Polymer-clay nanocomposite hydrogels with multiple responses to multiple stimuli

Ploypailin Milin Saengdet , Makoto Ogawa

Responsive Materials ›› 2025, Vol. 3 ›› Issue (3) : e20250014

PDF
Responsive Materials ›› 2025, Vol. 3 ›› Issue (3) : e20250014 DOI: 10.1002/rpm.20250014
REVIEW ARTICLE

Polymer-clay nanocomposite hydrogels with multiple responses to multiple stimuli

Author information +
History +
PDF

Abstract

Hydrogels are widely studied for their stimuli-responsive properties. They adapt to external stimuli, including physical, chemical and biological ones. To enhance adaptability in complex environments, multi-responsive hydrogels have been developed, which either react to multiple stimuli independently or cooperatively (multistimuli-response) or exhibit multiple responses triggered by single or multiple stimuli (multi-response). Their properties depend on polymer type, molecular weight, cross-linking, and water content, which affect mechanical behavior and response. To address their inherent fragility, polymer-inorganic nanocomposite hydrogels integrate the advantages of both components, yielding enhanced functionalities. Among various nanofillers, smectites have been extensively studied for improving mechanical strength and responsiveness. Polymer-smectite nanocomposite hydrogels exhibit enhanced elasticity, toughness, thermal stability, gas barrier properties, and responsiveness to external stimuli, expanding their applications in biomedical engineering, environmental remediation, and smart materials. This review discusses the fundamentals of polymer-smectite nanocomposite hydrogels, their design strategies, and the role of smectite in enabling multi-responsive behavior. The classification based on the site of responsiveness (polymer network and smectite) is presented, highlighting the important role of smectite in controlling the response and potential applications. Finally, challenges are addressed, emphasizing smectite's role in advancing next-generation smart materials.

Keywords

clay mineral / hydrogel / multi-response / multiple stimuli / nanocomposite / polymer-clay / smectite

Cite this article

Download citation ▾
Ploypailin Milin Saengdet, Makoto Ogawa. Polymer-clay nanocomposite hydrogels with multiple responses to multiple stimuli. Responsive Materials, 2025, 3(3): e20250014 DOI:10.1002/rpm.20250014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) Z.-Q. Cao, G.-J. Wang, Chem. Rec. 2016, 16, 1398;b) P. Lavrador, M. R. Esteves, V. M. Gaspar, J. F. Mano, Adv. Funct. Mater. 2021, 31, 2005941;c) G. Pasparakis, M. Vamvakaki, Polym. Chem. 2011, 2, 1234.

[2]

J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155.

[3]

Y. Okumura, K. Ito, Adv. Mater. 2001, 13, 485.

[4]

X. Zhou, C. Li, L. Zhu, X. Zhou, Chem. Commun. 2020, 56, 13731.

[5]

I. K. Han, T. Chung, J. Han, Y. S. Kim, Nano Converg. 2019, 6, 18.

[6]

Y. Fukushima, S. Inagaki, in Presented at Inclusion Phenomena in Inorganic, Organic, and Organometallic Hosts: Proceedings of the Fourth International Symposium on Inclusion Phenomena and the Third International Symposium on Cyclodextrins Lancaster, UK, 20–25 July 19861987.

[7]

K. Haraguchi, T. Takehisa, Adv. Mater. 2002, 14, 1120.

[8]

a) K. Haraguchi, T. Takehisa, S. Fan, Macromol. 2002, 35, 10162;b) K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Macromol. 2003, 36, 5732.

[9]

a) L. Z. Zhao, C. H. Zhou, J. Wang, D. S. Tong, W. H. Yu, H. Wang, Soft Matter 2015, 11, 9229;b) K. Haraguchi, in Organic-Inorganic Hybrid Nanomaterials (Eds: S. Kalia, Y. Haldorai), Springer International Publishing, Cham 2015.

[10]

a) S. A. Khan, T. A. Khan, J. Environ. Chem. Eng. 2021, 9, 105575;b) M. A. Ruiz-Fresneda, E. González-Morales, C. Gila-Vilchez, A. Leon-Cecilla, M. L. Merroun, A. L. Medina-Castillo, M. T. Lopez-Lopez, Mater. Horiz. 2024, 11, 5533;c) T. Nakamura, M. Ogawa, Appl. Clay Sci. 2013, 83, 469;d) K. Kabiri, H. Omidian, M. J. Zohuriaan-Mehr, S. Doroudiani, Polym. Compos. 2011, 32, 277.

[11]

a) J. I. Dawson, R. O. Oreffo, Adv. Mater. 2013, 25, 4069;b) D. Peixoto, I. Pereira, M. Pereira-Silva, F. Veiga, M. R. Hamblin, Y. Lvov, M. Liu, A. C. Paiva-Santos, Coord. Chem. Rev. 2021, 440, 213956.

[12]

Y. Oaki, S. Fujii, Chem. Commun. 2024, 60, 9163.

[13]

G. Brown, Crystal Structures of Clay Minerals and Their X-Ray Identification, Vol. 5, The Mineralogical Society of Great Britain and Ireland 1982.

[14]

F. Bergaya, B. K. G. Theng, G. Lagaly, Handbook of Clay Science, Elsevier 2006.

[15]

a) B. K. G. Theng, Formation and Properties of Clay-Polymer Complexes, Elsevier 2012;b) B. K. G. Theng, The Chemistry of Clay-Organic Reactions, Wiley 1974;c) B. K. G. Theng, in Developments in Clay Science (Ed: B. K. G. Theng), Vol. 4, Elsevier 2012.

[16]

V. Dudko, O. Khoruzhenko, S. Weiß, M. Daab, P. Loch, W. Schwieger, J. Breu, Adv. Mater. Tech. 2023, 8, 2200553.

[17]

K. J. Imwiset, A. P. Teepakakorn, P. M. Saengdet, C. B. Tirayaphanitchkul, M. Ogawa, in Concepts and Design of Materials Nanoarchitectonics2022.

[18]

L. Han, X. Lu, K. Liu, K. Wang, L. Fang, L.-T. Weng, H. Zhang, Y. Tang, F. Ren, C. Zhao, G. Sun, R. Liang, Z. Li, ACS Nano 2017, 11, 2561.

[19]

a) F. Bergaya, G. Lagaly, Handbook of Clay Science, Newnes 2013;b) P. Das, J.-M. Malho, K. Rahimi, F. H. Schacher, B. Wang, D. E. Demco, A. Walther, Nat. Commun. 2015, 6, 5967.

[20]

S. Abend, G. Lagaly, Appl. Clay Sci. 2000, 16, 201.

[21]

F. Ikkai, M. Shibayama, J. Polym. Sci. B Polym. Phys. 2005, 43, 617.

[22]

a) K. Haraguchi, T. Takada, Macromol. Chem. Phys. 2005, 206, 1530;b) K. Haraguchi, T. Takehisa, in Presented at ASME 2005 International Mechanical Engineering Congress and Exposition2005;c) K. Haraguchi, H.-J. Li, Macromol. 2006, 39, 1898;d) K. Haraguchi, Curr. Opin. Solid State Mater. Sci. 2007, 11, 47;e) K. Haraguchi, H. Li, L. Song, SPIE Organic Photonics + Electronics2007;f) K. Haraguchi, H.-J. Li, N. Okumura, Macromol. 2007, 7, 2299;g) K. Haraguchi, H.-J. Li, L. Song, J. Colloid Interface Sci. 2008, 326, 41.

[23]

Y. Xu, G. Li, K. Haraguchi, Macromol. Chem. Phys. 2010, 211, 977.

[24]

K. Haraguchi, in Advances in Polymer Nanocomposites (Ed: F. Gao), Vol. 14, Woodhead Publishing 2012.

[25]

J. Kim, I. Oh, S. Park, N. Q. Nguyen, J. Ryu, D. Sohn, Polymer 2021, 214, 123365.

[26]

a) S. Tamesue, M. Ohtani, K. Yamada, Y. Ishida, J. M. Spruell, N. A. Lynd, C. J. Hawker, T. Aida, J. Am. Chem. Soc. 2013, 135, 15650;b) Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339;c) Y. Fu, K. Okuro, J. Ding, T. Aida, Angew. Chem., Int. Ed. 2025, 64, e202416541.

[27]

a) Y. Tan, S. Xu, R. Wu, J. Du, J. Sang, J. Wang, Appl. Clay Sci. 2017, 148, 77;b) Y. Tan, R. Wu, H. Li, W. Ren, J. Du, S. Xu, J. Wang, J. Mater. Chem. B 2015, 3, 4426;c) T. Inadomi, S. Ikeda, Y. Okumura, H. Kikuchi, N. Miyamoto, Macromol. Rapid Commun. 2014, 35, 1741.

[28]

a) L. Zhao, J. Huang, Y. Zhang, T. Wang, W. Sun, Z. Tong, ACS Appl. Mater. Interfaces 2017, 9, 11866;b) W. Wang, Q. Niu, X. Liu, L. Su, J. Zhang, S. Meng, Z. Li, Y. Zhang, Q. Xiong, Opt. Mater. 2023, 142, 114147;c) C. Yao, Y. Yang, W.-Y. Huang, J.-J. Xiao, Z.-J. Meng, Y.-Y. Ou, X.-H. He, Y. Zhang, ACS Appl. Polym. Mater. 2024, 6, 6371.

[29]

a) P. M. Saengdet, M. Ogawa, Chem. Commun. 2022, 58, 3278;b) P. M. Saengdet, M. Ogawa, Langmuir 2024, 40, 1016;c) M. Ikeda, T. Yoshii, T. Matsui, T. Tanida, H. Komatsu, I. Hamachi, J. Am. Chem. Soc. 2011, 133, 1670.

[30]

a) B. Li, Y. Qin, Z. Li, Y. Zhang, H. Li, Nanoscale 2021, 13, 11380;b) B. Li, Z.-J. Ding, Z. Li, H. Li, J. Mater. Chem. C 2018, 6, 6869.

[31]

a) O. Goncharuk, Y. Samchenko, L. Kernosenko, O. Korotych, T. Poltoratska, N. Pasmurtseva, O. Oranska, D. Sternik, I. Mamyshev, Soft Matter 2020, 16, 5689;b) X. Di, Y. Kang, F. Li, R. Yao, Q. Chen, C. Hang, Y. Xu, Y. Wang, P. Sun, G. Wu, Colloids Surf. B Biointerfaces 2019, 177, 149;c) B. Tanc, N. Orakdogen, Soft Matter 2019, 15, 3208;d) T. S. Anirudhan, S. Sandeep, J. Mater. Chem. 2012, 22, 12888;e) Q. L. Zhu, C. Du, Y. Dai, M. Daab, M. Matejdes, J. Breu, W. Hong, Q. Zheng, Z. L. Wu, Nat. Commun. 2020, 11, 5166;f) Q. L. Zhu, C. F. Dai, D. Wagner, M. Daab, W. Hong, J. Breu, Q. Zheng, Z. L. Wu, Adv. Mater. 2020, 32, 2005567;g) Q. L. Zhu, W. Liu, O. Khoruzhenko, J. Breu, W. Hong, Q. Zheng, Z. L. Wu, Nat. Commun. 2024, 15, 300.

[32]

a) K. Haraguchi, J. Stem Cells Regen. Med. 2012, 8, 2;b) K. Haraguchi, Polym. J. 2011, 43, 223;c) K. Haraguchi, H.-J. Li, Angew. Chem., Int. Ed. 2005, 44, 6500;d) K. Haraguchi, H.-J. Li, Macromolecules 2006, 39, 1898.

[33]

C. Yao, Z. Liu, C. Yang, W. Wang, X. J. Ju, R. Xie, L. Y. Chu, Adv. Funct. Mater. 2015, 25, 2980.

[34]

F. Cavusoglu, H. Kasgoz, Polym. Compos. 2011, 32, 2062.

[35]

S. Yook, S. S. Es-Haghi, A. Yildirim, Z. Mutlu, M. Cakmak, Soft Matter 2019, 15, 9733.

[36]

K.-H. Liu, T.-Y. Liu, S.-Y. Chen, D.-M. Liu, Acta Biomater. 2008, 4, 1038.

[37]

F. B. Kadumudi, M. Jahanshahi, M. Mehrali, T.-G. Zsurzsan, N. Taebnia, M. Hasany, S. Mohanty, A. Knott, B. Godau, M. Akbari, A. Dolatshahi-Pirouz, Adv. Sci. 2019, 6, 1801241.

[38]

P. M. Saengdet, Y. Takeoka, M. Ogawa, Chem. Mater. 2024, 36, 10276.

[39]

K. Haraguchi, K. Murata, T. Takehisa, Macromol. Symp. 2013, 329, 150.

[40]

T. Anirudhan, S. Sandeep, Polym. Chem. 2011, 2, 2052.

[41]

F. Cellini, L. Block, J. Li, S. Khapli, S. D. Peterson, M. Porfiri, Sensor. Actuator. B Chem. 2016, 234, 510.

[42]

C. Yao, Z. Liu, C. Yang, W. Wang, X.-J. Ju, R. Xie, L.-Y. Chu, ACS Appl. Mater. Interfaces 2016, 8, 21721.

[43]

Y. Li, X. Xu, L. Zhao, D. Yu, Y. Chen, L. Du, X. Wu, ACS Appl. Elec. Mater. 2022, 4, 2396.

[44]

Y. Zhu, L. Lin, Y. Chen, Y. Song, W. Lu, Y. Guo, Soft Matter 2020, 16, 2238.

[45]

J. Ma, Y. Xu, B. Fan, B. Liang, Eur. Polym. J. 2007, 43, 2221.

[46]

D. Wu, Y. Gao, W. Li, X. Zheng, Y. Chen, Q. Wang, ACS Sustainable Chem. Eng. 2016, 4, 6732.

[47]

J. Ma, Y. Xu, Q. Zhang, L. Zha, B. Liang, Colloid. Polym. Sci. 2007, 285, 479.

[48]

Z. Jiang, X. Shi, F. Qiao, J. Sun, Q. Hu, Biomacromolecules 2022, 23, 5239.

[49]

X. Cao, H. Liu, X. Yang, J. Tian, B. Luo, M. Liu, Compos. Sci. Technol. 2020, 191, 108071.

[50]

S. Jana, J. Ray, B. Mondal, T. Tripathy, Appl. Clay Sci. 2019, 173, 46.

[51]

P. Wei, T. Chen, G. Chen, H. Liu, I. T. Mugaanire, K. Hou, M. Zhu, ACS Appl. Mater. Interfaces 2019, 12, 3068.

[52]

H. Li, R. Wu, J. Zhu, P. Guo, W. Ren, S. Xu, J. Wang, J. Polym. Sci. B Polym. Phys. 2015, 53, 876.

[53]

L. Chen, X. Yao, Z. Gu, K. Zheng, C. Zhao, W. Lei, Q. Rong, L. Lin, J. Wang, L. Jiang, M. Liu, Chem. Sci. 2017, 8, 2010.

[54]

K. Haraguchi, K. Murata, T. Takehisa, Macromol. Symp. 2013, 329, 150.

[55]

H. Van Olphen, Soil Sci. 1964, 97, 290.

[56]

M. Zhu, L. Xiong, T. Wang, X. Liu, C. Wang, Z. Tong, React. Funct. Polym. 2010.

[57]

C. Li, C. Mu, W. Lin, T. Ngai, ACS Appl. Mater. Interfaces 2015, 7, 18732.

[58]

a) T. Yamaguchi, M. Ogawa, Sci. Technol. Adv. Mater. 2022, 23, 796;b) T. Yamaguchi, J.-M. Oh, M. Ogawa, Dyes and Photoactive Molecules in Microporous Systems, Vol. 251 2020.

[59]

K. Haraguchi, Adv. Polym. Sci. 2014.

[60]

Z. Chen, J. Tang, N. Zhang, Y. Chen, Y. Chen, H. Li, H. Liu, Colloids Surf. A Physicochem. Eng. Asp. 2022, 633, 127867.

[61]

a) A. Teepakakorn, M. Ogawa, Appl. Clay Sci. 2022, 222, 106487;b) C. C. Shen, S. Petit, C. J. Li, C. S. Li, N. Khatoon, C. H. Zhou, Appl. Clay Sci. 2020, 198, 105778.

[62]

H. M. Ahmad, M. S. Kamal, M. A. Al-Harthi, Appl. Clay Sci. 2018, 160, 226.

[63]

H. Takeno, A. Nakamura, Colloid. Polym. Sci. 2019, 297, 641.

[64]

S. M. R. Shaikh, M. S. Nasser, I. A. Hussein, A. Benamor, Chem. Eng. J. 2017, 311, 265.

[65]

M. Ogawa, K. Kuroda, Chem. Rev. 1995, 95, 399.

[66]

M. Ogawa, K. Saito, M. Sohmiya, Dalton Trans. 2014, 43, 10340.

[67]

A. Teepakakorn, T. Hayakawa, M. Ogawa, Appl. Clay Sci. 2022, 218, 106405.

[68]

A. Phuekphong, T. Hayakawa, M. Ogawa, Chem. Commun. 2022, 58, 12661.

[69]

K. Haraguchi, D. Varade, Polymer 2014, 55, 2496.

[70]

G.-Q. He, H. Li, J. Liu, Y.-L. Hu, Y. Liu, Z. L. Wang, P. Jiang, Adv. Mater. 2024, 36, 2312530.

[71]

L. Han, Y. He, R. An, X. Wang, Y. Zhang, L. Shi, R. Ran, Colloids Surf. A Physicochem. Eng. Asp. 2019, 569, 18.

[72]

a) X. Liu, X. Niu, Z. Fu, L. Liu, S. Bai, J. Wang, L. Li, Y. Wang, X. Guo, Soft Matter 2020, 16, 8394;b) J. Du, J. Zhu, R. Wu, S. Xu, Y. Tan, J. Wang, RSC Adv. 2015, 5, 60152.

RIGHTS & PERMISSIONS

2025 The Author(s). Responsive Materials published by John Wiley & Sons Australia, Ltd on behalf of Southeast University.

AI Summary AI Mindmap
PDF

30

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/