Macrocycle-based differential sensing: Design strategies and applications

Jia-Hong Tian , Zhe Zheng , Yu-Chen Pan , Yuefei Wang , Dong-Sheng Guo

Responsive Materials ›› 2025, Vol. 3 ›› Issue (1) : e20240036

PDF
Responsive Materials ›› 2025, Vol. 3 ›› Issue (1) : e20240036 DOI: 10.1002/rpm.20240036
REVIEW ARTICLE

Macrocycle-based differential sensing: Design strategies and applications

Author information +
History +
PDF

Abstract

Differential sensing, inspired by the olfactory systems in mammals, utilizes the cross-reactivity of multiple sensor units toward analytes to generate a distinctive fingerprint for each analyte. Widely acknowledged as a robust analytical technique, differential sensing has entered a flourishing era with the advancement of machine learning. Nevertheless, developing sensor units and optimizing signal transduction remain significant tasks left to chemists. Macrocyclic receptors serve as promising materials for constructing sensor arrays with enhanced cross-reactivity, facilitated by their ease of synthesis and derivatization, inherent broad-spectrum encapsulation capability, and compatibility with multiple responsive signal transduction approaches. Herein, we present a concise overview of the fundamental processes involved in a sensor array, encompassing array construction, signal transduction, and data acquisition and analysis, with an emphasis on the unique advantages provided by macrocyclic receptors in the former two aspects. Then, we present fascinating application scenarios where macrocyclic receptors shine in differential sensing that rely on various ingenious sensing strategies. Finally, we discuss several issues with potential improvement and future directions for macrocyclic receptor-based differential sensing, offering a forward-looking perspective.

Keywords

cross-reactivity / differential recognition / macrocyclic receptors / sensor array / supramolecular chemistry

Cite this article

Download citation ▾
Jia-Hong Tian, Zhe Zheng, Yu-Chen Pan, Yuefei Wang, Dong-Sheng Guo. Macrocycle-based differential sensing: Design strategies and applications. Responsive Materials, 2025, 3(1): e20240036 DOI:10.1002/rpm.20240036

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. T. Wright, E. V. Anslyn, Chem. Soc. Rev. 2006, 35, 14.

[2]

L. Buck, R. Axel, Cell 1991, 65, 175.

[3]

Y. Geng, W. J. Peveler, V. M. Rotello, Angew. Chem. Int. Ed. 2019, 58, 5190.

[4]

S.-B. Jo, J. H. Lee, J. Lee, M. M. Oh, J.-S. Lee, Chem. Eur J. 2024, 30, e202402871.

[5]

J. J. Lavigne, E. V. Anslyn, Angew. Chem. Int. Ed. 2001, 40, 3118.

[6]

Z. Li, J. R. Askim, K. S. Suslick, Chem. Rev. 2018, 119, 231.

[7]

J. R. Askim, M. Mahmoudi, K. S. Suslick, Chem. Soc. Rev. 2013, 42, 8649.

[8]

E. V. Anslyn, V. M. Rotello, Curr. Opin. Chem. Biol. 2010, 14, 683.

[9]

L. You, D. Zha, E. V. Anslyn, Chem. Rev. 2015, 115, 7840.

[10]

X. Zhao, Y. Gao, J. Wang, Y. Zhan, X. Lu, S. Xu, X. Luo, Chem. Commun. 2020, 56, 13828.

[11]

W.-T. Dou, X. Wang, T. Liu, S. Zhao, J.-J. Liu, Y. Yan, J. Li, C.-Y. Zhang, A. C. Sedgwick, H. Tian, J. L. Sessler, D.-M. Zhou, X.-P. He, Chem 2022, 8, 1750.

[12]

J. H. Lee, H. Y. Yoon, H.-J. Lee, D. M Kang, Y. Bak, I. Biazruchka, S. Lim, S. Kim, Y. K. Kim, D.-H. Kim, J.-S. Lee, Chem. Eur. J. 2024, 30, e202302916.

[13]

F. Najafzadeh, F. Ghasemi, M. R Hormozi-Nezhad, Sensor. Actuat. B-Chem. 2018, 270, 545.

[14]

X. Wei, Y. Wang, Y. Zhao, Z. Chen, Biosens. Bioelectron. 2017, 97, 332.

[15]

F. Ghasemi, M. R Hormozi-Nezhad, M. Mahmoudi, Anal. Chim. Acta 2015, 882, 58.

[16]

H. Wang, L. Zhou, J. Qin, J. Chen, C. Stewart, Y. Sun, H. Huang, L. Xu, L. Li, J. Han, F. Li, Anal. Chem. 2022, 94, 10291.

[17]

Y. Tao, D. T. Auguste, Biosens. Bioelectron. 2016, 81, 431.

[18]

P. Wu, L.-N. Miao, H.-F. Wang, X.-G. Shao, X.-P. Yan, Angew. Chem., Int. Ed. 2011, 50, 8118.

[19]

Y. Tao, X. Ran, J. Ren, X. Qu, Small 2014, 10, 3667.

[20]

C.-C. You, O. R. Miranda, B. Gider, P. S. Ghosh, I.-B. Kim, B. Erdogan, S. A. Krovi, U. H. F. Bunz, V. M. Rotello, Nat. Nanotechnol. 2007, 2, 318.

[21]

W. J. Peveler, R. F. Landis, M. Yazdani, J. W. Day, R. Modi, C. J. Carmalt, W. M. Rosenberg, V. M. Rotello, Adv. Mater. 2018, 30, 1800634.

[22]

C. Liu, Q. Huang, Biosens. Bioelectron. 2025, 267, 116784.

[23]

W. Jing, X. Cui, F. Kong, W. Wei, Y. Li, L. Fan, X. Li, Analyst 2021, 146, 207.

[24]

S. F. Wong, K. H. Low, S. M. Khor, Talanta 2020, 218, 121169.

[25]

M. De, S. Rana, H. Akpinar, O. R. Miranda, R. R. Arvizo, U. H. F. Bunz, V. M. Rotello, Nat. Chem. 2009, 1, 461.

[26]

J. Chen, B. L. Hickey, L. Wang, J. Lee, A. D. Gill, A. Favero, R. Pinalli, E. Dalcanale, R. J. Hooley, W. Zhong, Nat. Chem. 2021, 13, 488.

[27]

S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, K. S. Suslick, Nat. Chem. 2009, 1, 562.

[28]

X.-P. Zhang, K.-Y. Huang, S.-B. He, H.-P. Peng, X.-H. Xia, W. Chen, H.-H. Deng, J. Hazard Mater. 2021, 405, 124259.

[29]

J. R. Askim, Z. Li, M. K. LaGasse, J. M. Rankin, K. S. Suslick, Chem. Sci. 2016, 7, 199.

[30]

X.-L. Hu, H.-Q. Gan, Z.-Y. Qin, Q. Liu, M. Li, D. Chen, J. L. Sessler, H. Tian, X.-P. He, J. Am. Chem. Soc. 2023, 145, 8917.

[31]

M. S. Maynor, T. L. Nelson, C. O’Sullivan, J. J. Lavigne, Org. Lett. 2007, 9, 3217.

[32]

K. Kalinowska, W. Wojnowski, M. Tobiszewski, Trends Food Sci. Tech. 2021, 111, 271.

[33]

Y.-Y. Liu, X.-Y. Yu, Y.-C. Pan, H. Yin, S. Chao, Y. Li, H. Ma, M. Zuo, K.-X. Teng, J.-L. Hou, Y. Chen, D.-S. Guo, R. Wang, Y. Pei, Z. Pei, J.-F. Xu, X.-Y. Hu, C. Li, Q.-Z. Yang, L. Wang, Y. Liu, Z.-T. Li, Sci. China Chem. 2024, 67, 1397.

[34]

S.-B. Yu, F. Lin, J. Tian, J. Yu, D.-W. Zhang, Z.-T. Li, Chem. Soc. Rev. 2022, 51, 434.

[35]

G. Yu, X. Chen, Theranostics 2019, 9, 3041.

[36]

D. Yuan, H. Yan, J. Liu, J. Liu, C. Li, J. Wang, Chin. Chem. Lett. 2020, 31, 455.

[37]

Y. Liu, M. Mettry, A. D. Gill, L. Perez, W. Zhong, R. J. Hooley, Anal. Chem. 2017, 89, 11113.

[38]

B. Wang, J. Han, N. M. Bojanowski, M. Bender, C. Ma, K. Seehafer, A. Herrmann, U. H. F. Bunz, ACS Sens. 2018, 3, 1562.

[39]

S.-Z. Huang, Q. Tang, K.-N. Wei, R.-P. Yang, Z. Tao, Y. Huang, X. Xiao, Anal. Chim. Acta 2022, 1233, 340504.

[40]

A. D. Gill, B. L. Hickey, S. Wang, M. Xue, W. Zhong, R. J. Hooley, Chem. Commun. 2019, 55, 13259.

[41]

N. D. Saha, S. Pradhan, R. Sasmal, A. Sarkar, C. M. Berac, J. C. Kolsch, M. Pahwa, S. Show, Y. Rozenholc, Z. Topcu, V. Alessandrini, J. Guibourdenche, V. Tsatsaris, N. Gagey-Eilstein, S. S. Agasti, J. Am. Chem. Soc. 2022, 144, 14363.

[42]

N. D. B Le, G. Y. Tonga, R. Mout, S. T. Kim, M. E. Wille, S. Rana, K. A. Dunphy, D. J. Jerry, M. Yazdani, R. Ramanathan, C. M. Rotello, V. M. Rotello, J. Am. Chem. Soc. 2017, 139, 8008.

[43]

M. A. Beatty, A. J. Selinger, Y. Li, F. Hof, J. Am. Chem. Soc. 2019, 141, 16763.

[44]

J.-H. Tian, H. Xu, X.-Y. Hu, D.-S. Guo, Supramol. Mater. 2024, 3, 100063.

[45]

X. Fang, Y. Zheng, Y. Duan, Y. Liu, W. Zhong, Anal. Chem. 2019, 91, 482.

[46]

Z.-H. Chen, Q.-X. Fan, X.-Y. Han, G. Shi, M. Zhang, TrAC-Trends Anal. Chem. 2020, 124, 115794.

[47]

S.-F. Wong, S. M. Khor, TrAC Trends Anal. Chem. 2019, 114, 108.

[48]

G. Fang, X. Yang, S. Chen, Q. Wang, A. Zhang, B. Tang, Coordin. Chem. Rev. 2022, 454, 214352.

[49]

D.-S. Guo, Y. Liu, Chem. Soc. Rev. 2012, 41, 5907.

[50]

J. Murray, K. Kim, T. Ogoshi, W. Yao, B. C. Gibb, Chem. Soc. Rev. 2017, 46, 2479.

[51]

X.-N. Han, Y. Han, C.-F. Chen, Chem. Soc. Rev. 2023, 52, 3265.

[52]

J.-H. Tian, X.-Y. Hu, Z.-Y. Hu, H.-W. Tian, J.-J. Li, Y.-C. Pan, H.-B. Li, D.-S. Guo, Nat. Commun. 2022, 13, 4293.

[53]

T. Ogoshi, T. Yamagishi, Y. Nakamoto, Chem. Rev. 2016, 116, 7937.

[54]

D.-H. Tuo, T.-H. Shi, S. Ohtani, T. Ogoshi, Responsive Mater. 2023, 2, e20230024.

[55]

X.-Y. Chen, H. Chen, J. Fraser Stoddart, Angew. Chem., Int. Ed. 2023, 62, e202211387.

[56]

S. M. Biros, J. Rebek, Jr., Chem. Soc. Rev. 2007, 36, 93.

[57]

D. S. Kim, J. L. Sessler, Chem. Soc. Rev. 2015, 44, 532.

[58]

X.-N. Han, P.-F. Li, Y. Han, C.-F. Chen, Angew. Chem., Int. Ed. 2022, 61, e202202527.

[59]

Z.-Y. Zhang, C. Li, Acc. Chem. Res. 2022, 55, 916.

[60]

Q.-H. Guo, L. Zhao, M.-X. Wang, Angew. Chem. Int. Ed. 2015, 54, 8386.

[61]

L.-P. Yang, X. Wang, H. Yao, W. Jiang, Acc. Chem. Res. 2020, 53, 198.

[62]

C.-F. Chen, Y. Han, Acc. Chem. Res. 2018, 51, 2093.

[63]

S.-N. Lei, H. Xiao, Y. Zeng, C.-H. Tung, L.-Z. Wu, H. Cong, Angew. Chem., Int. Ed. 2020, 59, 10059.

[64]

S. T. Schneebeli, C. Cheng, K. J. Hartlieb, N. L. Strutt, A. A. Sarjeant, C. L. Stern, J. F. Stoddart, Chem. Eur J. 2013, 19, 3860.

[65]

R. Fu, D.-Y. Li, J.-H. Tian, Y.-L. Lin, Q.-Y. Zhao, W.-L. Li, F.-Y. Chen, D.-S. Guo, K. Cai, Angew. Chem., Int. Ed. 2024, 63, e202406233.

[66]

H. Han, R. Fu, R. Wang, C. Tang, M.-M. He, J.-Y. Deng, D.-S. Guo, J. F. Stoddart, K. Cai, J. Am. Chem. Soc. 2022, 144, 20351.

[67]

M. Dergham, S. Lin, J. Geng, Angew. Chem., Int. Ed. 2022, 134, e202114267.

[68]

D. Pochan, O. Scherman, Chem. Rev. 2021, 121, 13699.

[69]

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, Chem. Rev. 2000, 100, 2595.

[70]

Y. Liu, J. Lee, L. Perez, A. D. Gill, R. J. Hooley, W. Zhong, J. Am. Chem. Soc. 2018, 140, 13869.

[71]

S. Stewart, M. A. Ivy, E. V. Anslyn, Chem. Soc. Rev. 2014, 43, 70.

[72]

P. Anzenbacher, Jr., P. Lubal, P. Bucek, M. A. Palacios, M. E. Kozelkova, Chem. Soc. Rev. 2010, 39, 3954.

[73]

S. Nanga, A. T. Bawah, B. A. Acquaye, M.-I. Billa, F. D. Baeta, N. A. Odai, S. K. Obeng, A. D. Nsiah, J. Data Anal. Inf. Process. 2021, 9, 189.

[74]

I. T. Jolliffe, J. Cadima, T. R. Philos, Soc. A. 2016, 374, 20150202.

[75]

D. Granato, J. S. Santos, G. B. Escher, B. L. Ferreira, R. M. Maggio, Trends Food. Sci. Tech. 2018, 72, 83.

[76]

A. Böcker, S. Derksen, E. Schmidt, A. Teckentrup, G. Schneider, J. Chem. Inf. Model. 2005, 45, 807.

[77]

A. Tharwat, T. Gaber, A. Ibrahim, A. E. Hassanien, AI Commun. 2017, 30, 169.

[78]

R. G. Brereton, G. R. Lloyd, Analyst 2010, 135, 230.

[79]

E. Y. Boateng, J. Otoo, D. A. Abaye, J. Data Anal. Inf. Process. 2020, 8, 341.

[80]

J. Chen, A. D. Gill, B. L. Hickey, Z. Gao, X. Cui, R. J. Hooley, W. Zhong, J. Am. Chem. Soc. 2021, 143, 12791.

[81]

W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, K. R. Müller, Proc. IEEE 2021, 109, 247.

[82]

I. C. Udousoro, Semicond. Sci. Inf. Devices 2020, 2, 5.

[83]

A. M. Pettiwala, P. K. Singh, Chem. Commun. 2018, 54, 4537.

[84]

S. Chaudhuri, D. J. DiScenza, B. Smith, R. Yocum, M. Levine, New J. Chem. 2017, 41, 14431.

[85]

H. Yang, F. Lu, Y. Sun, Z. Yuan, C. Lu, Anal. Chem. 2018, 90, 12846.

[86]

N. Serio, D. F. Moyano, V. M. Rotello, M. Levine, Chem. Commun. 2015, 51, 11615.

[87]

Y. Yu, W. Ni, X. Shi, Y. Bian, H. Li, M. Liu, W. Chen, M. Zhang, S. Jiang, M. Cheng, F. Li, Y. Zhang, Z. Zhang, H. Huang, J. Han, Anal. Chem. 2024, 96, 14490.

[88]

Y. X. Mei, Q.-W. Zhang, Q. Y. Gu, Z. C. Liu, X. He, Y. Tian, J. Am. Chem. Soc. 2022, 144, 2351.

[89]

Y. Liu, T. Minami, R. Nishiyabu, Z. Wang, P. Anzenbacher, Jr., J. Am. Chem. Soc. 2013, 135, 7705.

[90]

T. Minami, N. A. Esipenko, B. Zhang, L. Isaacs, P. Anzenbacher, Jr., Chem. Commun. 2014, 50, 61.

[91]

A. Z. Haynes, M. Levine, RSC Adv. 2020, 10, 25108.

[92]

Z. Zheng, W.-C. Geng, J. Gao, Y.-J. Mu, D.-S. Guo, Org. Chem. Front. 2018, 5, 2685.

[93]

S. A. Minaker, K. D. Daze, M. C. F. Ma, F. Hof, J. Am. Chem. Soc. 2012, 134, 11674.

[94]

Y. Liu, L. Perez, A. D. Gill, M. Mettry, L. Li, Y. Wang, R. J. Hooley, W. Zhong, J. Am. Chem. Soc. 2017, 139, 10964.

[95]

Y. Liu, A. D. Gill, Y. Duan, L. Perez, R. J. Hooley, W. Zhong, Chem. Commun. 2019, 55, 11563.

[96]

B. Wang, J. Han, M. Bender, S. Hahn, K. Seehafer, U. H. F. Bunz, ACS Sens. 2018, 3, 504.

[97]

J.-H. Tian, Y.-L. Lin, J.-J. Li, R. Ma, H.-J. Yu, Y. Wang, X.-Y. Hu, D.-S. Guo, Arab. J. Chem. 2023, 16, 104974.

[98]

Y. Liu, L. Perez, M. Mettry, A. D. Gill, S. R. Byers, C. J. Easley, C. J. Bardeen, W. Zhong, R. J. Hooley, Chem. Sci. 2017, 8, 3960.

[99]

W. Zhong, R. J. Hooley, Acc. Chem. Res. 2022, 55, 1035.

[100]

Y. Liu, Y. Duan, A. D. Gill, L. Perez, Q. Jiang, R. J. Hooley, W. Zhong, Chem. Commun. 2018, 54, 13147.

[101]

A. D. Gill, L. Perez, I. N. Q. Salinas, S. R. Byers, Y. Liu, B. L. Hickey, W. Zhong, R. J. Hooley, Chem. Eur J. 2019, 25, 1740.

[102]

M. A. Beatty, J. Borges-González, N. J. Sinclair, A. T. Pye, F. Hof, J. Am. Chem. Soc. 2018, 140, 3500.

[103]

A. J. Selinger, F. Hof, Angew. Chem. Int. Ed. 2023, 62, e202312407.

[104]

C. Hu, T. Jochmann, P. Chakraborty, M. Neumaier, P. A. Levkin, M. M. Kappes, F. Biedermann, J. Am. Chem. Soc. 2022, 144, 13084.

[105]

X.-Y. Hu, Z.-Y. Hu, J.-H. Tian, L. Shi, F. Ding, H.-B. Li, D.-S. Guo, Chem. Commun. 2022, 58, 13198.

[106]

Z. Miskolczy, M. Megyesi, S. Sinn, F. Biedermann, L. Biczók, Chem. Commun. 2021, 57, 12663.

[107]

F. Xiao, X. Fang, H. Li, H. Xue, Z. Wei, W. Zhang, Y. Zhu, L. Lin, Y. Zhao, C. Wu, L. Tian, Angew. Chem., Int. Ed. 2022, 61, e202115812.

[108]

H. Deng, X. Li, J. Ju, X. Mo, G. Ge, X. Zhu, Biomaterials 2022, 290, 121824.

[109]

H. A. Fargher, S. d’Oelsnitz, D. J. Diaz, E. V. Anslyn, Anal. Sensing 2023, 3, e202200095.

[110]

D.-S. Guo, V. D. Uzunova, X. Su, Y. Liu, W. M. Nau, Chem. Sci. 2011, 2, 1722.

[111]

P. Picchetti, A. K. Pearce, S. J. Parkinson, L. M. Grimm, R. K. O’Reilly, F. Biedermann, Macromolecules 2024, 57, 4062.

[112]

R. Jiang, M. Nilam, A. Hennig, W. M. Nau, Adv. Mater. 2024, 36, 2306922.

RIGHTS & PERMISSIONS

2025 The Author(s). Responsive Materials published by John Wiley & Sons Australia, Ltd on behalf of Southeast University.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/