Predicting plant–soil N cycling and soil N2O emissions in a Chinese old-growth temperate forest under global changes: uncertainty and implications
Weiwei Dai , Edith Bai , Wei Li , Ping Jiang , Guanhua Dai , Xingbo Zheng
Soil Ecology Letters ›› 2020, Vol. 2 ›› Issue (1) : 73 -82.
Predicting plant–soil N cycling and soil N2O emissions in a Chinese old-growth temperate forest under global changes: uncertainty and implications
Soil-emitted N2O contributes to two-thirds of global N2O emissions, and is sensitive to global change. We used DayCent model to simulate major plant–soil N cycling processes under different global change scenarios in a typical temperate mixed forest in north-eastern China. Simulated scenarios included warming (T), elevated atmospheric CO2 concentration ([CO2]) (C), increased N deposition (N) and precipitation (P), and their full factorial combinations. The responses of plant–soil nitrogen cycling processes including net N mineralization, plant N uptake, gross nitrification, denitrification and soil N2O emission were examined. Concurrent increase of elevated [CO2] and N deposition displayed most strong interactive effects on most fluxes. Using the results from experimental studies for evaluation, simulation uncertainty was highest under elevated [CO2] and increased precipitation among the four global change factors. N deposition had a fundamental impact on soil N cycle and N2O emission in our studied forest. Despite forest soil acting as a N sink for added N, scenarios which included increased N deposition showed higher cumulative soil N2O emissions (summed up from 2001 to 2100). In particular, the scenario which included T, P, and N had the largest cumulative soil N2O emission, which was a 24.4% increase over that under ambient conditions. Our study points to the importance of the interactive effects of global change factors on plant–soil N cycling and the necessity of multi-factor manipulation experiments.
Global change / DayCent / denitrification / Nitrification / Soil N 2O emission / Temperate forest
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
IPCC, 2001. Climate change 2001: The scientific basis. Cambridge University Press, Cambridge, UK. |
| [29] |
IPCC, 2007. Climate change 2007: The physical science basis. Cambridge University Press, Cambridge, UK. |
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
Higher Education Press
/
| 〈 |
|
〉 |