H., De Deyn, G.B., 2017. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Molecular Ecology 26, 4085–4098
CrossRef
Google scholar
|
[20] |
Dawson, W., Hör, J., Egert, M., van Kleunen, M., Peste, M., 2017. A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization. Frontiers in Microbiology 8, 1–13
CrossRef
Google scholar
|
[21] |
Delgado-Baquerizo, M., Fry, E.L., Eldridge, D.J., de Vries, F.T., Manning, P., Hamonts, K., Kattge, J., Boenisch, G., Singh, B.K., Bardgett, R.D., 2018a. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytologist 219, 574–587
CrossRef
Google scholar
|
[22] |
Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-González, A., Eldridge, D.J., Bardgett, R.D., Maestre, F.T., Singh, B.K., Fierer, N., 2018b. A global atlas of the dominant bacteria found in soil. Science 359, 320–325
CrossRef
Google scholar
|
[23] |
Dungait, J.A.J., Kemmitt, S.J., Michallon, L., Guo, S., Wen, Q., Brookes, P.C., Evershed, R.P., 2011. Variable responses of the soil microbial biomass to trace concentrations of 13C-labelled glucose, using 13C-PLFA analysis. European Journal of Soil Science 62, 117–126
CrossRef
Google scholar
|
[24] |
Edgar, R.C., 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996–998
CrossRef
Google scholar
|
[25] |
Eisenhauer, N., Lanoue, A., Strecker, T., Scheu, S., Steinauer, K., Thakur, M.P., Mommer, L., 2017. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports 7, 1–8
CrossRef
Google scholar
|
[26] |
Eivazi, F., Tabatabai, M.A., 1977. Phosphatases in soils. Soil Biology & Biochemistry 9, 167–172
CrossRef
Google scholar
|
[27] |
Frostegård, Å., Bååth, E., Tunlio, A., 1993. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology & Biochemistry 25, 723–730
CrossRef
Google scholar
|
[28] |
Fu, X., Yang, F., Wang, J., Di, Y., Dai, X., Zhang, X., Wang, H., 2015. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Science of the Total Environment 502, 280–286
CrossRef
Google scholar
|
[29] |
García-Franco, N., Martínez-Mena, M., Goberna, M., Albaladejo, J., 2015. Changes in soil aggregation and microbial community structure control carbon sequestration after afforestation of semiarid shrublands. Soil Biology & Biochemistry 87, 110–121
CrossRef
Google scholar
|
[30] |
Guangming, L., Xuechen, Z., Xiuping, W., Hongbo, S., Jingsong, Y., Xiangping, W., 2017. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agriculture, Ecosystems & Environment 237, 274–279
CrossRef
Google scholar
|
[31] |
Haichar, F., Santaella, C., Heulin, T., Achouak, W., 2014. Root exudates mediated interactions belowground. Soil Biology & Biochemistry 77, 69–80
CrossRef
Google scholar
|
[32] |
Hammer, Ø., Harper, D., Ryan, P., 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 1–9.
|
[33] |
Hartmann, A., Schmid, M., van Tuinen, D., Berg, G., 2009. Plant-driven selection of microbes. Plant and Soil 321, 235–257
CrossRef
Google scholar
|
[34] |
Hortal, S., Lozano, Y.M., Bastida, F., Armas, C., Moreno, J.L., Garcia, C., Pugnaire, F.I., 2017. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community. Scientific Reports 7, 1–9
CrossRef
Google scholar
|
[35] |
Huang, X., Liu, S., Wang, H., Hu, Z., Li, Z., You, Y., 2014. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China. Soil Biology & Biochemistry 73, 42–48
CrossRef
Google scholar
|
[36] |
Ihrmark, K., Bödeker, I.T.M., Cruz-Martinez, K., Friberg, H., Kubartova, A., Schenck, J., Strid, Y., Stenlid, J., Brandström-Durling, M., Clemmensen, K.E., Lindahl, B.D., 2012. New primers to amplify the fungal ITS2 region- evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiology Ecology 82, 666–677
CrossRef
Google scholar
|
[37] |
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. FAO, Rome.
|
[38] |
Iwaoka, C., Imada, S., Taniguchi, T., Du, S., Yamanaka, N., Tateno, R., 2018. The impacts of soil fertility and salinity on soil nitrogen dynamics mediated by the soil microbial community beneath the halophytic shrub tamarisk. Microbial Ecology 75, 985–996
CrossRef
Google scholar
|
[39] |
John, R., Dalling, J.W., Harms, K.E., Yavitt, J.B., Stallard, R.F., Mirabello, M., Hubbell, S.P., Valencia, R., Navarrete, H., Vallejo, M., Foster, R.B., 2007. Soil nutrients influence spatial distributions of tropical trees species. Proceedings of the National Academy of Sciences of the United States of America 104, 864–869
CrossRef
Google scholar
|
[40] |
Kandeler, E., Gerber, H., 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils 6, 68–72
CrossRef
Google scholar
|
[41] |
Kardol, P., Wardle, D.A., 2010. How understanding aboveground-belowground linkages can assist restoration ecology. Trends in Ecology & Evolution 25, 670–679
CrossRef
Google scholar
|
[42] |
Karremans, A.P., Lehmann, C., 2018. A highly threatened new species of Vanilla from Costa Rica. Lindleyana 87, 304–307.
|
[43] |
Khlifa, R., Paquette, A., Messier, C., Reich, P.B., Munson, A.D., 2017. Do temperate tree species diversity and identity influence soil microbial community function and composition? Ecology and Evolution 7, 7965–7974
CrossRef
Google scholar
|
[44] |
Kivlin, S.N., Hawkes, C.V., 2016. Temporal and spatial variation of soil bacteria richness, composition, and function in a neotropical rainforest. PLoS One 11, 1–17
CrossRef
Google scholar
|
[45] |
Koljalg, U., Nilsson, R.H., Abarenkov, K., Tedersoo, L., Taylor, A.F.S., Bahram, M., Bates, S.T., Bruns, T.D., Bengtsson-Palme, J., Callaghan, T.M., Douglas, B., Drenkhan, T., Eberhardt, U., Dueñas, M., Grebenc, T., Griffith, G.W., Hartmann, M., Kirk, P.M., Kohout, P., Larsson, E., Lindahl, B.D., Lücking, R., Martín, M.P., Matheny, P.B., Nguyen, N.H., Niskanen, T., Oja, J., Peay, K.G., Peintner, U., Peterson, M., Põldmaa, K., Saag, L., Saar, I., Schüßler, A., Scott, J.A., Senés, C., Smith, M.E., Suija, A., Taylor, D.L., Telleria, M.T., Weiss, M., Larsson, K.H., 2014. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology 22, 5271–5277
CrossRef
Google scholar
|
[46] |
Korthou, H., Verpoorte, R., 2007. Vanilla. In: Berger, R.G., ed. Flavours and fragrances: Chemistry, bioprocessing and sustainability. Berlin: Springer-Verlag, 203–217.
|
[47] |
Landesman, W.J., Nelson, D.M., Fitzpatrick, M.C., 2014. Soil properties and tree species drive b-diversity of soil bacterial communities. Soil Biology & Biochemistry 76, 201–209
CrossRef
Google scholar
|
[48] |
Lange, M., Habekost, M., Eisenhauer, N., Roscher, C., Bessler, H., Engels, C., Oelmann, Y., Scheu, S., Wilcke, W., Schulze, E.D., Gleixner, G., 2014. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PLoS One 9, e96182
CrossRef
Google scholar
|
[49] |
Leff, J.W., Nemergut, D.R., Grandy, A.S., O’Neill, S.P., Wickings, K., Townsend, A.R., Cleveland, C.C., 2012. The effects of soil bacterial community structure on decomposition in a tropical rain forest. Ecosystems (New York, N.Y.) 15, 284–298
CrossRef
Google scholar
|
[50] |
Lemanowicz, J., 2018. Dynamics of phosphorus content and the activity of phosphatase in forest soil in the sustained nitrogen compounds emissions zone. Environmental Science and Pollution Research International 25, 33773–33782
CrossRef
Google scholar
|
[51] |
Lemanowicz, J., Bartkowiak, A., 2016. Changes in the activity of phosphatase and the content of phosphorus in salt-affected soils grassland habitat natura 2000. Polish Journal of Soil Science 49, 149–165
CrossRef
Google scholar
|
[52] |
Liu, X., Liang, M., Etienne, R.S., Wang, Y., Staehelin, C., Yu, S., 2012. Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest. Ecology Letters 15, 111–118
CrossRef
Google scholar
|
[53] |
Liu, Y., Sun, X., Li, S., Li, S., Zhou, W., Ma, Q., Zhang, J., 2019. Influence of green waste compost on Pb-polluted soil remediation, soil quality improvement, and uptake by Pakchoi cabbage (Brassica campestris L. ssp). Environmental Science and Pollution Research International.
|
[54] |
Lladó, S., López-Mondéjar, R., Baldrian, P., 2017. Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews 81, e00063–e16
CrossRef
Google scholar
|
[55] |
Looby, C.I., Treseder, K.K., 2018. Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest. Soil Biology & Biochemistry 117, 87–96
CrossRef
Google scholar
|
[56] |
Loranger-Merciris, G., Barthes, L., Gastine, A., Leadley, P., 2006. Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biology & Biochemistry 38, 2336–2343
CrossRef
Google scholar
|
[57] |
Lozano, Y.M., Armas, C., Hortal, S., Casanoves, F., Pugnaire, F.I., 2017. Disentangling above- and below-ground facilitation drivers in arid environments: the role of soil microorganisms, soil properties and microhabitat. New Phytologist 216, 1236–1246
CrossRef
Google scholar
|
[58] |
Luo, X., Fu, X., Yang, Y., Cai, P., Peng, S., Chen, W., Huang, Q., 2016. Microbial communities play important roles in modulating paddy soil fertility. Scientific Reports 6, 1–12
CrossRef
Google scholar
|
[59] |
Margalef, O., Sardans, J., Fernández-Martínez, M., Molowny-Horas, R., Janssens, I.A., Ciais, P., Goll, D., Richter, A., Obersteiner, M., Asensio, D., Peñuelas, J., 2017. Global patterns of phosphatase activity in natural soils. Scientific Reports 7, 1–13
CrossRef
Google scholar
|
[60] |
Maruenda, H., Vico, M.D.L., Householder, J.E., Janovec, J.P., Cañari, C., Naka, A., Gonzalez, A.E., 2013. Exploration of Vanilla pompona from the Peruvian Amazon as a potential source of vanilla essence: Quantification of phenolics by HPLC-DAD. Food Chemistry 138, 161–167
CrossRef
Google scholar
|
[61] |
Mazzon, M., Cavani, L., Margon, A., Sorrenti, G., Ciavatta, C., Marzadori, C., 2018. Changes in soil phenol oxidase activities due to long-term application of compost and mineral N in a walnut orchard. Geoderma 316, 70–77
CrossRef
Google scholar
|
[62] |
McCarthy-Neumann, S., Kobe, R.K., 2010. Conspecific plant-soil feedbacks reduce survivorship and growth of tropical tree seedlings. Journal of Ecology 98, 396–407
CrossRef
Google scholar
|
[63] |
McGee, K.M., Eaton, W.D., Shokralla, S., Hajibabaei, M., 2018. Determinants of soil bacterial and fungal community composition toward carbon-use efficiency across primary and secondary forests in a Costa Rican conservation area. Microbial Ecology 77, 148–167
CrossRef
Google scholar
|
[64] |
Nemergut, D.R., Cleveland, C.C., Wieder, W.R., Washenberger, C.L., Townsend, A.R., 2010. Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biology & Biochemistry 42, 2153–2160
CrossRef
Google scholar
|
[65] |
Nicolai, V., 1988. Phenolic and mineral content of leaves influences decomposition in European Forest Ecosystems. Oecologia 75, 575–579
CrossRef
Google scholar
|
[66] |
Nielsen, U.N., Osler, G.H.R., Campbell, C.D., Burslem, D.F.R.P., van der Wal, R., 2010. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. Journal of Biogeography 37, 1317–1328
CrossRef
Google scholar
|
[67] |
Ochoa-Hueso, R., Eldridge, D.J., Delgado-Baquerizo, M., Soliveres, S., Bowker, M.A., Gross, N., Le Bagousse-Pinguet, Y., Quero, J.L., García-Gómez, M., Valencia, E., Arredondo, T., Beinticinco, L., Bran, D., Cea, A., Coaguila, D., Dougill, A.J., Espinosa, C.I., Gaitán, J., Guuroh, R.T., Guzman, E., Gutiérrez, J.R., Hernández, R.M., Huber-Sannwald, E., Jeffries, T., Linstädter, A., Mau, R.L., Monerris, J., Prina, A., Pucheta, E., Stavi, I., Thomas, A.D., Zaady, E., Singh, B.K., Maestre, F.T., 2018. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. Journal of Ecology 106, 242–253
CrossRef
Google scholar
|
[68] |
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2019. vegan: Community Ecology Package. R package version2.5–6. https://CRAN.R-project.org/package=vegan.
|
[69] |
Ondoño, S., Bastida, F., Moreno, J.L., 2014. Microbiological and biochemical properties of artificial substrates: A preliminary study of its application as Technosols or as a basis in Green Roof Systems. Ecological Engineering 70, 189–199
CrossRef
Google scholar
|
[70] |
Pind, A., Freeman, C., Lock, M.A., 1994. Enzymic degradation of phenolic materials in peatlands-measurement of phenol oxidase activity. Plant and Soil 159, 227–231
CrossRef
Google scholar
|
[71] |
Prather, C., Strickland, M.S., Laws, A., Branson, D., 2017. Herbivore species identity and composition affect soil enzymatic activity through altered plant composition in a coastal tallgrass prairie. Soil Biology & Biochemistry 112, 277–280
CrossRef
Google scholar
|
[72] |
Prober, S.M., Leff, J.W., Bates, S.T., Borer, E.T., Firn, J., Harpole, W.S., Lind, E.M., Seabloom, E.W., Adler, P.B., Bakker, J.D., Cleland, E.E., Decrappeo, N.M., Delorenze, E., Hagenah, N., Hautier, Y., Hofmockel, K.S., Kirkman, K.P., Knops, J.M.H., La Pierre, K.J., Macdougall, A.S., Mcculley, R.L., Mitchell, C.E., Risch, A.C., Schuetz, M., Stevens, C.J., Williams, R.J., Fierer, N., 2015. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters 18, 85–95
CrossRef
Google scholar
|
[73] |
R Core Team, (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
|
[74] |
Ramirez, K.S., Knight, C.G., De Hollander, M., Brearley, F.Q., Constantinides, B., Cotton, A., Creer, S., Crowther, T.W., Davison, J., Delgado-Baquerizo, M., Dorrepaal, E., Elliott, D.R., Fox, G., Griffiths, R.I., Hale, C., Hartman, K., Houlden, A., Jones, D.L., Krab, E.J., Maestre, F.T., Mcguire, K.L., Monteux, S., Orr, C.H., Van Der Putten, W.H., Roberts, I.S., Singh, B.K., Straathof, A.L., Bhatnagar, J.M., Thion, C., 2017. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nature Microbiology 3, 189–196
CrossRef
Google scholar
|
[75] |
Ranadive, A., 2011. Quality control of vanilla beans and extracts. In: Havkin-Frenkel, D., Belanger, F., eds. Handbook of Vanilla Science and Technology. New Jersey: Wiley-Blackwell, 141–161.
|
[76] |
Rinnan, R., Bååth, E., 2009. Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Applied and Environmental Microbiology 75, 3611–3620
CrossRef
Google scholar
|
[77] |
Saetre, P., 1999. Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography 22, 183–192
CrossRef
Google scholar
|
[78] |
Saha, S., Gopinath, K.A., Mina, B.L., Gupta, H.S., 2008. Influence of continuous application of inorganic nutrients to a Maize-Wheat rotation on soil enzyme activity and grain quality in a rainfed Indian soil. European Journal of Soil Biology 44, 521–531
CrossRef
Google scholar
|
[79] |
Schilling, E.M., Waring, B.G., Schilling, J.S., Powers, J.S., 2016. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest. Oecologia 182, 287–297
CrossRef
Google scholar
|
[80] |
Schlatter, D.C., Bakker, M.G., Bradeen, J.M., Kinkel, L.L., 2015. Plant community richness and microbial interactions structure bacterial communities in soil. Ecology 96, 134–142
CrossRef
Google scholar
|
[81] |
Si, P., Shao, W., Yu, H., Yang, X., Gao, D., Qiao, X., Wang, Z., Wu, G., 2018. Rhizosphere microenvironments of eight common deciduous fruit trees were shaped by microbes in northern China. Frontiers in Microbiology 9, 1–17
CrossRef
Google scholar
|
[82] |
Singh, K., 2016. Microbial and enzyme activities of saline and sodic soils. Land Degradation & Development 27, 706–718.
|
[83] |
Sinsabaugh, R.L., 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology & Biochemistry 42, 391–404
CrossRef
Google scholar
|
[84] |
Smith, A.P., Marín-Spiotta, E., Balser, T., 2015. Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: A multiyear study. Global Change Biology 21, 3532–3547
CrossRef
Google scholar
|
[85] |
Song, Y., Song, C., Shi, F., Wang, M., Ren, J., Wang, X., Jiang, L., 2019. Linking plant community composition with the soil C pool, N availability and enzyme activity in boreal peatlands of Northeast China. Applied Soil Ecology 140, 144–154
CrossRef
Google scholar
|
[86] |
Steinauer, K., Tilman, D., Wragg, P.D., Cesarz, S., Cowles, J.M., Pritsch, K., Reich, P.B., Weisser, W.W., Eisenhauer, N., 2015. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology 96, 99–112
CrossRef
Google scholar
|
[87] |
Štursova, M., Bárta, J., Šantručková, H., Baldrian, P., 2016. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiology Ecology 92, 1–10
CrossRef
Google scholar
|
[88] |
Tabatabai, M.A., Bremner, J.M., 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology & Biochemistry 1, 301–307
CrossRef
Google scholar
|
[89] |
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R., Ruiz, L.V., Vasco-Palacios, A.M., Thu, P.Q., Suija, A., Smith, M.E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., Piepenbring, M., Phosri, C., Peterson, M., Parts, K., Pärtel, K., Otsing, E., Nouhra, E., Njouonkou, A.L., Nilsson, R.H., Morgado, L.N., Mayor, J., May, T.W., Majuakim, L., Lodge, D.J., Lee, S.S., Larsson, K.H., Kohout, P., Hosaka, K., Hiiesalu, I., Henkel, T.W., Harend, H., Guo, L., Greslebin, A., Grelet, G., Geml, J., Gates, G., Dunstan, W., Dunk, C., Drenkhan, R., Dearnaley, J., De Kesel, A., Dang, T., Chen, X., Buegger, F., Brearley, F.Q., Bonito, G., Anslan, S., Abell, S., Abarenkov, K., 2014. Global diversity and geography of soil fungi. Science 346, 1256688
CrossRef
Google scholar
|
[90] |
Tianzhu, L., Guicai, S., Jian, W., Gengxin, Z., 2017. Microbial communities and associated enzyme activities in alpine wetlands with increasing altitude on the Tibetan Plateau. Wetlands 37, 401–412
CrossRef
Google scholar
|
[91] |
Torres, P.A., Abril, A.B., Bucher, E.H., 2005. Microbial succession in litter decomposition in the semi-arid Chaco woodland. Soil Biology & Biochemistry 37, 49–54
CrossRef
Google scholar
|
[92] |
Van Nuland, M.E., Wooliver, R.C., Pfennigwerth, A.A., Read, Q.D., Ware, I.M., Mueller, L., Fordyce, J.A., Schweitzer, J.A., Bailey, J.K., 2016. Plant–soil feedbacks: connecting ecosystem ecology and evolution. Functional Ecology 30, 1032–1042
CrossRef
Google scholar
|
[93] |
Větrovský, T., Baldrian, P., Morais, D., 2018. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics (Oxford, England) 34, 2292–2294
CrossRef
Google scholar
|
[94] |
Wakelin, S.A., Gerard, E., van Koten, C., Banabas, M., O’Callaghan, M., Nelson, P.N., 2016. Soil physicochemical properties impact more strongly on bacteria and fungi than conversion of grassland to oil palm. Pedobiologia 59, 83–91
CrossRef
Google scholar
|
[95] |
Wang, X.Y., Ge, Y., Wang, J., 2017. Positive effects of plant diversity on soil microbial biomass and activity are associated with more root biomass production. Journal of Plant Interactions 12, 533–541
CrossRef
Google scholar
|
[96] |
Waring, B.G., 2013. Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest. Soil Biology & Biochemistry 64, 89–95
CrossRef
Google scholar
|
[97] |
Waring, B.G., Adams, R., Branco, S., Powers, J.S., 2016. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytologist 209, 845–854
CrossRef
Google scholar
|
[98] |
Watteyn, C., Fremout, T., Karremans, A.P., Huarcaya, R.P., Azofeifa, J.B., Reubens, B., Muys, B., 2020. Vanilla distribution modeling for conservation and sustainable cultivation in a joint land sparing/sharing concept. Ecosphere 11, e03056
CrossRef
Google scholar
|
[99] |
Wei, K., Sun, T., Tian, J., Chen, Z., Chen, L., 2018. Soil microbial biomass, phosphatase and their relationships with phosphorus turnover under mixed inorganic and organic nitrogen addition in a Larix gmelinii plantation. Forest Ecology and Management 422, 313–322
CrossRef
Google scholar
|
[100] |
Wu, N., Li, Z., Wu, F., Tang, M., 2019. Microenvironment and microbial community in the rhizosphere of dioecious Populus cathayana at Chaka Salt Lake. Journal of Soils and Sediments 19, 2740–2751
CrossRef
Google scholar
|
[101] |
Xie, E., Ding, A., Zheng, L., Lu, C., Wang, J., Huang, B., Xiu, H., 2016. Seasonal variation in populations of nitrogen-transforming bacteria and correlation with nitrogen removal in a full-scale horizontal flow constructed wetland treating polluted river water. Geomicrobiology Journal 33, 338–346
CrossRef
Google scholar
|
[102] |
Xiong, W., Zhao, Q., Xue, C., Xun, W., Zhao, J., Wu, H., Li, R., Shen, Q., 2016. Comparison of fungal community in black pepper-vanilla and vanilla monoculture systems associated with vanilla Fusarium wilt disease. Frontiers in Microbiology 7, 1–8
CrossRef
Google scholar
|
[103] |
Yao, Q., Li, Z., Song, Y., Wright, S.J., Guo, X., Tringe, S.G., Tfaily, M.M., Paša-Tolić, L., Hazen, T.C., Turner, B.L., Mayes, M.A., Pan, C., 2018. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nature Ecology & Evolution 2, 499–509
CrossRef
Google scholar
|
[104] |
Zhang, C., Wang, J., Liu, G., Song, Z., Fang, L., 2019. Impact of soil leachate on microbial biomass and diversity affected by plant diversity. Plant and Soil 439, 505–523
CrossRef
Google scholar
|
[105] |
Zhang, C.B., Wang, J., Liu, W.L., Zhu, S.X., Liu, D., Chang, S.X., Chang, J., Ge, Y., 2010. Effects of plant diversity on nutrient retention and enzyme activities in a full-scale constructed wetland. Bioresource Technology 101, 1686–1692
CrossRef
Google scholar
|
[106] |
Zhang, Q., Wu, J., Yang, F., Lei, Y., Zhang, Q., Cheng, X., 2016a. Alterations in soil microbial community composition and biomass following agricultural land use change. Scientific Reports 6, 1–10
CrossRef
Google scholar
|
[107] |
Zhang, T., Zhang, J., Wang, T., Tian, X., Ge, H., Ma, Y., Wang, K., 2016b. Effects of organic matter on Leymus chinensis germination, growth, and urease activity and available nitrogen in coastal saline soil. Toxicological and Environmental Chemistry 98, 623–629
CrossRef
Google scholar
|
[108] |
Zhang, W., Qiao, W., Gao, D., Dai, Y., Deng, J., Yang, G., Han, X., Ren, G., 2018. Relationship between soil nutrient properties and biological activities along a restoration chronosequence of Pinus tabulaeformis plantation forests in the Ziwuling Mountains, China. Catena 161, 85–95
CrossRef
Google scholar
|
[109] |
Žifčáková, L., Větrovský, T., Howe, A., Baldrian, P., 2016. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environmental Microbiology 18, 288–301
CrossRef
Google scholar
|
/
〈 | 〉 |