Collembolans accelerate the dispersal of antibiotic resistance genes in the soil ecosystem
Dong Zhu , Hong-Tao Wang , Fei Zheng , Xiao-Ru Yang , Peter Christie , Yong-Guan Zhu
Soil Ecology Letters ›› 2019, Vol. 1 ›› Issue (1-2) : 14 -21.
Collembolans accelerate the dispersal of antibiotic resistance genes in the soil ecosystem
Soils have become an important sink for antibiotic resistance genes (ARGs). To better understand the impacts of ARGs on the soil ecosystem, the transport of ARGs is a basic question. So far, however, the role of soil animals in the dispersal of ARGs is not understood. Here, two treatments (without collembolans and with collembolans) were established, each treatment included unamended and manure-amended soil, and soil samples were collected at 14, 28 and 56 days after incubation. The effects of the collembolan Folsomia candida on dispersal of ARGs in the soil ecosystem were explored using high-throughput qPCR combined with Illumina sequencing. As the culture time increased, more shared ARGs and OTUs were detected between the unamended and manured soil, especially in the treatment with collembolans. Vancomycin, aminoglycoside and MLSB genes may have been more readily transported by the collembolan. On the 28th day after incubation, a high abundance of mobile genetic elements (MGEs) was found in the treatment with collembolans. These results clearly reveal that collembolans can accelerate the dispersal of ARGs in the soil ecosystem. Procrustes analysis and the Mantel test both indicate that soil bacterial communities were significantly correlated with ARG profiles. Furthermore, partial redundancy analysis indicates that soil bacterial communities can explain 41.28% of the variation in ARGs. These results suggest that the change of soil microbial community have an important contribution to the dispersal of ARGs by the collembolan.
Soil fauna / High-throughput qPCR / Microbial community / Mobile genetic elements / Lllumina sequencing
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
RCoreTeam, 2017. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |