“Soil biofilms”: Misleading description of the spatial distribution of microbial biomass in soils
Philippe C. Baveye
“Soil biofilms”: Misleading description of the spatial distribution of microbial biomass in soils
[1] |
Aufrecht, J.A., Fowlkes, J.D., Bible, A.N., Morrell-Falvey, J., Doktycz, M.J., Retterer, S.T., 2019. Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network. PLoS One 14(6): e0218316.
CrossRef
Google scholar
|
[2] |
Baveye, P.C., Otten, W., Kravchenko, A., Balseiro Romero, M., Beckers, É, Chalhoub, M., Christophe, D., Thilo, E., Patricia, G., Simona, H., Serkan, K., Olivier, M., Carsten, W.M., Naoise, N., Valérie, P., Steffen, S., Hannes, S., Hans-Jörg, Vogel., 2018. Emergent properties of microbial activity in heterogeneous soil microenvironments: different research approaches are slowly converging, yet major challenges remain. Frontiers in Microbiology 8, 1364.
CrossRef
Google scholar
|
[3] |
Baveye, P., Valocchi, A., 1989. An evaluation of mathematical models of the transport of biologically reacting solutes in saturated soils and aquifers. Water Resources Research 25, 1413–1421.
CrossRef
Google scholar
|
[4] |
Block, J.C., 1992. Biofilms in Drinking Water Distribution Systems. In: Melo, L.F., Bott, T.R., Fletcher, M., Capdeville, B. (eds.) Biofilms — Science and Technology. NATO ASI Series (Series E: Applied Sciences), vol 223. Springer, Dordrecht
|
[5] |
Block, J.C., Haudidier, K., Paquin, J.L., Miazga, J., Levi, Y., 1993, Biofilm accumulation in drinking water distribution systems, Biofouling 6, 333-343,
CrossRef
Google scholar
|
[6] |
Boltz, J.P., Smets, B.F., Rittmann, B.E., van Loosdrecht, M.C.M., Morgenroth, E., Daigger, G.T., 2017. From biofilm ecology to reactors: a focused review. Water Science and Technology 75,1753–1760.
CrossRef
Google scholar
|
[7] |
Cai, P., Sun, X., Wu, Y., Gao, C., Mortimer, M., Holden, P.A., Redmile-Gordon, M., Huang, Q., 2019. Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization. Soil Ecology Letters 1(3-4), 85–93.
CrossRef
Google scholar
|
[8] |
Cardinale, M., 2014. Scanning a microhabitat: plant-microbe interactions revealed by confocal laser scanning microscopy. Frontiers in Microbiology 5, 94.
CrossRef
Google scholar
|
[9] |
Castorena, E.V.G., Gutierrez-Castorena, M.C., Vargas, T.G., Bontemps, L.C., Delgadillo Martinez, J., Suastegui Mendez, E., Solorio, C.A.O. 2016. Micromapping of microbial hotspots and biofilms from different crops using digital image mosaics of soil thin sections. Geoderma 279, 11–21.
CrossRef
Google scholar
|
[10] |
Clark, F.E., 1951. Bacteria in the soil. Experientia 7, 78–80.
CrossRef
Google scholar
|
[11] |
Coyte, K.Z., Tabuteau, H., Gaffney, E.A., Foster, K.R., Durham, W.M., 2017. Biofilm competition in porous environments. Proceedings of the National Academy of Sciences 114, E161–E170;
CrossRef
Google scholar
|
[12] |
Danhorn, T., Fuqua, C., 2007. Biofilm formation by plant-associated bacteria. Annual Review of Microbiology 61, 401–422.
CrossRef
Google scholar
|
[13] |
DeLeo, P.C., Baveye, P., Ghiorse, W.C., 1997. Use of confocal laser scanning microscopy on soil thin-sections for improved characterization of microbial growth in unconsolidated soils and aquifer materials. Journal of Microbiological Methods 30, 193–203.
CrossRef
Google scholar
|
[14] |
Eickhorst, T., Tippkötte, R., 2008. Detection of microorganisms in undisturbed soil by combining fluorescence in situ hybridization (FISH) and micropedological methods. Soil Biology Biochemistry 40, 1284–1293.
CrossRef
Google scholar
|
[15] |
Flemming, H.C., Wuertz, S., 2019. Bacteria and archaea on earth and their abundance in biofilms. Nature Reviews Microbiology 17, 247–260.
CrossRef
Google scholar
|
[16] |
Foster, R.C., 1988. Microenvironments of soil microorganisms. Biology and Fertility of Soils 6, 189–203.
CrossRef
Google scholar
|
[17] |
Foster, R.C., Rovira, A.D., Cock, T.W., 1983. Ultrastructure of the Root-Soil Interface. St Paul, MN: American Phytophathological Society.
|
[18] |
Grundmann, G.L., 2004. Spatial scales of soil bacterial diversity – The size of a clone. FEMS Microbiology Ecology 48, 119–127.
CrossRef
Google scholar
|
[19] |
Jones, D., Griffiths, E., 1964. The use of thin soil sections for the study of soil microorganisms. Plant Soil 20, 232–240.
CrossRef
Google scholar
|
[20] |
Juyal A., Otten W., Falconer R., Hapca S., Schmidt H., Baveye P.C., Eickhorst T., 2019. Combination of techniques to quantify the distribution of bacteria in their soil microhabitats at different spatial scales. Geoderma 334, 165–174.
|
[21] |
Kravchenko, A.N., Otten, W., Garnier, P., Pot, V. and Baveye, P.C., 2019. Soil aggregates as biogeochemical reactors: Not a way forward in the research on soil-atmosphere exchange of greenhouse gases. Global Change Biology 25, 2205–2208.
CrossRef
Google scholar
|
[22] |
Kuzyakov, Y., Blagodatskaya, E., 2015. Microbial hotspots and hot moments in soil: concept and review. Soil Biology Biochemistry 83, 184–199.
CrossRef
Google scholar
|
[23] |
Lerch, T.Z., Chenu, C., Dignac M.F., Barriuso, E., Mariotti, A., 2017. Biofilm vs. planktonic lifestyle: consequences for pesticide 2,4-D metabolism by Cupriavidus necator JMP134. Frontiers in Microbiology 8, 904.
CrossRef
Google scholar
|
[24] |
Li, Y., Dick, W.A., Tuovinen, O.H., 2003. Evaluation of fluorochromes for imaging bacteria in soil. Soil Biology Biochemistry 35, 737–744.
CrossRef
Google scholar
|
[25] |
Li, Y., Dick, W.A., Tuovinen, O.H., 2004. Fluorescence microscopy for visualization of soil microorganisms – A review. Biology and Fertility of Soils 39, 301–311.
CrossRef
Google scholar
|
[26] |
Molz, F.J., Widdowson, M.A., Benefield, L.D., 1986. Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media, Water Resources Research 22, 1207–1216.
|
[27] |
Nunan, N., 2017. The microbial habitat in soil: scale, heterogeneity and functional consequences. Journal of Plant Nutrition and Soil Science 180, 425–429.
|
[28] |
Nunan, N., Ritz, K., Crabb, D., Harris, K., Wu, K., Crawford, J.W., Young, I.M., 2001. Quantification of the in situ distribution of soil bacteria by large scale imaging of thin sections of undisturbed soil. FEMS Microbiology Ecology 37, 67–77.
CrossRef
Google scholar
|
[29] |
O’Donnell, A.G., Young, I.M., Rushton, S.P., Shirley, M.D., Crawford, J.W., 2007. Visualization, modelling and prediction in soil microbiology. Nature Reviews Microbiology 5, 689–699.
CrossRef
Google scholar
|
[30] |
Or, D., Smets, B.F., Wraith, J.M., Dechesne, A., Friedman, S.P., 2007. Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review, Advances in Water Resources 30, 1505–1527.
|
[31] |
Pennell, K.D. (2016). “Specific surface area,” in Elias, S.A. (ed.) Reference Module in Earth Systems and Environmental Sciences, Oxford: Elsevier, 1–8.
|
[32] |
Postma, J., van Veen, J.A., 1990. Habitable pore space and survival of Rhizobium leguminosarum biovartrifolii introduced into soil. Microbial Ecology 19, 149–161.
CrossRef
Google scholar
|
[33] |
Redmile-Gordon, M.A., Brookes, P.C., Evershed, R.P., Goulding, K.W.T., Hirsch, P.R., 2014. Measuring the soil-microbial interface: Extraction of extracellular polymeric substances (EPS) from soil biofilms, Soil Biology and Biochemistry 72, 163–171.
CrossRef
Google scholar
|
[34] |
Raynaud, X., Nunan, N., 2014. Spatial ecology of bacteria at the microscale in soil. PLoS One 9, 287217.
CrossRef
Google scholar
|
[35] |
Thullner, M., Baveye, P., 2008. Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media. Biotechnology & Bioengineering 99, 1337–1351.
CrossRef
Google scholar
|
[36] |
Vandevivere P., Baveye P., 1992a. Saturated hydraulic conductivity reduction caused by aerobic bacteria in sand columns. Soil Science Society of America Journal 56,1–13
|
[37] |
Vandevivere, P., Baveye, P., 1992b. Improved preservation of bacterial exoplolymers for scanning elecrton microscopy. Journal of Microscopy-Oxford 167, 323–330.
CrossRef
Google scholar
|
[38] |
Vandevivere, P., Baveye, P., 1992c. Sampling method for the observation of microorganisms in unconsolidated porous media via scanning electron microscopy. Soil Science 153, 482–485.
CrossRef
Google scholar
|
[39] |
Vandevivere, P., Baveye, P., de Lozada, D.S., DeLeo, P., 1995. Microbial clogging of saturated soils and aquifer materials: Evaluation of mathematical models. Water Resources Research 31, 2173–2180.
|
[40] |
Volk, E., Iden, S.C., Furman, A., Durner, W., Rosenzweig, R., 2016. Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm, Water Resources Research 52, 5813–5828.
CrossRef
Google scholar
|
[41] |
Vos, M., Wolf, A.B., Jennings, S.J., Kowalchuk, G.A., 2013. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiology Reviews 37, 936–954.
CrossRef
Google scholar
|
[42] |
Watteau, F., Villemin, G., 2018. Soil microstructures examined through transmission Electron microscopy reveal soil-microorganisms interactions. Frontiers in Environmental Science 6, 106.
CrossRef
Google scholar
|
[43] |
White, D., FitzPatrick, E.A., Kilham, K., 1994. Use of stained bacterial inocula to assess spatial distribution after introduction into soil. Geoderma 63, 245–254.
CrossRef
Google scholar
|
[44] |
Wilpiszeski, R.L., Aufrecht, J.A., Retterer, S.T., Sullivan, M.B., Graham, D.E., Pierce, M., Zablocki, E., Palumbo, A.V., Elias, D.A., 2019. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales. Applied and Environmental Microbiology 85, e00324–19.
CrossRef
Google scholar
|
[45] |
Young, I.M., Crawford, J.W., 2004. Interactions and self-organization in the soil-microbe complex. Science 304, 1634–1637.
CrossRef
Google scholar
|
/
〈 | 〉 |