PDF
Abstract
Lasers generate coherent, collimated, intense and monochromatic radiation at optical wavelengths with precise spatiotemporal control. This unique combination of attractive properties is stimulating the design of optical cavities and gain materials to replicate the functions of lasers at the microscale with the ultimate goal of developing miniaturized light sources for biomedical and information technologies. Borrowing from the fundamental principles of macroscopic dye lasers, microscopic analogs able to sustain light amplification by stimulated emission of radiation from fluorescent dyes have, indeed, become a reality. Microdroplets of dye solutions are their simplest implementation. Large numbers of dye-doped microdroplets with identical shapes and sizes can be produced efficiently, inexpensively and rapidly to permit the convenient investigation of their properties with statistical confidence. In fact, a solid understanding of the geometrical, optical and photophysical factors regulating the ability of a single dye-doped microdroplet to produce laser emission has already been developed. As a result of these seminal studies, methods to control the lasing spectrum of a dye-doped microdroplet with external stimulations are now available, providing access potentially to miniaturized lasers with tunable emission. In particular, mechanically-, optically- and thermally-induced deformations in the shape of a microdroplet, changes in its size or modifications in the absorption coefficient of its constituent components are all viable strategies to manipulate lasing. The latter mechanisms rely on structural and/or electronic modifications of the dyes in the microdroplet interior to regulate the fine balance between optical gain and absorption losses responsible for lasing and are the primary focus of this review.
Keywords
dye lasers
/
fluorescence
/
microdroplets
/
microlasers
/
stimulated emission
/
tunable lasers
Cite this article
Download citation ▾
William M. Piedra, Andrea Tomassini, Amrita Singh, Françisco M. Raymo.
Absorption effects in lasing microdroplets of dye solutions.
Responsive Materials, 2025, 3(2): e20250013 DOI:10.1002/rpm.20250013
| [1] |
J. L. Bromberg, Phys. Today 1988, 41, 26.
|
| [2] |
M. Bertolotti, Masers and Lasers: An Historical Approach, CRC Press, Boca Raton, FL2015.
|
| [3] |
A. Einstein, Phys. Z. 1917, 18, 121.
|
| [4] |
J. Weber, Trans. IRE Prof. Group Electron Devices, PGED-3 June 1953, 1.
|
| [5] |
N. G. Basov, A. M. Prokhorov, Zh. Eksp. Teor. Fiz. 1954, 27, 431.
|
| [6] |
J. P. Gordon, H. J. Zeiger, C. H. Townes, Phys. Rev. 1955, 99, 1264.
|
| [7] |
A. L. Schawlow, C. Townes, Phys. Rev. 1958, 112, 1940.
|
| [8] |
R. G. Gould, in The Ann Arbor Conference on Optical Pumping (Eds: P. A. Franken, R. H. Sands), the University of Michigan, Ann Arbor, MI 1959, p. 128. The LASER, Light Amplification by Stimulated Emission of Radiation.
|
| [9] |
N. Taylor, Laser: The Inventor, the Nobel Laureate, and the Thirty-Year Patent War, Simon and Schuster, New York, NY2000.
|
| [10] |
T. H. Maiman, Nature 1960, 187, 493.
|
| [11] |
The graphic in Figure 1b was produced with data from a citation report derived from Clarivate Web of Science (Copyright Clarivate 2025: all rights reserved) with the topic entry “Laser OR Lasers” on February 16, 2025.
|
| [12] |
M. J. Weber, Handbook of Lasers, CRC Press, Boca Raton, FL2019.
|
| [13] |
C. Guo, S. Chandra, Eds., Handbook of Laser Technology and Applications, CRC Press, Boca Raton, FL 2021.
|
| [14] |
The Worldwide Market for Lasers: Market Review and Forecast, LaserFocusWorld, Nashville, TN 2024.
|
| [15] |
A. E. Siegman, Lasers, University Science Books, New York, NY1986.
|
| [16] |
M. Diem, Quantum Mechanical Foundations of Molecular Spectroscopy, Wiley VCH, New York, NY2021.
|
| [17] |
C. Fabry, A. Pérot, Ann. Chim. Phys. 1899, 16, 115.
|
| [18] |
F. P. Schäfer, Principles of Dye Laser Operation, in Dye Lasers (Ed: F. P. Schäfer, Ed.), Vol. 1, Springer, Berlin Heidelberg 1990, pp. 1–89.
|
| [19] |
K. J. Vahala, Nature 2003, 424, 839.
|
| [20] |
M. Born, E. Wolf, Principles of Optics, Cambridge University Press, Cambridge2002.
|
| [21] |
A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, G. C. Righini, Laser Photon. Rev. 2010, 4, 457.
|
| [22] |
A. B. Matsko, V. S. Ilchenko, IEEE J. Sel. Top. Quant. El. 2006, 12, 3.
|
| [23] |
V. S. Ilchenko, A. B. Matsko, IEEE J. Sel. Top. Quant. El. 2006, 12, 15.
|
| [24] |
S. C. Yang, Y. Wang, H. D. Sun, Adv. Optical Mater. 2015, 3, 1136.
|
| [25] |
D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, G. Leuchs, J. Opt. 2016, 18, 123002.
|
| [26] |
D. Venkatakrishnarao, E. A. Mamonov, T. V. Murzina, R. Chandrasekar, Adv. Optical Mater. 2018, 6, 1800343.
|
| [27] |
S. S. Prabhu, V. G. Achanta, Adv. Optical Mater. 2020, 8, 1900973.
|
| [28] |
L. Rayleigh, Phil. Mag. Ser. 1910, 20, 1001.
|
| [29] |
F. Vollmer, S. Arnold, Nat. Methods 2008, 5, 591.
|
| [30] |
S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, Sensors 2011, 11, 785.
|
| [31] |
G. C. Righini, S. Soria, Sensors 2016, 16, 905.
|
| [32] |
T. Reynolds, N. Riesen, A. Meldrum, X. D. Fan, J. M. M. Hall, T. M. Monro, A. Francois, Laser Photon. Rev. 2017, 11, 1600265.
|
| [33] |
Y. Y. Wang, S. W. Zeng, G. Humbert, H. P. Ho, Laser Photon. Rev. 2020, 14, 2000135.
|
| [34] |
D. S. Yu, M. Humar, K. Meserve, R. C. Bailey, S. N. Chormaic, F. Vollmer, Nat. Rev. Methods Primers 2021, 1, 83.
|
| [35] |
M. Loyez, M. Adolphson, J. Liao, L. Yang, ACS Sens. 2023, 8, 2440.
|
| [36] |
L. N. He, S. K. Ozdemir, L. Yang, Laser Photon. Rev. 2013, 7, 60.
|
| [37] |
A. J. C. Kuehne, M. C. Gather, Chem. Rev. 2016, 116, 12823.
|
| [38] |
X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, Y. F. Xiao, Laser Photon. Rev. 2016, 10, 40.
|
| [39] |
V. D. Ta, Y. Wang, H. D. Sun, Adv. Optical Mater. 2019, 7, 1900057.
|
| [40] |
G. Q. Wei, X. D. Wang, L. S. Liao, Laser Photon. Rev. 2020, 14, 2000257.
|
| [41] |
J. J. Wu, H. F. Gao, X. D. Wang, Y. C. Wu, L. Jiang, L. S. Liao, Adv. Optical Mater. 2023, 11, 2200815.
|
| [42] |
C. G. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 1961, 124, 1807.
|
| [43] |
G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, W. P. Acker, Prog. Energy Combust. Sci. 1996, 22, 163.
|
| [44] |
V. V. Datsyuk, I. A. Izmailov, Phys. Usp. 2001, 44, 1061.
|
| [45] |
R. Symes, R. M. Sayer, J. P. Reid, Phys. Chem. Chem. Phys. 2004, 6, 474.
|
| [46] |
Y. Wang, H. Y. Li, L. Y. Zhao, B. Wu, S. Q. Liu, Y. J. Liu, J. Yang, Opt. Laser Technol. 2016, 86, 61.
|
| [47] |
D. McGloin, Rep. Prog. Phys. 2017, 80, 054402.
|
| [48] |
Z. Qiao, H. D. Sun, Y. C. Chen, Appl. Phys. Rev. 2024, 11, 021335.
|
| [49] |
H. M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 1984, 9, 499.
|
| [50] |
PhotochemCADTM 3.1, North Carolina State University, Rayleigh, NC 2024, www.photochemcad.com.
|
| [51] |
S. K. Panigrahi, A. K. Mishra, J. Photochem. Photobiol., C 2019, 41, 100318.
|
| [52] |
H. M. Tzeng, M. B. Long, R. K. Chang, P. W. Barber, Opt. Lett. 1985, 10, 209.
|
| [53] |
S. X. Qian, J. B. Snow, H. M. Tzeng, R. K. Chang, Science 1986, 231, 486.
|
| [54] |
H. B. Lin, A. L. Huston, B. L. Justus, A. J. Campillo, Opt. Lett. 1986, 11, 614.
|
| [55] |
H. Latifi, A. Biswas, R. L. Armstrong, R. G. Pinnick, Appl. Opt. 1990, 29, 5387.
|
| [56] |
J. C. Knight, H. S. T. Driver, G. N. Robertson, Opt. Lett. 1990, 15, 980.
|
| [57] |
J. D. Eversole, H. B. Lin, A. J. Campillo, Appl. Opt. 1992, 31, 1982.
|
| [58] |
R. L. Armstrong, J. G. Xie, T. E. Ruekgauer, R. G. Pinnick, Opt. Lett. 1992, 17, 943.
|
| [59] |
A. S. Kwok, J. B. Gillespie, A. Serpengüzel, W. F. Hsieh, R. K. Chang, Opt. Lett. 1992, 17, 1435.
|
| [60] |
Y. C. Chen, X. D. Fan, Adv. Optical Mater. 2019, 7, 1900377.
|
| [61] |
A. Jonáš, M. Aas, Y. Karadag, S. Manioğlu, S. Anand, D. McGloin, H. Bayraktar, A. Kiraz, Lab Chip 2014, 14, 3093.
|
| [62] |
M. Humar, S. H. Yun, Nat. Photonics 2015, 9, 572.
|
| [63] |
A. R. Anwar, M. Mur, M. Humar, ACS Photonics 2023, 10, 1202.
|
| [64] |
V. M. Titze, S. Caixeiro, V. S. Dinh, M. Koenig, M. Rübsam, N. Pathak, A. L. Schumacher, M. Germer, C. Kukat, C. M. Niessen, M. Schubert, M. C. Gather, Nat. Protoc. 2024, 19, 928.
|
| [65] |
P. Chýlek, H.-B. Lin, J. D. Eversole, A. J. Campillo, Opt. Lett. 1991, 16, 1723.
|
| [66] |
P. Chýlek, D. Ngo, R. G. Pinnick, J. Opt. Soc. Am. A. 1992, 9, 775.
|
| [67] |
J. D. Eversole, H. B. Lin, C. D. Merritt, A. J. Campillo, Appl. Spectrosc. 1994, 48, 373.
|
| [68] |
T. Wang, L.-H. Zeng, D.-L. Li, Appl. Spectrosc. Rev. 2017, 52, 883.
|
| [69] |
M. M. Mazumder, J. B. Gillespie, G. Chen, R. K. Chang, Opt. Lett. 1995, 20, 878.
|
| [70] |
M. Tona, M. Kimura, J. Phys. Soc. Jpn. 2002, 71, 425.
|
| [71] |
M. Tona, M. Kimura, J. Phys. Soc. Jpn. 2003, 72, 1238.
|
| [72] |
M. M. Mazumder, G. Chen, P. J. Kindlmann, R. K. Chang, J. B. Gillespie, Opt. Lett. 1995, 20, 1668.
|
| [73] |
J. Popp, M. H. Fields, R. K. Chang, Opt. Lett. 1997, 22, 1296.
|
| [74] |
R. W. Boyd, Nonlinear Optics, Elsevier Science, London, UK2020.
|
| [75] |
M. Aas, A. Jonás, A. Kiraz, Opt. Commun. 2013, 290, 183.
|
| [76] |
M. Aas, A. Jonás, A. Kiraz, O. Brzobohaty, J. Jezek, Z. Pilát, P. Zemánek, Opt. Expr. 2013, 21, 21380.
|
| [77] |
Y. Karadag, M. Aas, A. Jonás, S. Anand, D. McGloin, A. Kiraz, Opt. Lett. 2013, 38, 1669.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Responsive Materials published by John Wiley & Sons Australia, Ltd on behalf of Southeast University.