From nano to macro: Light-driven chiral dopants in liquid crystals

Yang Zhang , Ruoling Liu , Jiawen Chen

Responsive Materials ›› 2025, Vol. 3 ›› Issue (2) : e20250010

PDF
Responsive Materials ›› 2025, Vol. 3 ›› Issue (2) : e20250010 DOI: 10.1002/rpm.20250010
REVIEW ARTICLE

From nano to macro: Light-driven chiral dopants in liquid crystals

Author information +
History +
PDF

Abstract

Harnessing nanoscale molecular structural changes to achieve precise control over macroscopic devices represents an emerging and effective strategy. One promising approach involves the introduction of light-driven chiral dopants into liquid crystals (LCs), enabling the fine-tuned modulation of the helical superstructures in cholesteric liquid crystals (CLCs) via photoisomerization. This strategy opens up exciting possibilities for the development of innovative photo-responsive devices with dynamic functionalities. This review focuses on the most common light-driven chiral dopants used in LCs, including azobenzene, diarylethene, α-cyanostilbene and overcrowded alkene. The chemical design principles of these four types of chiral switches are highlighted, along with their abilities to induce pitch changes and helical inversion in CLCs. Finally, the applications of light-driven chiral dopants in controlling helical superstructures are showcased, particularly in display technologies, anti-counterfeiting, optical modulation and 3D droplet manipulation. It is hoped that this review provides valuable insights and guidances for the development of novel light-driven chiral dopants and the advancement of soft matter material applications.

Keywords

cholesteric liquid crystals / helical superstructure / light-driven chiral dopant / molecular configuration / optical properties

Cite this article

Download citation ▾
Yang Zhang, Ruoling Liu, Jiawen Chen. From nano to macro: Light-driven chiral dopants in liquid crystals. Responsive Materials, 2025, 3(2): e20250010 DOI:10.1002/rpm.20250010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Zhang, L. T. de Haan, M. G. Debije, A. P. Schenning, Light Sci. Appl. 2022, 11, 248.

[2]

S. Jia, T. Tao, Y. Xie, L. Yu, X. Kang, Y. Zhang, W. Tang, J. Gong, Small 2024, 20, 2307874.

[3]

C. Yuan, J. Chen, B. Liu, P. Sun, H. Hu, Y. Tang, Y. Wang, Y. Zhan, M. Li, Z. Zheng, Q. Li, Matter 2023, 6, 3555.

[4]

L. Wang, A. M. Urbas, Q. Li, X. Dou, Adv. Mater. 2020, 32, 1801335.

[5]

S. Nam, D. Wang, C. Kwon, S. H. Han, S. S. Choi, Adv. Mater. 2023, 35, 2302456.

[6]

S. Jia, T. Tao, J. Sun, J. Du, Y. Xie, L. Yu, W. Tang, J. Wang, J. Gong, Small Struct. 2023, 4, 2300139.

[7]

M. Kurata, A. Yoshizawa, Chem. Commun. 2020, 56, 8289.

[8]

K.-J. Jeong, D. K. Lee, V. T. Tran, C. Wang, J. Lv, J. Park, Z. Tang, J. Lee, ACS Nano 2020, 14, 7152.

[9]

M. Goh, T. Matsushita, H. Satake, M. Kyotani, K. Akagi, Macromolecules 2010, 43, 5943.

[10]

K. Yoshida, S. Kawamura, T. Morita, S. Kimura, J. Am. Chem. Soc. 2006, 128, 8034.

[11]

Y. Hu, X. Hao, D. Wang, Z. Zhang, H. Sun, X. Xu, X. Xie, X. Shi, H. Peng, H. Yang, L. Xu, Angew. Chem., Int. Ed. 2024, 63, e202315061.

[12]

Y. Liu, J. Xiao, J. Koo, B. Yan, Nat. Mater. 2021, 20, 638.

[13]

J. Yuan, X. Lu, S. Zhang, F. Zheng, Q. Deng, L. Han, Q. Lu, Macromolecules 2022, 55, 1566.

[14]

W. Chen, B. Li, G. Gao, T. Sun, Interdiscip. Mater. 2023, 2, 689.

[15]

J. Li, S. Wang, H. Lu, Y. Tu, X. Wan, X. Li, Y. Tu, C. Y. Li, ACS Macro Lett. 2023, 12, 369.

[16]

H. Jiang, Y. Jiang, J. Han, L. Zhang, M. Liu, Angew. Chem. Int. Ed. 2019, 58, 785.

[17]

H. Ruan, G. Chen, X. Zhao, Y. Wang, Y. Liao, H. Peng, C.-L. Feng, X. Xie, I. I. Smalyukh, ACS Appl. Mater. Interfaces 2018, 10, 43184.

[18]

W. Gong, G. Huang, Y. Yuan, H. Zhang, Adv. Opt. Mater. 2023, 11, 2300745.

[19]

R. Lan, J. Bao, Z. Li, Z. Wang, Z. Wang, Q. Wang, L. Zhang, J. Xiao, H. Yang, CCS Chem. 2024, 6, 2011.

[20]

Y. Wang, Q. Li, Adv. Mater. 2012, 24, 1926.

[21]

M. Mitov, Adv. Mater. 2012, 24, 6260.

[22]

L. W. Honaker, J. Schaap, D. Kenbeek, E. Miltenburg, S. Deshpande, J. Mater. Chem. C 2023, 11, 4867.

[23]

J. W. Ryu, G.-J. Choi, C. P. Chen, C. G. Jhun, J. S. Gwag, J. Mol. Liq. 2022, 367, 120467.

[24]

Y.-S. Zhang, Z.-Q. Wang, W.-C. Chuang, S.-A. Jiang, T.-S. Mo, J.-D. Lin, C.-R. Lee, ACS Appl. Mater. Interfaces 2021, 13, 55550.

[25]

M. A. Farooq, W. Wei, H. Xiong, Langmuir 2020, 36, 3072.

[26]

E. Grelet, M. M. Tortora, Nat. Mater. 2024, 23, 1.

[27]

H. K. Bisoyi, Q. Li, Chem. Rev. 2021, 122, 4887.

[28]

B. Ji, L. Qin, Y.-L. Yu, Chin. J. Polym. Sci. 2025, 43, 1.

[29]

K. Akagi, T. Yamashita, K. Horie, M. Goh, M. Yamamoto, Adv. Mater. 2020, 32, 1906665.

[30]

W. Zhang, A. A. Froyen, A. P. Schenning, G. Zhou, M. G. Debije, L. T. de Haan, Adv. Photon. Res. 2021, 2, 2100016.

[31]

M. Zhang, Y. Wang, Y. Zhou, H. Yuan, Q. Guo, T. Zhuang, Nanoscale 2022, 14, 592.

[32]

Y. Xu, M. Jin, J. Wang, S. Huang, Q. Li, Responsive Mater. 2024, 2, e20240020.

[33]

Y. Liu, P. Xing, Adv. Mater. 2023, 35, 2300968.

[34]

H. K. Bisoyi, Q. Li, Acc. Chem. Res. 2014, 47, 3184.

[35]

H. Lu, Y. Cao, H. Bai, M. Ren, L. Qiu, J. Zhu, M. Xu, J. Mater. Chem. C 2024, 12, 5362.

[36]

F. Hassan, Y. Tang, H. K. Bisoyi, Q. Li, Adv. Mater. 2024, 36, 2401912.

[37]

J. Jeon, D. Bukharina, M. Kim, S. Kang, J. Kim, Y. Zhang, V. Tsukruk, Responsive Mater. 2024, 2, e20230032.

[38]

V. García-López, D. Liu, J. M. Tour, Chem. Rev. 2019, 120, 79.

[39]

Q. Zhang, D.-H. Qu, H. Tian, B. L. Feringa, Matter 2020, 3, 355.

[40]

H. Wang, H. K. Bisoyi, X. Zhang, F. Hassan, Q. Li, Chem. Eur J. 2022, 28, e202103906.

[41]

R. Lan, X. G. Hu, J. Chen, X. Zeng, X. Chen, T. Du, X. Song, H. Yang, Responsive Mater. 2024, 2, e20230030.

[42]

R. Lan, J. Bao, R. Huang, Z. Wang, L. Zhang, C. Shen, Q. Wang, H. Yang, Adv. Mater. 2022, 34, 2109800.

[43]

S. Li, Y. Tang, Q. Fan, Z. Li, X. Zhang, J. Wang, J. Guo, Q. Li, Light Sci. Appl. 2024, 13, 140.

[44]

X. Zhang, Y. Xu, C. Valenzuela, X. Zhang, L. Wang, W. Feng, Q. Li, Light Sci. Appl. 2022, 11, 223.

[45]

R. Eelkema, Liq. Cryst. 2011, 38, 1641.

[46]

F. Yang, B. Yue, L. Zhu, Chem. Eur J. 2023, 29, e202203794.

[47]

W. Park, H. Park, Y. S. Choi, D. K. Yoon, Adv. Opt. Mater. 2022, 10, 2201099.

[48]

K. M. Lee, M. Rumi, M. S. Mills, V. Reshetnyak, D. R. Evans, T. J. Bunning, M. E. McConney, ACS Appl. Mater. Interfaces 2020, 12, 37400.

[49]

J. Koo, J. Jang, M. Kim, J. Hyeong, D. Yu, M. Rim, H. Ko, S. I. Lim, D. Y. Kim, K. U. Jeong, Adv. Opt. Mater. 2023, 11, 2202707.

[50]

Y. Li, Y. Chen, J. Luo, Y. Quan, Y. Cheng, Adv. Mater. 2024, 36, 2312331.

[51]

L.-L. Ma, W. Duan, M.-J. Tang, L.-J. Chen, X. Liang, Y.-Q. Lu, W. Hu, Polymers 2017, 9, 295.

[52]

H. K. Bisoyi, Q. Li, Chem. Rev. 2016, 116, 15089.

[53]

V. Jirón, H. Wang, O. D. Lavrentovich, Liq. Cryst. 2024, 51, 1064.

[54]

Z. He, X. Cheng, Z. Wang, W. Zhang, Responsive Mater. 2024, 2, e20240010.

[55]

V. Chornous, M. Vovk, M. Bratenko, Y. Dmytriv, A. Rudnichenko, M. Skorobahatko, N. Kasian, L. Lisetski, I. Gvozdovskyy, Liq. Cryst. 2022, 49, 1322.

[56]

C. Ruslim, K. Ichimura, Adv. Mater. 2001, 13, 37.

[57]

Y. Kim, N. Tamaoki, ACS Appl. Mater. Interfaces 2016, 8, 4918.

[58]

Y. Xie, D. Fu, O. Jin, H. Zhang, J. Wei, J. Guo, J. Mater. Chem. C 2013, 1, 7346.

[59]

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, J. W. Doane, J. Am. Chem. Soc. 2007, 129, 12908.

[60]

J. Ma, Y. Li, T. White, A. Urbas, Q. Li, Chem. Commun. 2010, 46, 3463.

[61]

L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, Q. Li, Adv. Opt. Mater. 2014, 2, 845.

[62]

Y. Kim, N. Tamaoki, J. Mater. Chem. C 2014, 2, 9258.

[63]

J. Chen, Z. Wang, Y. Yu, J. Huang, X. Chen, T. Du, X. Song, H. Yuan, S. Zhou, X.-G. Hu, X. Zeng, S. Zhong, R. Lan, Chem. Sci. 2024, 15, 17041.

[64]

Y. Li, M. Wang, T. J. White, T. J. Bunning, Q. Li, Angew. Chem., Int. Ed. 2013, 52, 8925.

[65]

W. Kang, Y. Tang, X. Meng, S. Lin, X. Zhang, J. Guo, Q. Li, Angew. Chem. 2023, 135, e202311486.

[66]

H. Wang, Y. Tang, H. K. Bisoyi, Q. Li, Angew. Chem. 2023, 135, e202216600.

[67]

Q. Li, Y. Li, J. Ma, D. K. Yang, T. J. White, T. J. Bunning, Adv. Mater. 2011, 23, 5069.

[68]

L. Qin, W. Gu, J. Wei, Y. Yu, Adv. Mater. 2018, 30, 1704941.

[69]

S. Cui, L. Qin, X. Liu, Y. Yu, Adv. Opt. Mater. 2022, 10, 2102108.

[70]

A. Ryabchun, D. Yakovlev, A. Bobrovsky, N. Katsonis, ACS Appl. Mater. Interfaces 2019, 11, 10895.

[71]

C. Shi, R. Zhu, K. Guo, L. Zhang, Z. Liu, X. Liu, Q. Ai, X. Hu, Adv. Opt. Mater. 2023, 11, 2301844.

[72]

M. Lahikainen, K. Kuntze, H. Zeng, S. Helantera, S. Hecht, A. Priimagi, ACS Appl. Mater. Interfaces 2020, 12, 47939.

[73]

H. B. Cheng, S. Zhang, E. Bai, X. Cao, J. Wang, J. Qi, J. Liu, J. Zhao, L. Zhang, J. Yoon, Adv. Mater. 2022, 34, 2108289.

[74]

C. Denekamp, B. L. Feringa, Adv. Mater. 1998, 10, 1080.

[75]

Y. Li, A. Urbas, Q. Li, J. Am. Chem. Soc. 2012, 134, 9573.

[76]

S. Hussain, M. Zourob, Small 2024, 20, 2304590.

[77]

J. Fan, Y. Li, H. K. Bisoyi, R. S. Zola, D. K. Yang, T. J. Bunning, D. A. Weitz, Q. Li, Angew. Chem. 2015, 127, 2188.

[78]

M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014, 114, 12174.

[79]

Z. Zheng, H. Hu, Z. Zhang, B. Liu, M. Li, D.-H. Qu, H. Tian, W.-H. Zhu, B. L. Feringa, Nat. Photon. 2022, 16, 226.

[80]

H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, K. Akagi, J. Am. Chem. Soc. 2012, 134, 3758.

[81]

J. Hou, J. Wang, A. Ryabchun, B. L. Feringa, Adv. Funct. Mater. 2024, 34, 2312831.

[82]

Z.-g. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, Q. Li, Nature 2016, 531, 352.

[83]

W. Shen, H. Zhang, Z. Miao, Z. Ye, Adv. Funct. Mater. 2023, 33, 2210664.

[84]

P. Chen, Z. X. Shen, C. T. Xu, Y. H. Zhang, S. J. Ge, L.-L. Ma, W. Hu, Y.-Q. Lu, Laser Photon. Rev. 2022, 16, 2200011.

[85]

S. Lin, K. G. Gutierrez-Cuevas, X. Zhang, J. Guo, Q. Li, Adv. Funct. Mater. 2021, 31, 2007957.

[86]

J. Tian, Y. He, J. Li, J. Wei, G. Li, J. Guo, Adv. Opt. Mater. 2018, 6, 1701337.

[87]

Y. Chen, Y. Li, H. Li, L. Li, Y. Quan, Y. Cheng, Sci. China Chem. 2024, 67, 1250.

[88]

J. Wang, Y. He, S. Li, Q. Fan, J. Guo, J. Mater. Chem. C 2023, 11, 13067.

[89]

Y. Chen, P. Lu, Y. Yuan, H. Zhang, J. Mater. Chem. C 2020, 8, 13632.

[90]

S. Lin, H. Sun, J. Qiao, X. Ding, J. Guo, Adv. Opt. Mater. 2020, 8, 2000107.

[91]

J. Li, Z. Zhang, J. Tian, G. Li, J. Wei, J. Guo, Adv. Opt. Mater. 2017, 5, 1700014.

[92]

J. Li, H. K. Bisoyi, J. Tian, J. Guo, Q. Li, Adv. Mater. 2019, 31, 1807751.

[93]

J. Li, H. K. Bisoyi, S. Lin, J. Guo, Q. Li, Angew. Chem., Int. Ed. 2019, 58, 16052.

[94]

Y. He, S. Zhang, H. K. Bisoyi, J. Qiao, H. Chen, J. Gao, J. Guo, Q. Li, Angew. Chem., Int. Ed. 2021, 60, 27158.

[95]

N. Koumura, R. W. Zijlstra, R. A. van Delden, N. Harada, B. L. Feringa, Nature 1999, 401, 152.

[96]

S. J. Wezenberg, C. M. Croisetu, M. C. Stuart, B. L. Feringa, Chem. Sci. 2016, 7, 4341.

[97]

J. Chen, F. K.-C. Leung, M. C. Stuart, T. Kajitani, T. Fukushima, E. Van Der Giessen, B. L. Feringa, Nat. Chem. 2018, 10, 132.

[98]

N. Koumura, E. M. Geertsema, M. B. van Gelder, A. Meetsma, B. L. Feringa, J. Am. Chem. Soc. 2002, 124, 5037.

[99]

J. C. Kistemaker, P. Štacko, D. Roke, A. T. Wolters, G. H. Heideman, M.-C. Chang, P. Van der Meulen, J. Visser, E. Otten, B. L. Feringa, J. Am. Chem. Soc. 2017, 139, 9650.

[100]

N. P. Huck, W. F. Jager, B. De Lange, B. L. Feringa, Science 1996, 273, 1686.

[101]

D. Pijper, M. G. Jongejan, A. Meetsma, B. L. Feringa, J. Am. Chem. Soc. 2008, 130, 4541.

[102]

J. Sheng, D. R. Pooler, B. L. Feringa, Chem. Soc. Rev. 2023, 52, 5875.

[103]

J. Sheng, W. Danowski, A. S. Sardjan, J. Hou, S. Crespi, A. Ryabchun, M. P. Domínguez, J. W. Buma, W. R. Browne, B. L. Feringa, Nat. Chem. 2024, 16, 1.

[104]

J. Li, S. Xie, J. Meng, Y. Liu, Q. Zhan, Y. Zhang, L. Shui, G. Zhou, B. L. Feringa, J. Chen, CCS Chem. 2024, 6, 427.

[105]

T. van Leeuwen, A. S. Lubbe, P. Štacko, S. J. Wezenberg, B. L. Feringa, Nat. Rev. Chem 2017, 1, 0096.

[106]

J. Sun, R. Lan, Y. Gao, M. Wang, W. Zhang, L. Wang, L. Zhang, Z. Yang, H. Yang, Adv. Sci. 2018, 5, 1700613.

[107]

J. Bao, Z. Wang, C. Shen, R. Huang, C. Song, Z. Li, W. Hu, R. Lan, L. Zhang, H. Yang, Small Methods 2022, 6, 2200269.

[108]

J. Liu, J. J. Wu, J. Wei, Z. J. Huang, X. Y. Zhou, J. Y. Bao, R. C. Lan, Y. Ma, B. X. Li, H. Yang, Y. Lu, Q. Zhao, Angew. Chem., Int. Ed. 2024, 63, e202319536.

[109]

J. Bao, R. Lan, C. Shen, R. Huang, Z. Wang, W. Hu, L. Zhang, H. Yang, Adv. Opt. Mater. 2022, 10, 2101910.

[110]

P. Roy, A. S. Sardjan, W. R. Browne, B. L. Feringa, S. R. Meech, J. Am. Chem. Soc. 2024, 146, 12255.

[111]

F. Lancia, T. Yamamoto, A. Ryabchun, T. Yamaguchi, M. Sano, N. Katsonis, Nat. Commun. 2019, 10, 5238.

[112]

J. Sun, L. Yu, L. Wang, C. Li, Z. Yang, W. He, C. Zhang, L. Zhang, J. Xiao, X. Yuan, F. Li, H. Yang, J. Mater. Chem. C 2017, 5, 3678.

[113]

A. Ryabchun, F. Lancia, J. Chen, D. Morozov, B. L. Feringa, N. Katsonis, Adv. Mater. 2020, 32, 2004420.

[114]

J. C. Kistemaker, P. Štacko, J. Visser, B. L. Feringa, Nat. Chem. 2015, 7, 890.

[115]

J. Hou, R. Toyoda, S. C. Meskers, B. L. Feringa, Angew. Chem. 2022, 134, e202206310.

[116]

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. Bastiaansen, D. J. Broer, B. L. Feringa, Nature 2006, 440, 163.

[117]

T. Orlova, F. Lancia, C. Loussert, S. Iamsaard, N. Katsonis, E. Brasselet, Nat. Nanotechnol. 2018, 13, 304.

[118]

R. Huang, R. Lan, C. Shen, Z. Zhang, Z. Wang, J. Bao, Z. Wang, L. Zhang, W. Hu, Z. Yu, S. Zhu, H. Yang, ACS Appl. Mater. Interfaces 2021, 13, 59221.

RIGHTS & PERMISSIONS

2025 The Author(s). Responsive Materials published by John Wiley & Sons Australia, Ltd on behalf of Southeast University.

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/