Loss of soil microbial diversity exacerbates spread of antibiotic resistance

Qing-Lin Chen, Xin-Li An, Bang-Xiao Zheng, Michael Gillings, Josep Peñuelas, Li Cui, Jian-Qiang Su, Yong-Guan Zhu

PDF(1003 KB)
PDF(1003 KB)
Soil Ecology Letters ›› 2019, Vol. 1 ›› Issue (1-2) : 3-13. DOI: 10.1007/s42832-019-0011-0
RAPID REPORT
RAPID REPORT

Loss of soil microbial diversity exacerbates spread of antibiotic resistance

Author information +
History +

Abstract

Loss of biodiversity is a major threat to the ecosystem processes upon which society depends. Natural ecosystems differ in their resistance to invasion by alien species, and this resistance can depend on the diversity in the system. Little is known, however, about the barriers that microbial diversity provides against microbial invasion. The increasing prevalence of antibiotic-resistant bacteria is a serious threat to public health in the 21st century. We explored the consequences of the reduction in soil microbial diversity for the dissemination of antibiotic resistance. The relationship between this diversity and the invasion of antibiotic resistance was investigated using a dilution-to-extinction approach coupled with high-capacity quantitative PCR. Microbial diversity was negatively correlated with the abundance of antibiotic-resistance genes, and this correlation was maintained after accounting for other potential drivers such as incubation time and microbial abundance. Our results demonstrate that high microbial diversity can act as a biological barrier resist the spread of antibiotic resistance. These results fill a critical gap in our understanding of the role of soil microbial diversity in the health of ecosystems.

Keywords

Biodiversity / Biological barrier / Invasiveness / Ecosystem functioning

Cite this article

Download citation ▾
Qing-Lin Chen, Xin-Li An, Bang-Xiao Zheng, Michael Gillings, Josep Peñuelas, Li Cui, Jian-Qiang Su, Yong-Guan Zhu. Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecology Letters, 2019, 1(1-2): 3‒13 https://doi.org/10.1007/s42832-019-0011-0

References

[1]
Allison, S.D., Martiny, J.B.H., 2008. Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America 105, 11512–11519
CrossRef Pubmed Google scholar
[2]
Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511
CrossRef Pubmed Google scholar
[3]
Bell, T., Newman, J.A., Silverman, B.W., Turner, S.L., Lilley, A.K., 2005. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160
CrossRef Pubmed Google scholar
[4]
Bush, K., Courvalin, P., Dantas, G., Davies, J., Eisenstein, B., Huovinen, P., Jacoby, G.A., Kishony, R., Kreiswirth, B.N., Kutter, E., Lerner, S.A., Levy, S., Lewis, K., Lomovskaya, O., Miller, J.H., Mobashery, S., Piddock, L.J., Projan, S., Thomas, C.M., Tomasz, A., Tulkens, P.M., Walsh, T.R., Watson, J.D., Witkowski, J., Witte, W., Wright, G., Yeh, P., Zgurskaya, H.I., 2011. Tackling antibiotic resistance. Nature Reviews. Microbiology 9, 894–896
CrossRef Pubmed Google scholar
[5]
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336
CrossRef Pubmed Google scholar
[6]
Cardinale, B.J., Matulich, K.L., Hooper, D.U., Byrnes, J.E., Duffy, E., Gamfeldt, L., Balvanera, P., O’Connor, M.I., Gonzalez, A., 2011. The functional role of producer diversity in ecosystems. American Journal of Botany 98, 572–592
CrossRef Pubmed Google scholar
[7]
Case, T.J., 1990. Invasion resistance arises in strongly interacting species-rich model competition communities. Proceedings of the National Academy of Sciences of the United States of America 87, 9610–9614
CrossRef Pubmed Google scholar
[8]
Chapin, F.S. 3rd, Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds, H.L., Hooper, D.U., Lavorel, S., Sala, O.E., Hobbie, S.E., Mack, M.C., Díaz, S., 2000. Consequences of changing biodiversity. Nature 405, 234–242
CrossRef Pubmed Google scholar
[9]
Chee-Sanford, J.C., Mackie, R.I., Koike, S., Krapac, I.G., Lin, Y.F., Yannarell, A.C., Maxwell, S., Aminov, R.I., 2009. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of Environmental Quality 38, 1086–1108
CrossRef Pubmed Google scholar
[10]
Chen, Q.L., An, X.L., Li, H., Zhu, Y.G., Su, J.Q., Cui, L., 2017a. Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil? Soil Biology & Biochemistry 114, 229–237
CrossRef Google scholar
[11]
Chen, Q.L., An, X.L., Zhu, Y.G., Su, J.Q., Gillings, M.R., Ye, Z.L., Cui, L., 2017b. Application of Struvite Alters the Antibiotic Resistome in Soil, Rhizosphere, and Phyllosphere. Environmental Science & Technology 51, 8149–8157
CrossRef Pubmed Google scholar
[12]
Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., Tiedje, J.M., 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research 37, D141–D145
CrossRef Pubmed Google scholar
[13]
DeLong, E.F., Preston, C.M., Mincer, T., Rich, V., Hallam, S.J., Frigaard, N.U., Martinez, A., Sullivan, M.B., Edwards, R., Brito, B.R., Chisholm, S.W., Karl, D.M., 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503
CrossRef Pubmed Google scholar
[14]
Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England) 26, 2460–2461
CrossRef Pubmed Google scholar
[15]
Eisenhauer, N., Bowker, M.A., Grace, J.B., Powell, J.R., 2015. From patterns to causal understanding: structural equation modeling (SEM) in soil ecology. Pedobiologia 58, 65–72
CrossRef Google scholar
[16]
Elton, C., 1958. The ecology of invasions by animals and plants. London: University of Chicago Press. 196pp.
[17]
Fargione, J.E., Tilman, D., 2005. Diversity decreases invasion via both sampling and complementarity effects. Ecology Letters 8, 604–611
CrossRef Google scholar
[18]
Fierer, N., Ladau, J., Clemente, J.C., Leff, J.W., Owens, S.M., Pollard, K.S., Knight, R., Gilbert, J.A., McCulley, R.L., 2013. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624
CrossRef Pubmed Google scholar
[19]
Forsberg, K.J., Patel, S., Gibson, M.K., Lauber, C.L., Knight, R., Fierer, N., Dantas, G., 2014. Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612–616
CrossRef Pubmed Google scholar
[20]
Gamfeldt, L., Hillebrand, H., Jonsson, P.R., 2008. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231
CrossRef Pubmed Google scholar
[21]
Gans, J., Wolinsky, M., Dunbar, J., 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390
CrossRef Pubmed Google scholar
[22]
Goodman, A.L., Kallstrom, G., Faith, J.J., Reyes, A., Moore, A., Dantas, G., Gordon, J.I., 2011. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proceedings of the National Academy of Sciences of the United States of America 108, 6252–6257
CrossRef Pubmed Google scholar
[23]
Gou, M., Hu, H.W., Zhang, Y.J., Wang, J.T., Hayden, H., Tang, Y.Q., He, J.Z., 2018. Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. Science of the Total Environment 612, 1300–1310
CrossRef Pubmed Google scholar
[24]
Hammesfahr, U., Heuer, H., Manzke, B., Smalla, K., Thiele-Bruhn, S., 2008. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biology & Biochemistry 40, 1583–1591
CrossRef Google scholar
[25]
Heuer, H., Focks, A., Lamshoeft, M., Smalla, K., Matthies, M., Spiteller, M., 2008. Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacterial resistance genes in manure and manured soil. Soil Biology & Biochemistry 40, 1892–1900
CrossRef Google scholar
[26]
Hillebrand, H., Matthiessen, B., 2009. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters 12, 1405–1419
CrossRef Pubmed Google scholar
[27]
Hodgson, D.J., Rainey, P.B., Buckling, A., 2002. Mechanisms linking diversity, productivity and invasibility in experimental bacterial communities. Proceedings. Biological Sciences 269, 2277–2283
CrossRef Pubmed Google scholar
[28]
Hunt, H.W., Wall, D.H., 2002. Modelling the effects of loss of soil biodiversity on ecosystem function. Global Change Biology 8, 33–50
CrossRef Google scholar
[29]
Irikiin, Y., Nishiyama, M., Otsuka, S., Senoo, K., 2006. Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Applied Soil Ecology 34, 27–32
CrossRef Google scholar
[30]
Jung, J., Philippot, L., Park, W., 2016. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms. Scientific Reports 6, 23012
CrossRef Pubmed Google scholar
[31]
Kennedy, T.A., Naeem, S., Howe, K.M., Knops, J.M.H., Tilman, D., Reich, P., 2002. Biodiversity as a barrier to ecological invasion. Nature 417, 636–638
CrossRef Pubmed Google scholar
[32]
Levine, J.M., 2000. Species diversity and biological invasions: relating local process to community pattern. Science 288, 852–854
CrossRef Pubmed Google scholar
[33]
Loreau, M., 2004. Does functional redundancy exist? Oikos 104, 606–611
CrossRef Google scholar
[34]
Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U., 2002. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697
CrossRef Pubmed Google scholar
[35]
Maestre, F.T., Delgado-Baquerizo, M., Jeffries, T.C., Eldridge, D.J., Ochoa, V., Gozalo, B., Quero, J.L., García-Gómez, M., Gallardo, A., Ulrich, W., Bowker, M.A., Arredondo, T., Barraza-Zepeda, C., Bran, D., Florentino, A., Gaitán, J., Gutiérrez, J.R., Huber-Sannwald, E., Jankju, M., Mau, R.L., Miriti, M., Naseri, K., Ospina, A., Stavi, I., Wang, D., Woods, N.N., Yuan, X., Zaady, E., Singh, B.K., 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America 112, 15684–15689
CrossRef Pubmed Google scholar
[36]
Martínez, J.L., 2008. Antibiotics and antibiotic resistance genes in natural environments. Science 321, 365–367
CrossRef Pubmed Google scholar
[37]
Matos, A., Kerkhof, L., Garland, J.L., 2005. Effects of microbial community diversity on the survival of Pseudomonas aeruginosa in the wheat rhizosphere. Microbial Ecology 49, 257–264
CrossRef Pubmed Google scholar
[38]
Miki, T., Yokokawa, T., Matsui, K., 2013. Biodiversity and multifunctionality in a microbial community: a novel theoretical approach to quantify functional redundancy. Proceedings. Biological Sciences 281, 20132498
CrossRef Pubmed Google scholar
[39]
Obernosterer, I., Lami, R., Larcher, M., Batailler, N., Catala, P., Lebaron, P., 2010. Linkage between bacterial carbon processing and the structure of the active bacterial community at a coastal site in the NW Mediterranean Sea. Microbial Ecology 59, 428–435
CrossRef Pubmed Google scholar
[40]
Perveen, N., Barot, S., Alvarez, G., Klumpp, K., Martin, R., Rapaport, A., Herfurth, D., Louault, F., Fontaine, S., 2014. Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model. Global Change Biology 20, 1174–1190
CrossRef Pubmed Google scholar
[41]
Peter, H., Beier, S., Bertilsson, S., Lindström, E.S., Langenheder, S., Tranvik, L.J., 2011. Function-specific response to depletion of microbial diversity. ISME Journal 5, 351–361
CrossRef Pubmed Google scholar
[42]
Philippot, L., Spor, A., Hénault, C., Bru, D., Bizouard, F., Jones, C.M., Sarr, A., Maron, P.A., 2013. Loss in microbial diversity affects nitrogen cycling in soil. ISME Journal 7, 1609–1619
CrossRef Pubmed Google scholar
[43]
Pruden, A., Larsson, D.G., Amézquita, A., Collignon, P., Brandt, K.K., Graham, D.W., Lazorchak, J.M., Suzuki, S., Silley, P., Snape, J.R., Topp, E., Zhang, T., Zhu, Y.G., 2013. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives 121, 878–885
CrossRef Pubmed Google scholar
[44]
R Core Team, 2016. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, http://www.R-project.org.
[45]
Reich, P.B., Tilman, D., Isbell, F., Mueller, K., Hobbie, S.E., Flynn, D.F.B., Eisenhauer, N., 2012. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592
CrossRef Pubmed Google scholar
[46]
Reinthaler, T., Winter, C., Herndl, G.J., 2005. Relationship between bacterioplankton richness, respiration, and production in the Southern North Sea. Applied and Environmental Microbiology 71, 2260–2266
CrossRef Pubmed Google scholar
[47]
Ricciardi, A., MacIsaac, H.J., 2008. The ecology of invasions by animals and plants. Nature 452, 34–34
CrossRef Google scholar
[48]
Singh, B.K., Quince, C., Macdonald, C.A., Khachane, A., Thomas, N., Al-Soud, W.A., Sørensen, S.J., He, Z., White, D., Sinclair, A., Crooks, B., Zhou, J., Campbell, C.D., 2014. Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environmental Microbiology 16, 2408–2420
CrossRef Pubmed Google scholar
[49]
Sogin, M.L., Morrison, H.G., Huber, J.A., Mark Welch, D., Huse, S.M., Neal, P.R., Arrieta, J.M., Herndl, G.J., 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences of the United States of America 103, 12115–12120
CrossRef Pubmed Google scholar
[50]
Su, J.Q., An, X.L., Li, B., Chen, Q.L., Gillings, M.R., Chen, H., Zhang, T., Zhu, Y.G., 2017. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome 5, 84
CrossRef Pubmed Google scholar
[51]
Sun, M., Ye, M., Wu, J., Feng, Y., Shen, F., Tian, D., Liu, K., Hu, F., Li, H., Jiang, X., Yang, L., Kengara, F.O., 2015. Impact of bioaccessible pyrene on the abundance of antibiotic resistance genes during Sphingobium sp.- and sophorolipid-enhanced bioremediation in soil. Journal of Hazardous Materials 300, 121–128
CrossRef Pubmed Google scholar
[52]
Swift, M.J., Andren, O., Brussaard, L., Briones, M., Couteaux, M.M., Ekschmitt, K., Kjoller, A., Loiseau, P., Smith, P., 1998. Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies. Global Change Biology 4, 729–743
CrossRef Google scholar
[53]
Tilman, D., 1999. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80, 1455–1474
CrossRef Google scholar
[54]
Torsvik, V., Daae, F.L., Sandaa, R.A., Ovreås, L., 1998. Novel techniques for analysing microbial diversity in natural and perturbed environments. Journal of Biotechnology 64, 53–62
CrossRef Pubmed Google scholar
[55]
Torsvik, V., Øvreås, L., 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology 5, 240–245
CrossRef Pubmed Google scholar
[56]
van der Heijden, M.G.A., Bardgett, R.D., van Straalen, N.M., 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11, 296–310
CrossRef Pubmed Google scholar
[57]
van Elsas, J.D., Chiurazzi, M., Mallon, C.A., Elhottova, D., Kristufek, V., Salles, J.F., 2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences of the United States of America 109, 1159–1164
CrossRef Pubmed Google scholar
[58]
van Elsas, J.D., Hill, P., Chronáková, A., Grekova, M., Topalova, Y., Elhottová, D., Kristůfek, V., 2007. Survival of genetically marked Escherichia coli O157:H7 in soil as affected by soil microbial community shifts. ISME Journal 1, 204–214
CrossRef Pubmed Google scholar
[59]
Vitousek, P.M., DAntonio, C.M., Loope, L.L., Westbrooks, R., 1996. Biological invasions as global environmental change. American Scientist 84, 468–478.
[60]
Vivant, A.L., Garmyn, D., Maron, P.A., Nowak, V., Piveteau, P., 2013. Microbial diversity and structure are drivers of the biological barrier effect against Listeria monocytogenes in soil. PLoS One 8, e76991
CrossRef Pubmed Google scholar
[61]
Wagg, C., Bender, S.F., Widmer, F., van der Heijden, M.G., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America 111, 5266–5270
CrossRef Pubmed Google scholar
[62]
Walsh, C., 2003. Where will new antibiotics come from? Nature Reviews. Microbiology 1, 65–70
CrossRef Pubmed Google scholar
[63]
Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73, 5261–5267
CrossRef Pubmed Google scholar
[64]
Wardle, D.A., Bardgett, R.D., Callaway, R.M., Van der Putten, W.H., 2011. Terrestrial ecosystem responses to species gains and losses. Science 332, 1273–1277
CrossRef Pubmed Google scholar
[65]
Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., van der Putten, W.H., Wall, D.H., 2004. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633
CrossRef Pubmed Google scholar
[66]
Wertz, S., Degrange, V., Prosser, J.I., Poly, F., Commeaux, C., Freitag, T., Guillaumaud, N., Roux, X.L., 2006. Maintenance of soil functioning following erosion of microbial diversity. Environmental Microbiology 8, 2162–2169
CrossRef Pubmed Google scholar
[67]
Wertz, S., Degrange, V., Prosser, J.I., Poly, F., Commeaux, C., Guillaumaud, N., Le Roux, X., 2007. Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environmental Microbiology 9, 2211–2219
CrossRef Pubmed Google scholar
[68]
Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
[69]
Wright, G.D., 2007. The antibiotic resistome: the nexus of chemical and genetic diversity. Nature Reviews. Microbiology 5, 175–186
CrossRef Pubmed Google scholar
[70]
Yan, Y., Kuramae, E.E., de Hollander, M., Klinkhamer, P.G., van Veen, J.A., 2017. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME Journal 11, 56–66
CrossRef Pubmed Google scholar
[71]
Yan, Y., Kuramae, E.E., Klinkhamer, P.G., van Veen, J.A., 2015. Revisiting the dilution procedure used to manipulate microbial biodiversity in terrestrial systems. Applied and Environmental Microbiology 81, 4246–4252
CrossRef Pubmed Google scholar
[72]
Zhou, J., Wu, L., Deng, Y., Zhi, X., Jiang, Y.H., Tu, Q., Xie, J., Van Nostrand, J.D., He, Z., Yang, Y., 2011. Reproducibility and quantitation of amplicon sequencing-based detection. ISME Journal 5, 1303–1313
CrossRef Pubmed Google scholar
[73]
Zhu, Y.G., Gillings, M., Simonet, P., Stekel, D., Banwart, S., Penuelas, J., 2018. Human dissemination of genes and microorganisms in Earth’s Critical Zone. Global Change Biology 24, 1488–1499
CrossRef Pubmed Google scholar
[74]
Zhu, Y.G., Johnson, T.A., Su, J.Q., Qiao, M., Guo, G.X., Stedtfeld, R.D., Hashsham, S.A., Tiedje, J.M., 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America 110, 3435–3440
CrossRef Pubmed Google scholar
[75]
Zhu, Y.G., Zhao, Y., Li, B., Huang, C.L., Zhang, S.Y., Yu, S., Chen, Y.S., Zhang, T., Gillings, M.R., Su, J.Q., 2017. Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology 2, 16270
CrossRef Pubmed Google scholar

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (21210008, 41571130063), Strategic Priority Research Program of Chinese Academy of Sciences (XDB15020402) and European Research Council from Synergy grant ERC-2013-SyG-610028 “IMBALANCE-P.”

Electronic supplementary material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s42832-019-0011-0 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2019 Higher Education Press
AI Summary AI Mindmap
PDF(1003 KB)

Accesses

Citations

Detail

Sections
Recommended

/