Biodegraded peat and ultrafine calcium carbonate result in retained metals and higher microbial diversities in boreal acid sulfate soil

Eva Högfors-Rönnholm , Stephan Christel , Tom Lillhonga , Sten Engblom , Peter Österholm , Mark Dopson

Soil Ecology Letters ›› 2020, Vol. 2 ›› Issue (2) : 120 -130.

PDF (1206KB)
Soil Ecology Letters ›› 2020, Vol. 2 ›› Issue (2) : 120 -130. DOI: 10.1007/s42832-020-0039-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Biodegraded peat and ultrafine calcium carbonate result in retained metals and higher microbial diversities in boreal acid sulfate soil

Author information +
History +
PDF (1206KB)

Abstract

To efficiently mitigate bacterial mediated acid and metal discharge from acid sulfate soils, iron and sulfur-oxidizing microorganisms that catalyze the iron sulfide dissolution should be inactivated. An organic carbon source could further be introduced into the soil to promote the growth of iron and sulfur reducing bacteria. In this study, acid sulfate soil was amended with a mobile form of ultrafine calcium carbonate alone or in combination with fractions of peat, sodium acetate, or sodium lactate. The introduction of ultrafine calcium carbonate resulted in a raised pH that appeared to inactivate the acidophiles, but did not reactivate iron or sulfur reducing bacteria. The addition of organic matter resulted in higher microbial diversities and retention of metals, although acid-tolerant and acidophilic microbes still dominated. A low abundance of an iron reducing bacteria was identified in the all treatments with both peat fractions and pure organic carbon compounds. These results indicated that biodegraded peat could be used as an energy source for at least iron reducing bacteria in the acid sulfate soil at the same time as it retains metals in the soil. These findings are of value for further developing mitigation methods for the sustainable use of acid sulfate soils.

Keywords

16S rRNA gene / Microbial community / Organic material / Mitigation

Cite this article

Download citation ▾
Eva Högfors-Rönnholm, Stephan Christel, Tom Lillhonga, Sten Engblom, Peter Österholm, Mark Dopson. Biodegraded peat and ultrafine calcium carbonate result in retained metals and higher microbial diversities in boreal acid sulfate soil. Soil Ecology Letters, 2020, 2(2): 120-130 DOI:10.1007/s42832-020-0039-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahn, A.C., Meier-Kolthoff, J.P., Overmars, L., Richter, M., Woyke, T., Sorokin, D.Y., Muyzer, G., 2017. Genomic diversity within the haloalkaliphilic genus Thioalkalivibrio. PLoS One 12, e0173517

[2]

Albuquerque, L., Rainey, F.A., Nobre, M.F., da Costa, M.S., 2008. Elioraea tepidiphila gen. nov., sp. nov., a slightly thermophilic member of the Alphaproteobacteria. International Journal of Systematic and Evolutionary Microbiology 58, 773–778

[3]

Ayangbenro, A.S., Olanrewaju, O.S., Babalola, O.O., 2018. Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Frontiers in Microbiology 9, 1986

[4]

Azelee, I.W., Ismail, R., Ali, R., Bakar, W.A.W.A.A., 2014. Chelation technique for the removal of heavy metals (As, Pb, Cd and Ni) from green mussel, Perna viridis. Indian Journal of Geo-Marine Sciences 43, 372–376.

[5]

Christel, S., Yu, C., Wu, X., Josefsson, S., Lillhonga, T., Högfors-Rönnholm, E., Sohlenius, G., Åström, M.E., Dopson, M., 2019. Comparison of boreal acid sulfate soil microbial communities in oxidative and reductive environments. Research in Microbiology 170, 288–295

[6]

Clark, D.A., Norris, P.R., 1996. Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142, 785–790

[7]

Dahal, R.H., Kim, J., 2017. Rhodanobacter humi sp. nov., an acid-tolerant and alkalitolerant gammaproteobacterium isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology 67, 1185–1190

[8]

Dang, T., Mosley, L.M., Fitzpatrick, R., Marschner, P., 2016. Addition of organic material to sulfuric soil can reduce leaching of protons, iron and aluminium. Geoderma 271, 63–70

[9]

Dent, D., 1986. Acid Sulphate Soils: A Baseline for Research and Development. Wageningen: International Institute for Land Reclamation and Improvement, 22–42.

[10]

Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996–998

[11]

Green, S.J., Prakash, O., Jasrotia, P., Overholt, W.A., Cardenas, E., Hubbard, D., Tiedje, J.M., Watson, D.B., Schadt, C.W., Brooks, S.C., Kostka, J.E., 2012. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Applied and Environmental Microbiology 78, 1039–1047

[12]

Hamada, Y.Z., Carlson, B., Dangberg, J., 2005. Interaction of malate and lactate with chromium(III) and iron(III) in aqueous solutions. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 35, 515–522

[13]

Herlemann, D.P., Labrenz, M., Jurgens, K., Bertilsson, S., Waniek, J.J., Andersson, A.F., 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME Journal 5, 1571–1579

[14]

Högfors-Rönnholm, E., Christel, S., Dalhem, K., Lillhonga, T., Engblom, S., Österholm, P., Dopson, M., 2018a. Chemical and microbiological evaluation of novel chemical treatment methods for acid sulfate soils. Science of the Total Environment 625, 39–49

[15]

Högfors-Rönnholm, E., Christel, S., Engblom, S., Dopson, M., 2018b. Indirect DNA extraction method suitable for acidic soil with high clay content. MethodsX 5, 136–140

[16]

Hugerth, L.W., Wefer, H.A., Lundin, S., Jakobsson, H.E., Lindberg, M., Rodin, S., Engstrand, L., Andersson, A.F., 2014. DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies. Applied and Environmental Microbiology 80, 5116–5123

[17]

Ji, M., van Dorst, J., Bissett, A., Brown, M.V., Palmer, A.S., Snape, I., Siciliano, S.D., Ferrari, B.C., 2016. Microbial diversity at Mitchell Peninsula, Eastern Antarctica: a potential biodiversity “hotspot”. Polar Biology 39, 237–249

[18]

Kölbl, A., Marschner, P., Fitzpatrick, R., Mosley, L., Kögel-Knabner, I., 2017. Linking organic matter composition in acid sulfate soils to pH recovery after re-submerging. Geoderma 308, 350–362

[19]

Komagata, K., Iino, T., Yamada, Y., 2014. The Family Acetobacteraceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., eds. The Prokaryotes. Heidelberg: Springer-Verlag, 3–78.

[20]

Lee, J.W., Kim, Y.E., Park, S.J., 2018. Burkholderia alba sp. nov., isolated from a soil sample on Halla mountain in Jeju island. Journal of Microbiology (Seoul, Korea) 56, 312–316

[21]

Li, F., Chen, L., Zhang, J., Yin, J., Huang, S., 2017. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Frontiers in Microbiology 8, 187

[22]

McMurdie, P.J., Holmes, S., 2013. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217

[23]

Nordmyr, L., Åström, M., Peltola, P., 2008. Metal pollution of estuarine sediments caused by leaching of acid sulphate soils. Estuarine, Coastal and Shelf Science 76, 141–152

[24]

Panhwar, Q.A., Naher, U.A., Jusop, S., Othman, R., Latif, M.A., Ismail, M.R., 2014. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth. PLoS One 9, e97241

[25]

Pankratov, T.A., Tindall, B.J., Liesack, W., Dedysh, S.N., 2007. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. International Journal of Systematic and Evolutionary Microbiology 57, 2349–2354

[26]

Price, M.N., Dehal, P.S., Arkin, A.P., 2010. FastTree 2- Approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490

[27]

Pruesse, E., Peplies, J., Glöckner, F.O., 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics (Oxford, England) 28, 1823–1829

[28]

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, D590–D596

[29]

R Core Team, 2015. The R Project for Statistical Computing. accessed 24.01.18).

[30]

Reddy, K.R., DeLaune, R.D., 2008. Biogeochemistry of Wetlands: Science and Application. Boca Raton: CRC Press, pp. 129–151, 457–470.

[31]

Sato, Y., Nishihara, H., Yoshida, M., Watanabe, M., Rondal, J.D., Concepcion, R.N., Ohta, H., 2006. Cupriavidus pinatubonensis sp. nov. and Cupriavidus laharis sp. nov., novel hydrogen oxidizing, facultatively chemolithotrophic bacteria isolated from volcanic mudflow deposits from Mt. Pinatubo in the Philippines. International Journal of Systematic and Evolutionary Microbiology 56, 973–978

[32]

Schüler, D., Schleifer, K.H., 2005. Genus IV. Magnetospirillum. In: Brenner, D.J., Krieg, N.R., Staley, J.T., eds. Bergey’s Manual of Systematic Bacteriology. 2nd ed, vol 2, part C. New York: Springer, 28–31.

[33]

Sohlenius, G., Sternbeck, J., Andrén, E., Westman, P., 1996. Holocene history of the Baltic Sea as recorded in a sediment core from the Gotland Deep. Marine Geology 134, 183–201

[34]

Sorokin, D.Y., Tourova, T.P., Sjollema, K.A., Kuenen, J.G., 2003. Thialkalivibrio nitratireducens sp. nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake. International Journal of Systematic and Evolutionary Microbiology 53, 1779–1783

[35]

Stroud, J.L., Low, A., Collins, R.N., Manefield, M., 2014. Metal(loid) bioaccessibility dictates microbial community composition in acid sulfate soil horizons and sulfidic drain sediments. Environmental Science & Technology 48, 8514–8521

[36]

Suzuki, T., Okamura, Y., Calugay, R.J., Takeyama, H., Matsunaga, T., 2006. Global gene expression analysis of iron-inducible genes in Magnetospirillum magneticum AMB-1. Journal of Bacteriology 188, 2275–2279

[37]

Wallin, J., Karjalainen, A.K., Schultz, E., Järvistö J., Leppänen, M., Vuori, K.M., 2015. Weight-of-evidence approach in assessment of ecotoxicological risks of acid sulphate soils in the Baltic Sea river estuaries. Science of the Total Environment 508, 452–461

[38]

Wu, X., Sten, P., Engblom, S., Nowak, P., Österholm, P., Dopson, M., 2015. Impact of mitigation strategies on acid sulfate soil chemistry and microbial community. Science of the Total Environment 526, 215–221

[39]

Wu, X., Wong, Z.L., Sten, P., Engblom, S., Österholm, P., Dopson, M., 2013. Microbial community potentially responsible for acid and metal release from an Ostrobothnian acid sulfate soil. FEMS Microbiology Ecology 84, 555–563

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1206KB)

Supplementary files

SEL-00039-OF-EHR_suppl_1

1835

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/