Artificial optoelectronic synapses based on Ga2O3 metal–semiconductor–metal solar-blind ultraviolet photodetectors with asymmetric electrodes for neuromorphic computing

Huazhen Sun , Bingjie Ye , Mei Ge , Biao Gong , Leyang Qian , Irina N. Parkhomenko , Fadei F. Komarov , Yu Liu , Guofeng Yang

Responsive Materials ›› 2025, Vol. 3 ›› Issue (2) : e20240038

PDF
Responsive Materials ›› 2025, Vol. 3 ›› Issue (2) : e20240038 DOI: 10.1002/rpm.20240038
RESEARCH ARTICLE

Artificial optoelectronic synapses based on Ga2O3 metal–semiconductor–metal solar-blind ultraviolet photodetectors with asymmetric electrodes for neuromorphic computing

Author information +
History +
PDF

Abstract

Research on optoelectronic synapses that can integrate both detection and processing functions is essential for the development of efficient neuromorphic computing. Here, we experimentally demonstrated an Ga2O3-based metal–semiconductor–metal (MSM) solar-blind ultraviolet (UV) photodetector (PD) with asymmetric interdigital electrodes. The Ga2O3 PD exhibits a responsivity of 732 A/W under a forward bias of 6 V. The tunable conductance properties of PDs provide a novel approach to synaptic performance. The proposed PDs as artificial synapse realized several essential synaptic function, including excitatory postsynaptic current, paired-pulse facilitation, long-term potentiation, the transition from short-term memory to long-term memory, and learning experience behaviors successfully. At a reverse bias, an ultra-low energy consumption of 140 fJ was achieved. In addition, the optoelectronic synapses demonstrated a recognition accuracy of over 95% in the MNIST handwritten number recognition task. These results suggest that Ga2O3 MSM solar-blind UV PDs have high potential for efficient optoelectronic neuromorphic computing applications.

Keywords

asymmetric electrodes / Ga2O3 / neuromorphic computing / optoelectronic synapse / solar-blind UV PDs

Cite this article

Download citation ▾
Huazhen Sun, Bingjie Ye, Mei Ge, Biao Gong, Leyang Qian, Irina N. Parkhomenko, Fadei F. Komarov, Yu Liu, Guofeng Yang. Artificial optoelectronic synapses based on Ga2O3 metal–semiconductor–metal solar-blind ultraviolet photodetectors with asymmetric electrodes for neuromorphic computing. Responsive Materials, 2025, 3(2): e20240038 DOI:10.1002/rpm.20240038

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. J. Lee, R. Wei, Y. Wang, J. Zhang, W. Kong, S. K. Chamoli, T. Huang, W. Yu, M. Elkabbash, C. Guo, Nat. Photonics 2023, 17, 236.

[2]

F. Wang, T. Zhang, R. Xie, A. Liu, F. Dai, Y. Chen, T. Xu, H. Wang, Z. Wang, L. Liao, J. Wang, P. Zhou, W. Hu, Adv. Mater. 2023, 2301197.

[3]

Y. Zhang, W. Shen, S. Wu, W. Tang, Y. Shu, K. Ma, B. Zhang, P. Zhou, S. Wang, ACS Nano 2022, 16, 19187.

[4]

N. F. Yan, H. M. Cui, J. S. Shi, S. Y. You, S. Liu, Tungsten 2023, 5, 371.

[5]

M. Dai, H. Chen, F. Wang, Y. Hu, S. Wei, J. Zhang, Z. Wang, T. Zhai, P. Hu, ACS Nano 2019, 13, 7291.

[6]

J. Wang, C. Chu, K. Tian, J. Che, H. Shao, Y. Zhang, K. Jiang, Z.-H. Zhang, X. Sun, D. Li, Photonics Res. 2021, 9, 734.

[7]

K. S. Pasupuleti, S. S. Chougule, N. Jung, Y. J. Yu, J. E. Oh, M. D. Kim, Appl. Surf. Sci. 2022, 594, 153474.

[8]

K. S. Pasupuleti, M. Reddeppa, B. G. Park, K. R. Peta, J. E. Oh, S. G. Kim, M. D. Kim, ACS Appl. Mater. Interfaces 2020, 12, 54181.

[9]

B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal, Nat. Photonics 2021, 15, 102.

[10]

P. Monalisha, A. P. S. Kumar, X. R. Wang, S. N. Piramanayagam, ACS Appl. Mater. Interfaces 2022, 14, 11864.

[11]

D. G. Roe, D. H. Ho, Y. Y. Choi, Y. J. Choi, S. Kim, S. B. Jo, M. S. Kang, J. H. Ahn, J. H. Cho, Nat. Commun. 2023, 14, 5.

[12]

P. Monalisha, S. Li, T. Jin, P. S. A. Kumar, S. N. Piramanayagam, J. Phys. D Appl. Phys. 2023, 56, 015302.

[13]

H. Shi, B. Wang, X. Wang, L. Qiu, L. Zheng, ACS Appl. Mater. Interfaces 2023, 15, 9705.

[14]

K. T. Chen, L. C. Shih, S. C. Mao, J. S. Chen, ACS Appl. Mater. Interfaces 2023, 15, 9593.

[15]

A. Saleem, D. Kumar, F. Wu, L. B. Keong, T. Y. Tseng, IEEE Trans. Electron Devices 2023, 70, 1351.

[16]

M. M. Mburu, K. T. Lu, N. L. Prine, A. N. Au-Duong, W. H. Chiang, X. Gu, Y. C. Chiu, Adv. Mater. Technol. 2022, 7, 2101506.

[17]

X. Chen, Y. Xue, Y. Sun, J. Shen, S. Song, M. Zhu, Z. Song, P. Zhou, Adv. Mater. 2022, 35, 2203909.

[18]

S. Ran, X. Zhao-Ying, L. Shan, Z. Jia-Han, M.-M. J. Zeng, W.-H. Tang, Acta Phys. Sin. 2024, 73, 118502.

[19]

J. Z. , Y. Q. Zhang, L. Y. Wang, X. J. Yang, Y. Yang, K. Jiang, W. , X. J. Sun, Ionics 2024, 30, 1785.

[20]

T. He, H. Ma, Z. Wang, Q. Li, S. N. Liu, S. K. Duan, T. F. Xu, J. C. Wang, H. T. Wu, F. Zhong, Y. T. Ye, J. H. Wu, S. Lin, K. Zhang, P. Martyniuk, A. Rogalski, P. Wang, L. Li, H. T. Lin, W. D. Hu, Nat. Photonics 2024, 18, 60.

[21]

D. H. Wang, W. T. Wu, S. Fang, Y. Kang, X. N. Wang, W. Hu, H. B. Yu, H. C. Zhang, X. Liu, Y. M. Luo, J. H. He, L. Fu, S. B. Long, S. Liu, H. Sun, Light Sci. Appl. 2022, 11, 227.

[22]

H. C. Zhang, F. Z. Liang, K. Song, C. Xing, D. H. Wang, H. B. Yu, C. Huang, Y. Sun, L. Yang, X. L. Zhao, H. D. Sun, S. B. Long, Appl. Phys. Lett. 2021, 118, 242105.

[23]

S. Feng, J. Li, L. Feng, Z. Liu, J. Wang, C. Cui, O. Zhou, L. Deng, H. Xu, B. Leng, X. Chen, X. Jiang, B. Liu, X. Zhang, Adv. Mater. 2023, 35, 49.

[24]

S. Ge, F. Huang, J. He, Z. Xu, Z. Sun, X. Han, C. Wang, L. Huang, C. Pan, Adv. Opt. Mater. 2022, 10, 11.

[25]

Z. Wang, G. Zhang, X. Zhang, C. Wu, Z. Xia, H. Hu, F. Wu, D. Guo, S. Wang, Adv. Opt. Mater. 2024, 12, 2401256.

[26]

L. Zheng, R. Zhou, S. Xin, H. Cong, Y. Qin, P. Xu, X. Liu, F. Wang, J. Mater. Chem. C 2023, 11, 7098.

[27]

Y. Mi, C. Yang, L. Shih, J. Chen, Adv. Opt. Mater. 2023, 11, 14.

[28]

B. Bae, M. Park, D. Lee, I. Sim, K. Lee, Adv. Opt. Mater. 2022, 11, 3.

[29]

Y. Hou, Y. Li, Z. Zhang, J. Li, D. Qi, X. Chen, J. Wang, B. Yao, M. Yu, T. Lu, ACS Nano 2020, 15, 1497.

[30]

D. H. Wang, W. T. Wu, S. Fang, Y. Kang, X. N. Wang, W. Hu, H. B. Yu, H. C. Zhang, X. Liu, Y. M. Luo, J. H. He, L. Fu, S. B. Long, Nat. Electron. 2021, 4, 645.

[31]

H. M. Muhammad, H. B. Yu, Y. M. Luo, K. Yang, C. Wei, D. Li, D. Y. Luo, S. D. Xiao, C. J. Zuo, C. Gong, C. Shen, L. Fu, B. S. Ooi, S. Liu, H. Sun, Nat. Electron. 2024, 7, 279.

[32]

R. Zhu, H. Liang, S. Hu, Y. Wang, Z. Mei, Adv. Electron. Mater. 2021, 8, 1.

[33]

A. Bazzari, H. Parri, Brain Sci. 2019, 9, 300.

[34]

M. H. Hennig, Front. Comput. Neurosci. 2013, 7, 154.

[35]

S. Li, J. Li, K. Zhou, Y. Yan, G. Ding, S. Han, Y. Zhou, J. Phys. Mater. 2024, 7, 3.

[36]

J. Tang, C. He, J. Tang, K. Yue, Q. Zhang, Y. Liu, Q. Wang, S. Wang, N. Li, C. Shen, Y. Zhao, J. Liu, J. Yuan, Z. Wei, J. Li, K. Watanabe, T. Taniguchi, D. Shang, W. Yang, R. Yang, D. Shi, G. Zhang, Adv. Funct. Mater. 2021, 31, 27.

[37]

X. Zhu, D. Li, X. Liang, W. D. Lu, Nat. Mater. 2018, 18, 141.

[38]

J. An, N. Zhang, F. Tan, X. Zhao, C. Chang, M. Lanza, S. Li, Small 2024, 20, 2403103.

[39]

Y. Chen, Y. Huang, J. Zeng, Y. Kang, Y. Tan, X. Xie, B. Wei, C. Li, L. Fang, T. Jiang, ACS Appl. Mater. Interfaces 2023, 15, 58631.

[40]

L. Wang, H. Wang, J. Liu, Y. Wang, H. Shao, W. Li, M. Yi, H. Ling, L. Xie, W. Huang, Adv. Mater. 2024, 36, 2403538.

[41]

W. Wang, Y. Wang, F. Yin, H. Niu, Y. Shin, Y. Li, E. Kim, N. Kim, Nano-Micro Lett. 2024, 16, 1.

[42]

D. Hao, Z. Yang, J. Huang, F. Shan, Adv. Funct. Mater. 2022, 33, 8.

[43]

H. C. Zhang, F. Z. Liang, L. Yang, Z. X. Gao, K. Liang, S. Liu, Y. K. Ye, H. B. Yu, W. Chen, Y. Kang, Adv. Mater. 2024, 36, 2405874.

[44]

X. Fu, T. X. Li, B. Cai, J. S. Miao, G. N. Panin, X. Y. Ma, J. J. Wang, X. Y. Jiang, Q. Li, Y. Dong, C. H. Hao, J. Y. Sun, H. Y. Xu, Q. X. Zhao, M. J Xia, B. Song, F. S. Chen, X. S. Chen, W. Lu, W. D. Hu, Light Sci. Appl. 2023, 12, 39.

[45]

R. Zhu, H. Liang, H. Bai, T. Zhu, Z. Mei, Appl. Mater. Today 2022, 29, 101556.

RIGHTS & PERMISSIONS

2025 The Author(s). Responsive Materials published by John Wiley & Sons Australia, Ltd on behalf of Southeast University.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/