Zero-standby power hydrogen sensing using event-driven micromechanical switches

S M Jahadun Nobi , Eric Herrmann , Zhixiang Huang , Sai Rahul Sitaram , Kyle Laskowski , Xi Wang

Responsive Materials ›› 2025, Vol. 3 ›› Issue (3) : e70018

PDF
Responsive Materials ›› 2025, Vol. 3 ›› Issue (3) : e70018 DOI: 10.1002/rpm2.70018
RESEARCH ARTICLE

Zero-standby power hydrogen sensing using event-driven micromechanical switches

Author information +
History +
PDF

Abstract

Zero-standby power sensors are crucial for enhancing the safety and widespread adoption of hydrogen (H2) technologies in chemical processes and sustainable energy applications, given the flammability of H2 at low concentrations. Here, we report an event-driven hydrogen sensing system utilizing palladium (Pd)-based micromechanical cantilever switches. The detection mechanism relies on strain generation in the Pd layer, which undergoes reversible volume expansion upon hydrogen adsorption. Our experimental and simulation results demonstrate that the bistable micromechanical switch-based sensor generates a wake-up signal with activation time depending on hydrogen concentration in the target environment while always remaining active for events without any standby power consumption under normal conditions. The H2 adsorption-induced subsequent switching of the multi-cantilever-based switch configuration on the sensor resulted in the quasi-quantification of hydrogen concentrations. The reported zero-standby power sensor's operational lifetime is limited by the frequency of detection events and exposure to concentrations exceeding hydrogen's flammability limit. This work advances the development of high-density, maintenance-free sensor networks for large-scale deployment with Internet of Things devices, enabling unattended continuous monitoring of hydrogen generation, transportation, distribution, and end-user applications.

Keywords

event-driven detection / hydrogen detection / hydrogen gas sensor / palladium / passive switch / zero standby power

Cite this article

Download citation ▾
S M Jahadun Nobi, Eric Herrmann, Zhixiang Huang, Sai Rahul Sitaram, Kyle Laskowski, Xi Wang. Zero-standby power hydrogen sensing using event-driven micromechanical switches. Responsive Materials, 2025, 3(3): e70018 DOI:10.1002/rpm2.70018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Evro, B. A. Oni, O. S. Tomomewo, Int. J. Hydrogen Energy 2024, 78, 1449.

[2]

K. Ramaiyan, L.-K. Tsui, E. L. Brosha, C. Kreller, J. R. Stetter, T. Russ, W. Du, D. Peaslee, G. Hunter, J. Xu, D. Makel, F. Garzon, R. Mukundan, ECS Sens. Plus 2023, 2, 045601.

[3]

B. Ai, Y. Sun, Y. Zhao, Small 2022, 18, 2107882.

[4]

R. Ramachandran, R. K. Menon, Int. J. Hydrogen Energy 1998, 23, 593.

[5]

L. Wen, Z. Sun, Q. Zheng, X. Nan, Z. Lou, Z. Liu, D. R. S. Cumming, B. Li, Q. Chen, Light Sci. Appl. 2023, 12, 76.

[6]

A. Majumdar, J. M. Deutch, R. S. Prasher, T. P. Griffin, Joule 2021, 5, 1905.

[7]

W. Liu, H. Zuo, J. Wang, Q. Xue, B. Ren, F. Yang, Int. J. Hydrogen Energy 2021, 46, 10548.

[8]

C. A. Grimes, K. G. Ong, O. K. Varghese, X. Yang, G. Mor, M. Paulose, E. C. Dickey, C. Ruan, M. V. Pishko, J. W. Kendig, A. J. Mason, Sensors 2003, 3, 69.

[9]

S. J. Pearton, F. Ren, IEEE Instrum. Meas. Mag. 2012, 15, 16.

[10]

X. Wang, Y. Zhao, Q. Dong, C. Chu, F. Xue, C. Wang, J. Bai, Responsive Mater. 2025, 3, e20240037.

[11]

T. Hübert, L. Boon-Brett, G. Black, U. Banach, Sensor. Actuator. B Chem. 2011, 157, 329.

[12]

I. Darmadi, F. A. A. Nugroho, C. Langhammer, ACS Sens. 2020, 5, 3306.

[13]

I. Lundström, S. Shivaraman, C. Svensson, L. Lundkvist, Appl. Phys. Lett. 1975, 26, 55.

[14]

M. Kumar, V. Bhatt, A. Kumar, J.-H. Yun, Mater. Lett. 2019, 240, 13.

[15]

Y. Wang, X. Jiang, Y. Xia, J. Am. Chem. Soc. 2003, 125, 16176.

[16]

M. Kumaresan, M. Venkatachalam, M. Saroja, P. Gowthaman, J. Mater. Sci. Mater. Electron. 2020, 31, 8183.

[17]

C. Caucheteur, M. Debliquy, D. Lahem, P. Megret, IEEE Photon. Technol. Lett. 2008, 20, 96.

[18]

L. Huang, Z. Zhang, Z. Li, B. Chen, X. Ma, L. Dong, L.-M. Peng, ACS Appl. Mater. Interfaces 2015, 7, 9581.

[19]

C. Tang, W. Jin, X. Xiao, X. Qi, Y. Ma, L. Ma, Sensor. Actuator. B Chem. 2025, 424, 136889.

[20]

V. Jelicic, M. Magno, K. Chikkadi, C. Roman, C. Hierold, V. Bilas, L. Benini, in 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI)2015, 271.

[21]

C. McConnell, S. N. Kanakaraj, J. Dugre, R. Malik, G. Zhang, M. R. Haase, Y.-Y. Hsieh, Y. Fang, D. Mast, V. Shanov, ACS Omega 2020, 5, 487.

[22]

S. Tang, W. Chen, H. Zhang, Z. Song, Y. Li, Y. Wang, Front. Chem. 2020, 8, 174.

[23]

X.-Y. Zhang, R.-H. Ma, L.-S. Li, L. Fan, Y.-T. Yang, S.-Y. Zhang, Sci. Rep. 2021, 11, 2404.

[24]

S. Mandal, A. V. Marsh, H. Faber, T. Ghoshal, D. K. Goswami, L. Tsetseris, M. Heeney, T. D. Anthopoulos, Nat. Electron. 2025, 8, 343.

[25]

C. Zhang, T. Ding, Responsive Mater. 2024, 2, e20240024.

[26]

F. Xu, J. Ma, K. Hu, Z. Zhang, C. Ma, B.-O. Guan, K. Chen, Sensor. Actuator. B Chem. 2024, 400, 134875.

[27]

F. Xu, J. Ma, C. Li, C. Ma, J. Li, B.-O. Guan, K. Chen, Molecules 2023, 28, 6984.

[28]

Z.-D. Duan, Z.-J. Zhou, S. Zhu, W.-Q. Diao, Z. Liu, L. Fan, S.-Y. Zhang, L.-P. Cheng, X.-D. Xu, Appl. Phys. Lett. 2023, 123, 172201.

[29]

S. J. McKeown, L. L. Goddard, in Lab-on-Fiber Technology (Eds: A. Cusano, M. Consales, A. Crescitelli, A. Ricciardi), Springer International Publishing, Cham 2015, p. 181.

[30]

J. Burgués, S. Marco, Sensors 2018, 18, 339.

[31]

R. H. Olsson, C. Gordon, R. Bogoslovov, J. Phys.:Conf. Ser. 2019, 1407, 012042.

[32]

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, M. Rinaldi, Nat. Nanotechnol. 2017, 12, 969.

[33]

V. Rajaram, Z. Qian, S. Kang, N. E. McGruer, M. Rinaldi, in 2018 IEEE Micro Electro Mechanical Systems (MEMS)2018, p. 17.

[34]

R. W. Reger, B. Barney, S. Yen, M. Satches, M. Wiwi, A. I. Young, M. A. Delaney, B. A. Griffin, in 2017 IEEE SENSORS, Glasgow, UK 2017, p. 1.

[35]

C. Ghosh, S. H. Khan, S. J. Broadbent, H. C. Hsieh, S. Noh, A. Banerjee, N. Farhoudi, C. H. Mastrangelo, R. Looper, H. Kim, in 2017 IEEE SENSORS, Glasgow, UK 2017, p. 1.

[36]

A. Risso, V. Rajaram, S. Kang, S. D. Calisgan, M. M. Pavese, Z. Qian, M. Rinaldi, Sci. Rep. 2022, 12, 12603.

[37]

S. Rana, J. Mouro, S. J. Bleiker, J. D. Reynolds, H. M. H. Chong, F. Niklaus, D. Pamunuwa, Nat. Commun. 2020, 11, 1181.

[38]

R. Carpick, G. Wabiszewski, F. Streller, in Solid State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, SC, USA 2014, p. 28.

[39]

H. Kam, V. Pott, R. Nathanael, J. Jaeseok, A. Elad, L. Tsu-Jae King, in 2009 IEEE International Electron Devices Meeting (IEDM)2009, p. 1.

[40]

S. Mingoo, H. Scott, L. Yu-Shiang, F. Zhiyoong, K. Daeyeon, L. Yoonmyung, L. Nurrachman, D. Sylvester, D. Blaauw, in 2008 IEEE Symposium on VLSI Circuits2008, p. 188.

[41]

Y. Lee, S. Bang, I. Lee, Y. Kim, G. Kim, M. H. Ghaed, P. Pannuto, P. Dutta, D. Sylvester, D. Blaauw, IEEE J. Solid State Circ. 2013, 48, 229.

[42]

W. Jiang, L. Wang, X. Wang, L. Zhao, X. Fang, R. Maeda, Nanomaterials 2022, 12, 3718.

[43]

F. Rahman, M. A. Salam Akanda, J. Mech. Sci. Technol. 2022, 36, 4635.

[44]

S. J. Park, J. C. Doll, B. L. Pruitt, J. Microelectromech. Syst. 2010, 19, 137.

[45]

A. Basu, R. P. Hennessy, G. G. Adams, N. E. McGruer, J. Micromech. Microeng. 2014, 24, 105004.

[46]

Z. Huang, W. Wu, E. Herrmann, K. Ma, Z. A. Chase, T. A. Searles, M. B. Jungfleisch, X. Wang, Front. Optoelectron. 2024, 17, 13.

[47]

H. Li, Y. Li, K. Wang, L. Lai, X. Xu, B. Sun, Z. Yang, G. Ding, Int. J. Hydrogen Energy 2021, 46, 1434.

[48]

F. Afshar, S. Nazarpour, A. Cirera, J. Appl. Phys. 2010, 108, 093513.

[49]

R. Treml, D. Kozic, J. Zechner, X. Maeder, B. Sartory, H. P. Gänser, R. Schöngrundner, J. Michler, R. Brunner, D. Kiener, Acta Mater. 2016, 103, 616.

[50]

Y. Shroff, Y. Chen, W. Oldham, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 2001, 19, 2412.

[51]

A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Langmuir 2015, 31, 1605.

[52]

B. Wang, L. Sun, M. Schneider-Ramelow, K.-D. Lang, H.-D. Ngo, Micromachines 2021, 12, 1429.

[53]

D.-H. Kim, S.-J. Kim, H. Shin, W.-T. Koo, J.-S. Jang, J.-Y. Kang, Y. J. Jeong, I.-D. Kim, ACS Nano 2019, 13, 6071.

[54]

C. Wadell, F. A. A. Nugroho, E. Lidström, B. Iandolo, J. B. Wagner, C. Langhammer, Nano Lett. 2015, 15, 3563.

[55]

M.-S. Jo, K.-H. Kim, J.-S. Lee, S.-H. Kim, J.-Y. Yoo, K.-W. Choi, B.-J. Kim, D.-S. Kwon, I. Yoo, J.-S. Yang, M.-K. Chung, S.-Y. Park, M.-H. Seo, J.-B. Yoon, ACS Nano 2023, 17, 23649.

[56]

S. J. McKeown, X. Wang, X. Yu, L. L. Goddard, Microsyst. Nanoeng. 2017, 3, 16087.

[57]

F. A. A. Nugroho, I. Darmadi, L. Cusinato, A. Susarrey-Arce, H. Schreuders, L. J. Bannenberg, A. B. da Silva Fanta, S. Kadkhodazadeh, J. B. Wagner, T. J. Antosiewicz, A. Hellman, V. P. Zhdanov, B. Dam, C. Langhammer, Nat. Mater. 2019, 18, 489.

[58]

M. O. Kim, K. Lee, H. Na, D. S. Kwon, J. Choi, J. I. Lee, D. Baek, J. Kim, in 2013 Transducers and Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII)2013, p. 2576.

[59]

H. Yamazaki, Y. Hayashi, K. Masunishi, D. Ono, T. Ikehashi, J. Micromech. Microeng. 2018, 28, 094001.

RIGHTS & PERMISSIONS

2025 The Author(s). Responsive Materials published by John Wiley & Sons Australia, Ltd on behalf of Southeast University.

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/