Arbuscular mycorrhiza and plant chromium tolerance

Songlin Wu, Xin Zhang, Longbin Huang, Baodong Chen

PDF(1788 KB)
PDF(1788 KB)
Soil Ecology Letters ›› 2019, Vol. 1 ›› Issue (3-4) : 94-104. DOI: 10.1007/s42832-019-0015-9
REVIEW
REVIEW

Arbuscular mycorrhiza and plant chromium tolerance

Author information +
History +

Abstract

Arbuscular mycorrhizal (AM) fungi are ubiquitous soil fungi that readily form symbiotic associations with most terrestrial plants. The growth and functions of AM fungi depend on carbohydrates supplied by the plants, in return, they assist the plants acquire mineral nutrients (e.g., phosphorus) from soil. The AM symbiosis also improves plant survival in various environments of unfavorable growth conditions, such as metal (loid) contaminated soil. It has been well demonstrated that AM symbiosis improved plant adaptation to Cr contaminated soil, which would have a great potential in phytoremediation and ecological restoration of Cr contaminated soils. By using Cr as an example case, we have reviewed the role of AM fungi in alleviation of Cr phytotoxicity and associated factors influencing AM plant Cr tolerance. AM symbiosis improves plant Cr tolerance through its direct roles in Cr stabilization and transformation and indirect roles via AM symbiosis mediated nutrient acquisition and physiological regulation. Future research perspectives on physiological and molecular mechanisms underlying Cr behavior and detoxification in AM symbiosis, as well as potential usage of AM fungi in ecological restoration and agriculture production in Cr contaminated soils were also proposed.

Keywords

Arbuscular mycorrhizal fungi / Heavy metal / Chromium / Tolerance / Translocation and transformation / Bioremediation

Cite this article

Download citation ▾
Songlin Wu, Xin Zhang, Longbin Huang, Baodong Chen. Arbuscular mycorrhiza and plant chromium tolerance. Soil Ecology Letters, 2019, 1(3-4): 94‒104 https://doi.org/10.1007/s42832-019-0015-9

References

[1]
Al-Ghamdi, A.A.M., Jais, H.M., 2012. Interaction between arbuscular mycorrhiza and heavy metals in the rhizosphere and roots of Juniperus procera. International Journal of Agriculture and Biology 14, 69–74.
[2]
Aldrich, M.V., Gardea-Torresdey, J.L., Peralta-Videa, J.R., Parsons, J.G., 2003. Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): chromate-plant interaction in hydroponics and solid media studied using XAS. Environmental Science & Technology 37, 1859–1864
CrossRef Pubmed Google scholar
[3]
Allen, J.W., Shachar-Hill, Y., 2009. Sulfur transfer through an arbuscular mycorrhiza. Plant Physiology 149, 549–560
CrossRef Pubmed Google scholar
[4]
Aloui, A., Recorbet, G., Gollotte, A., Robert, F., Valot, B., Gianinazzi-Pearson, V., Aschi-Smiti, S., Dumas-Gaudot, E., 2009. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9, 420–433
CrossRef Pubmed Google scholar
[5]
Appenroth, K.J., Bischoff, M., Gabryś, H., Stoeckel, J., Swartz, H.M., Walczak, T., Winnefeld, K., 2000. Kinetics of chromium(V) formation and reduction in fronds of the duckweed Spirodela polyrhiza--a low frequency EPR study. Journal of Inorganic Biochemistry 78, 235–242
CrossRef Pubmed Google scholar
[6]
Arias, J.A., Peralta-Videa, J.R., Ellzey, J.T., Ren, M., Viveros, M.N., Gardea-Torresdey, J.L., 2010a. Effects of Glomus deserticola inoculation on Prosopis: Enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environmental and Experimental Botany 68, 139–148
CrossRef Google scholar
[7]
Arias, J.A., Peralta-Videa, J.R., Ellzey, J.T., Viveros, M.N., Ren, M., Mokgalaka-Matlala, N.S., Castillo-Michel, H., Gardea-Torresdey, J.L., 2010b. Plant growth and metal distribution in tissues of Prosopis juliflora-velutina grown on chromium contaminated soil in the presence of Glomus deserticola. Environmental Science & Technology 44, 7272–7279
CrossRef Pubmed Google scholar
[8]
Arshad, M., Ali, S., Noman, A., Ali, Q., Rizwan, M., Farid, M., Irshad, M.K., 2016. Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Archives of Agronomy and Soil Science 62, 533–546
CrossRef Google scholar
[9]
Audet, P., Charest, C., 2007. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environmental Pollution 147, 609–614
CrossRef Pubmed Google scholar
[10]
Azcón, R., del Carmen Perálvarez, M., Biro, B., Roldán A., Ruíz-Lozano J. M., 2009. Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste. Applied Soil Ecology 41, 168–177
CrossRef Google scholar
[11]
Biro, I., Nemeth, T., Takacs, T., 2009. Changes of parameters of infectivity and efficiency of different Glomus mosseae arbuscular mycorrhizal fungi strains in cadmium-loaded soils. Communications in Soil Science and Plant Analysis 40, 227–239
CrossRef Google scholar
[12]
Bothe, H., Regvar, M., Turnau, K., 2010. Arbuscular mycorrhiza, heavy metal, and salt tolerance. In: Sherameti I and Varma A (ed.) Soil Heavy Metals, Springer, Berlin Heidelberg, pp 87–111.
[13]
Carbonnel, S., Gutjahr, C., 2014. Control of arbuscular mycorrhiza development by nutrient signals. Frontiers of Plant Science 5, 462
CrossRef Pubmed Google scholar
[14]
Catarecha, P., Segura, M.D., Franco-Zorrilla, J.M., García-Ponce, B., Lanza, M., Solano, R., Paz-Ares, J., Leyva, A., 2007. A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19, 1123–1133
CrossRef Pubmed Google scholar
[15]
Chen, B., Nayuki, K., Kuga, Y., Zhang, X., Wu, S., Ohtomo, R., 2018. Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation mX-ray fluorescence analysis. Microbes and Environments 33, 257–263
CrossRef Pubmed Google scholar
[16]
Chen, B., Roos, P., Borggaard, O.K., Zhu, Y.G., Jakobsen, I., 2005b. Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytologist 165, 591–598
CrossRef Pubmed Google scholar
[17]
Chen, B., Tang, X., Zhu, Y., Christie, P., 2005a. Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation. Science in China Series C 48, 156–164
CrossRef Pubmed Google scholar
[18]
Chen, B., Xiao, X., Zhu, Y.G., Smith, F.A., Xie, Z.M., Smith, S.E., 2007b. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment 379, 226–234
CrossRef Pubmed Google scholar
[19]
Chen, B.D., Li, X.L., Tao, H.Q., Christie, P., Wong, M.H., 2003. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50, 839–846
CrossRef Pubmed Google scholar
[20]
Chen, B.D., Zhu, Y.G., Duan, J., Xiao, X.Y., Smith, S.E., 2007a. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution 147, 374–380
CrossRef Pubmed Google scholar
[21]
Chen, X., Wu, C., Tang, J., Hu, S., 2005c. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere 60, 665–671
CrossRef Pubmed Google scholar
[22]
Christie, P., Li, X., Chen, B., 2004. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil 261, 209–217
CrossRef Google scholar
[23]
Chu, Q., Wang, X., Yang, Y., Chen, F., Zhang, F., Feng, G., 2013. Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil. Mycorrhiza 23, 497–505
CrossRef Pubmed Google scholar
[24]
Citterio, S., Prato, N., Fumagalli, P., Aina, R., Massa, N., Santagostino, A., Sgorbati, S., Berta, G., 2005. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59, 21–29
CrossRef Pubmed Google scholar
[25]
Cornejo, P., Meier, S., Borie, G., Rillig, M.C., Borie, F., 2008. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Science of the Total Environment 406, 154–160
CrossRef Pubmed Google scholar
[26]
Coughlan, A.P., Dalpe, Y., Lapointe, L., Piché, Y., 2000. Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Canadian Journal of Forest Research 30, 1543–1554
CrossRef Google scholar
[27]
Davies, F.T. Jr, Puryear, J.D., Newton, R.J., Egilla, J.N., Saraiva Grossi, J.A., 2001. Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). Journal of Plant Physiology 158, 777–786
CrossRef Google scholar
[28]
Davies, F.T. Jr, Puryear, J.D., Newton, R.J., Egilla, J.N., Saraiva Grossi, J.A., 2002. Mycorrhizal fungi increase chromium uptake by sunflower plants: Influence on tissue mineral concentration, growth, and gas exchange. Journal of Plant Nutrition 25, 2389–2407
CrossRef Google scholar
[29]
de María Guillén-Jiménez, F., Morales-Barrera, L., Morales-Jiménez, J., Hernández-Rodríguez, C.H., Cristiani-Urbina, E., 2008. Modulation of tolerance to Cr(VI) and Cr(VI) reduction by sulfate ion in a Candida yeast strain isolated from tannery wastewater. Journal of Industrial Microbiology & Biotechnology 35, 1277–1287
CrossRef Pubmed Google scholar
[30]
de Oliveira, L.M., Lessl, J.T., Gress, J., Tisarum, R., Guilherme, L.R.G., Ma, L.Q., 2015. Chromate and phosphate inhibited each other’s uptake and translocation in arsenic hyperaccumulator Pteris vittata L. Environmental Pollution 197, 240–246
CrossRef Pubmed Google scholar
[31]
Dietterich, L.H., Gonneau, C., Casper, B.B., 2017. Arbuscular mycorrhizal colonization has little consequence for plant heavy metal uptake in contaminated field soils. Ecological Applications 27, 1862–1875
CrossRef Pubmed Google scholar
[32]
Dong, Y., Zhu, Y.G., Smith, F.A., Wang, Y., Chen, B., 2008. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environmental Pollution 155, 174–181
CrossRef Pubmed Google scholar
[33]
Du, J., Yan, C., Li, Z., 2014. Phosphorus and cadmium interactions in Kandelia obovata (S. L.) in relation to cadmium tolerance. Environmental Science and Pollution Research International 21, 355–365
CrossRef Pubmed Google scholar
[34]
Estaun, V., Cortes, A., Velianos, K., Camprubí, A., Calvet, C., 2010. Effect of chromium contaminated soil on arbuscular mycorrhizal colonisation of roots and metal uptake by Plantago lanceolata. Spanish Journal of Agricultural Research 8, S109–S115
CrossRef Google scholar
[35]
Ferrol, N., Tamayo, E., Vargas, P., 2016. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. Journal of Experimental Botany 67, 6253–6265
CrossRef Pubmed Google scholar
[36]
Gardezi, A.K., Barceló-Quintal, I.D., Cetina-Alcalá, V.M., , (2005) Phytoremediation by Leucaena leucocephala in association with arbuscular endomycorrhiza and rhizobium in soil polluted by Cr. In: Callaos et al (ed) The 9th World Multiconference on Systemics, Cybernetics and Informatics. Orlando, Florida, USA, pp 289–298.
[37]
Garg, N., Chandel, S., 2012. Role of Arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp under NaCl and Cd stresses. Journal of Plant Growth Regulation 31, 292–308
CrossRef Google scholar
[38]
Gil-Cardeza, M.L., Ferri, A., Cornejo, P., Gomez, E., 2014. Distribution of chromium species in a Cr-polluted soil: presence of Cr(III) in glomalin related protein fraction. Science of the Total Environment 493, 828–833
CrossRef Pubmed Google scholar
[39]
González-Chávez, M.C., Carrillo-González, R., Gutiérrez-Castorena, M.C., 2009. Natural attenuation in a slag heap contaminated with cadmium: the role of plants and arbuscular mycorrhizal fungi. Journal of Hazardous Materials 161, 1288–1298
CrossRef Pubmed Google scholar
[40]
González-Chávez, M.C., Carrillo-González, R., Wright, S.F., Nichols, K.A., 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution 130, 317–323
CrossRef Pubmed Google scholar
[41]
González-Guerrero, M., Melville, L.H., Ferrol, N., Lott, J.N., Azcón-Aguilar, C., Peterson, R.L., 2008. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Canadian Journal of Microbiology 54, 103–110
CrossRef Pubmed Google scholar
[42]
Govindarajulu, M., Pfeffer, P.E., Jin, H., Abubaker, J., Douds, D.D., Allen, J.W., Bücking, H., Lammers, P.J., Shachar-Hill, Y., 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435, 819–823
CrossRef Pubmed Google scholar
[43]
Holland, S.L., Avery, S.V., 2011. Chromate toxicity and the role of sulfur. Metallomics 3, 1119–1123
CrossRef Pubmed Google scholar
[44]
Jiang, Y, Wang, W, Xie, QLiu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X., Tang, D., Wang, E., 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science: 356, 1172–1175.
[45]
Johansson, J.F., Paul, L.R., Finlay, R.D., 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology 48, 1–13
CrossRef Pubmed Google scholar
[46]
Karandashov, V., Bucher, M., 2005. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science 10, 22–29
CrossRef Pubmed Google scholar
[47]
Khan, A.G., 2001. Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environment International 26, 417–423
CrossRef Pubmed Google scholar
[48]
Kováčik, J., Babula, P., Klejdus, B., Hedbavny, J., 2013. Chromium uptake and consequences for metabolism and oxidative stress in chamomile plants. Journal of Agricultural and Food Chemistry 61, 7864–7873
CrossRef Pubmed Google scholar
[49]
Kuga, Y., Saito, K., Nayuki, K., Peterson, R.L., Saito, M., 2008. Ultrastructure of rapidly frozen and freeze-substituted germ tubes of an arbuscular mycorrhizal fungus and localization of polyphosphate. New Phytologist 178, 189–200
CrossRef Pubmed Google scholar
[50]
Lenoir, I., Fontaine, J., Lounès-Hadj Sahraoui, A., 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 123, 4–15
CrossRef Pubmed Google scholar
[51]
Leyval, C., Singh, B.R., Joner, E.J., 1995. Occurrence and infectivity of arbuscular mycorrhizal fungi in some Norwegian soils influenced by heavy metals and soil properties. Water, Air, and Soil Pollution 84, 203–216
CrossRef Google scholar
[52]
Leyval, C., Turnau, K., Haselwandter, K., 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7, 139–153
CrossRef Google scholar
[53]
Long, L.K., Yao, Q., Guo, J., Yang, R.H., Huang, Y.H., Zhu, H.H., 2010. Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils. European Journal of Soil Biology 46, 288–294
CrossRef Google scholar
[54]
Losi, M., Amrhein, C., Frankenberger, W. Jr, (1994) Environmental biochemistry of chromium. In: Ware GW (ed) Reviews of Environmental Contamination and Toxicology, Springer, New York, NY, USA, pp 91–121.
[55]
Ma, Y., Dickinson, N.M., Wong, M.H., 2006. Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biology & Biochemistry 38, 1403–1412
CrossRef Google scholar
[56]
Malcová, R., Vosátka, M., Gryndler, M., 2003. Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Applied Soil Ecology 23, 55–67
CrossRef Google scholar
[57]
Miransari, M., 2011. Interactions between arbuscular mycorrhizal fungi and soil bacteria. Applied Microbiology and Biotechnology 89, 917–930
CrossRef Pubmed Google scholar
[58]
Nakatani, A.S., Mescolotti, D.L.C., Nogueira, M.A., Martines, A.M., Miyauchi, M.Y.H., Stürmer, S.L., Cardoso, E.J.B.N., 2011. Dosage-dependent shift in the spore community of arbuscular mycorrhizal fungi following application of tannery sludge. Mycorrhiza 21, 515–522
CrossRef Pubmed Google scholar
[59]
Nayuki, K., Chen, B., Ohtomo, R., Kuga, Y., 2014. Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence. Microbes and Environments 29, 60–66
CrossRef Pubmed Google scholar
[60]
Nichols, K., 2003. Characterization of glomalinda glycoprotein produced by arbuscular mycorrhizal fungi. PhD Dissertation, University of Maryland, College Park, Maryland.
[61]
Orłowska, E., Przybyłowicz, W., Orlowski, D., Turnau, K., Mesjasz-Przybyłowicz, J., 2011. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environmental Pollution 159, 3730–3738
CrossRef Pubmed Google scholar
[62]
Pereira, Y., Lagniel, G., Godat, E., Baudouin-Cornu, P., Junot, C., Labarre, J., 2008. Chromate causes sulfur starvation in yeast. Toxicological Sciences 106, 400–412
CrossRef Pubmed Google scholar
[63]
Rahmaty, R., Khara, J., 2011. Effects of vesicular arbuscular mycorrhiza Glomus intraradices on photosynthetic pigments, antioxidant enzymes, lipid peroxidation, and chromium accumulation in maize plants treated with chromium. Turkish Journal of Biology 35, 51–58.
[64]
Repetto, O., Bestel-Corre, G., Dumas-Gaudot, E., Berta, G., Gianinazzi-Pearson, V., Gianinazzi, S., 2003. Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytologist 157, 555–567
CrossRef Google scholar
[65]
Rufyikiri, G., Thiry, Y., Declerck, S., 2003. Contribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root-organ culture conditions. New Phytologist 158, 391–399
CrossRef Google scholar
[66]
Shanker, A.K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S., 2005. Chromium toxicity in plants. Environment International 31, 739–753
CrossRef Pubmed Google scholar
[67]
Shanker, A.K., Pathmanabhan, G., 2004. Speciation dependant antioxidative response in roots and leaves of sorghum (Sorghum bicolor (L.) Moench cv CO 27) under Cr(III) and Cr (VI) stress. Plant and Soil 265, 141–151
CrossRef Google scholar
[68]
Sharma, D.C., Sharma, C.P., Tripathi, R.D., 2003. Phytotoxic lesions of chromium in maize. Chemosphere 51, 63–68
CrossRef Pubmed Google scholar
[69]
Singh, J., Kumar, M., Vyas, A., 2014. Healthy response from chromium survived pteridophytic plant-Ampelopteris prolifera with the interaction of mycorrhizal fungus-Glomus deserticola. International Journal of Phytoremediation 16, 524–535
CrossRef Pubmed Google scholar
[70]
Singh, S., Parihar, P., Singh, R., Prasad, S.M., 2015. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers of Plant Science, 6, 1143.
Pubmed
[71]
Skeffington, R.A., Shewry, P.R., Peterson, P.J., 1976. Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta 132, 209–214
CrossRef Pubmed Google scholar
[72]
Smith, S.E., Read, D., (2008) Mycorrhizal Symbiosis. Academic Press, San Diego.
[73]
Subramanian, K.S., Tenshia, V., Jayalakshmi, K., Ramachandran, V., 2009. Biochemical changes and zinc fractions in arbuscular mycorrhizal fungus (Glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization. Applied Soil Ecology 43, 32–39
CrossRef Google scholar
[74]
Sun, Y., Zhang, X., Wu, Z., Hu, Y., Wu, S., Chen, B., 2016. The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China. Journal of Environmental Sciences (China) 39, 110–118
CrossRef Pubmed Google scholar
[75]
Vodnik, D., Grcman, H., Macek, I., van Elteren, J.T., Kovacevic, M., 2008. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment 392, 130–136
CrossRef Pubmed Google scholar
[76]
Wang, F., 2017. Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications. Critical Reviews in Environmental Science and Technology 47, 1901–1957
CrossRef Google scholar
[77]
Weiersbye, I.M., Straker, C.J., Przybylowicz, W.J., 1999. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings. Nuclear Instruments and Methods in Physics Research Section B 158, 335–343
CrossRef Google scholar
[78]
Weissenhorn, I., Leyval, C., Berthelin, J., 1995. Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biology and Fertility of Soils 19, 22–28
CrossRef Google scholar
[79]
Wu, S., Vosátka, M., Vogel-Mikus, K., Kavčič, A., Kelemen, M., Šepec, L., Pelicon, P., Skála, R., Valero Powter, A.R., Teodoro, M., Michálková, Z., Komárek, M., 2018b. Nano zero-valent iron mediated metal (loid) uptake and translocation by arbuscular mycorrhizal symbioses. Environmental Science & Technology 52, 7640–7651
CrossRef Pubmed Google scholar
[80]
Wu, S., Zhang, X., Sun, Y., Wu, Z., Li, T., Hu, Y., Lv, J., Li, G., Zhang, Z., Zhang, J., Zheng, L., Zhen, X., Chen, B., 2016b. Chromium immobilization by extra-and intraradical fungal structures of arbuscular mycorrhizal symbioses. Journal of Hazardous Materials 316, 34–42
CrossRef Pubmed Google scholar
[81]
Wu, S., Zhang, X., Sun, Y., Wu, Z., Li, T., Hu, Y., Su, D., Lv, J., Li, G., Zhang, Z., Zheng, L., Zhang, J., Chen, B., 2015. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS, and XAFS. Environmental Science & Technology 49, 14036–14047
CrossRef Pubmed Google scholar
[82]
Wu, S.L., Chen, B.D., Sun, Y.Q., Ren, B.H., Zhang, X., Wang, Y.S., 2014. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils. Environmental Toxicology and Chemistry 33, 2105–2113
CrossRef Pubmed Google scholar
[83]
Wu, S.L., Hu, Y.J., Zhang, X., Sun, Y., Wu, Z., Li, T., Lv, J., Li, J., Zhang, J., Zheng, L., Huang, L., Chen, B., 2018a. Chromium detoxification in arbuscular mycorrhizal symbiosis mediated by sulfur uptake and metabolism. Environmental and Experimental Botany 147, 43–52
CrossRef Google scholar
[84]
Wu, S.L., Zhang, X., Chen, B.D., 2013. Effects of Arbuscular mycorrhizal fungi on heavy metal translocation and transformation in the soil-plant continuum. Asian Journal of Ecotoxicology 8, 847–856 (in Chinese).
[85]
Wu, S.L., Zhang, X., Chen, B.D., Wu, Z., Li, T., Hu, Y., Sun, Y., Wang, Y., 2016a. Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environmental and Experimental Botany 122, 10–18
CrossRef Google scholar
[86]
Yang, Y., Han, X., Liang, Y., Ghosh, A., Chen, J., Tang, M., 2015. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS One 10, e0145726
CrossRef Pubmed Google scholar
[87]
Yu, Y., Zhang, S., Huang, H., Luo, L., Wen, B., 2009. Arsenic accumulation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae. Journal of Agricultural and Food Chemistry 57, 3695–3701
CrossRef Pubmed Google scholar
[88]
Yu, Y., Zhang, S.Z., Huang, H.L., Wu, N., 2010. Uptake of arsenic by maize inoculated with three different arbuscular mycorrhizal fungi. Communications in Soil Science and Plant Analysis 41, 735–743
CrossRef Google scholar
[89]
Yu, Y.G., Zhao, B., 2008. The interaction and effect of two species of arbuscular mycorrhizal fungi on the growth of Astragalus sinicus L at different pH level. Mycosystema 27, 209–216 (in Chinese).
[90]
Zarei, M., Hempel, S., Wubet, T., Schäfer, T., Savaghebi, G., Jouzani, G.S., Nekouei, M.K., Buscot, F., 2010. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution 158, 2757–2765
CrossRef Pubmed Google scholar
[91]
Zayed, A., Lytle, C.M., Qian, J.H., Terry, N., 1998. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206, 293–299
CrossRef Google scholar
[92]
Zhang, S., Feng, G., Li, X., 2005. The direct effect of cadmium in soil on growth of arbuscular mycorrhizal fungi Glomus mosseae. Mycosystema 24, 576–581 (in Chinese).
[93]
Zhang, X., Ren, B.H., Wu, S.L., Sun, Y.Q., Lin, G., Chen, B.D., 2015. Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil. Chemosphere 119, 224–230
CrossRef Pubmed Google scholar
[94]
Zhang, X.H., Lin, A.J., Zhang, X., Guo, L.P. 2012. The effects of arbuscular mycorrhizal fungi (AMF) on forms of Pb in the upland rice rhizosphere. Chinese Agricultural Science Bulletin 28, 24–29 (in Chinese).

Acknowledgments

This study was supported by National Key Research and Development Program of China (2016YFD0800400) and the National Natural Science Foundation of China (21677164).

RIGHTS & PERMISSIONS

2019 Higher Education Press
AI Summary AI Mindmap
PDF(1788 KB)

Accesses

Citations

Detail

Sections
Recommended

/